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1. INTRODUCTION 

Functional transforms in linear spaces are often introduced to serve as a tool 
in solution of linear functional equations. The type of the transform depends on the 
type of equation and on the set of its solutions. Commonly, the use of transform 
methods assumes an established theory of the equation itself, i.e., existence and uni­
queness theorems and further properties of solutions are supposed to be known. 

On this basis we want to give a survey of (generalized) multidimensional z-trans-
form (n-D-z-transform) method and its use in solution of linear partial difference 
equations with constant coefficients, as well as systems of such equations, whose 
solutions will be called sequences. This theory is aimed at forming a basis of multi­
dimensional digital system theory, which attracted wide and increasing attention 
in the last decades. 

This effort might seem to be superfluous. In some respects we can only repeat 
known results; however, some relevant formulations in basic monographs seem 
to be open to misinterpretations, the theory of digital n-D systems itself is stumbling 
over some unexpected difficulties when generalizing some "obvious" results, and 
a large part of the n-D theory, although emphasizing the fundamental distinctions 
between the classical one-dimensional theory and the n-D case, is modelled as the 
transform of one sided and one-dimensional sequences. 

1.1. Notations 

The following notation will be used: Z, Z + , U, C will stand for all integers, non-
negative integers, real and complex numbers, respectively; Z" is the set of n-tuples 
of integers and similarly Z + , W, C" are sets of n-tuples; a, ft,... are elements of Z" 
a = (a1; a2 , . . . , a„), a ; e Z; A, B are subsets of Z" (or C"). For A <= Z", /J e Z", A + /? 
will be the set of all y such that y = a + /?, a e A and similarly A + B = {y: y = 
= a + ft, a e A, /? e B}; so A + /J is the "shifted" set A, while A u {/?} is the union 
of sets A and {/?}. We use A \B for the set of elements of A which do not belong 
to B. For XeC we shall use X = (X, X,..., X)e C" and ekeZ" will be the n-tuple 
2k ~ (e*i> •••> e*«)> where ekJ = 0 for k 4= j , ekJ = 1 for k = j . Capitals F, G, ... will 
also denote mappings F: D -* C, D c C", while/, g, x, y will be used for mappings 
as i n / : A -» C, A <= Z" with one common exception: 5": IP -* C such that its values 

. These mappings from Z" => A -» C will also be called sequen-
ior a. = p 

ces. Beside the delta sequence <5" the sequence / : Z" -> C with /(a) = Xl'X^2... X"n", 
shortly denoted as X" with X e C" being a fixed n-tuple of complex numbers, is often 
used. This shortened notation will further be generalized as follows: If Xe C" and 
U is an n x n matrix of integers with its rows denoted by Uhi= 1,2,..., n, we shall 
denote the n-tuple X to the matrix power U = [u,fc] as 

Xu = (XUl,Xu\ ...,Xu*)eC" 

*w - {; 



Hence, (Xvf = X" with a = (a., a2 , . . . , an), ak — £ uifca, 
;=i 

(A17)" = A°u . 

This formalism preserves the common rules of operations with powers as far as 
they are meaningfull, e.g., for A e "C" = {A e C", A, 4= 0, i = 1, 2, ..., n} we obtain 

( i T - = ;/ = (;,,;,,..,4). 
Sequences j : A -» C, A c Z", form a linear space S^. Normed linear subspaces of 
SA can be considered, e.g. the space l2 with a norm || • || defined by 

llj«2 = Ilj(«)!2-
zeA 

In the sequel we shall often deal with various linear operators defined on subsets 
of SA and with values in SA. In the set S of sequences / : Z" -> C convolution and 
shifted sequence are commonly defined as follows: 

I f j , geS, then h=f*g, defined by h(a)= £ j (« - fi) g(fi) where fie IT, is 

called their convolution, provided the sum defining h(a) converges for every a e Z". 
The convolution so defined obeys the following rules 

(l . i) f*g=--g*f, 

(Xf)*g =f*(Xg) = X(f*g), A e C , 

f*(g + h)=f*g+f*h. 

The sequence ffi = d~p * f is often called "shifted"; there is fp(a) = f(a + /?) and 
evidently 

/ = 5**(§-l>*f) = 5~"*(dl,*f). 

We are tempted to introduce a linear operator L = £ ff/j<5~/! * x) with B a finite set 
so as to consider the equation Lf = x, i.e. peB 

(1.2) ^ / ( a +/?) = x(a) , « e A e Z " 
^6J3 

as an input/output relation of a digital system. 
A Mikuszinski type axiomatic approach to functional transform, used in solving 

equation (1.2), could result in the transform relation d" ̂ z " with z e C " and, since 
for every / e S there is 

j(-) = inoj(«). -eP. 
we could obtain 

(1.3) j^Xj(«)za, a e Z " . 

Although this often is the way how n-D z-transform is introduced in handling 

: ) [13] calls L a partial difference operator with constant coefficients in the special case n = 2. 
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input/output relations (1.2) it has some crucial drawbacks. Equation (1.2) evidently 
has an infinite number of solutions. Indeed, with every solution cp defined on the set 
A + B = {y = a + P, a e A, fi e B) the function cpx with (^(a) = (p(a) + X" is 
also its solution, provided X is any solution of equation Vja/JA

/) = 0, X = (A;1 X2,... 
..., X„), A;e*C". Applying the theorem as in (1.3) we could perhaps obtain one of 
these solutions, but certainly no additional conditions (initial, boundary, e.t.c.) can 
this way be respected. "Operationally speaking" the algebra of operators defined 
by dp =± z" has nontrivial divisors of zero. This is in most cases (e.g. in system theory) 
unacceptable. 

Alternative definitions of functional transforms aimed at solution of equation(l.3), 
if such exist, must be able to respect uniqueness conditions (e.g. initial conditions) 
for the solution of (1-2). It remains to be clarified, under which conditions such 
functional transform, commonly called z-transform, can be defined so as its use 
could be justified in multidimensional cases as it has been for some special one-
dimensional problems. 

1.2. Reinhardt domains 

To define the n-D z-transform we need some preliminary results from function 
theory and algebra. 

Definition 1.2.1. A nonempty open set D c: C" is called a Reinhardt domain if 
z = (z l5 z 2 , . . . , z„)e D implies (zi ej,?1, z2e

i'P2. ..., zne
i,p")e D for every rc-tuple 

((p1,<p2, ...,q>„)eU". 

A Reinhardt domain D is called complete if z° = (zj, z 2 ) . . . , z°) e D implies 
z = (z1; . . . , z„ )eDfora l l j z k | < |z°|. 

A Reinhardt domain D c: C" is called relatively complete (RCRD) if it is either 
complete, or all its nonempty intersections with °CJJ, k = 1,2, ..., n, are relatively 
complete (in C""1). Here, °Ck = {z: z e C", zk = 0} and for n = 1, D is called 
relatively complete either if it is complete orif£> = { z : z e C , 0 < 5 < | z | < a ^ 
< +(»}. 

Any Reinhardt domain can be wholely characterized by the mapping X: C" -> R" 
defined as follows 

X(z) = (\z1),\z2\,...,\zn\)eR" 

Ы 

Fig. 1. 



The image of an open, connected set Z) c Z ' i n mapping X is an open and connected 
set in U\. This set is called the Reinhardt diagram. 

In Fig. 1. a), b), c) the Reinhardt diagrams of a noncomplete, relatively complete 
and complete Reinhardt domain are shown for n = 2. 

The domain in Fig. 1 b) is not complete and that of 1 a) is not relatively complete. 
It is easy and useful to recall the Reinhardt diagrams for n = 1. 

Reinhardt domains are important as convergence domains of power series in C". 

Lemma 1.2.2. Let P be a nontrivial polynomial in n-variables. Then there exists 
a relatively complete Reinhardt domain D such that P(z) 4= 0 for all z e D. 

Proof. For n = 1 the statement evidently holds true, In general, let P(z) = 

= z\ y__ Pj(z') z„, where z' = (zu z 2 , . . . , zn_t) e C" - 1 , Pt are polynomials of (n — 1)-
i = 0 

variables, we can state: there exists an RCRD, say B c C""1 such that st < |P0(z')| < 
< e2 for all z' e B. To any £j and all z„ with |z„| < e there is 

| Y. Pi(z') zn\ < st < \P0(z')\ for all z' e B 
i = 0 

and therefore £ P;(z') z„ 4= 0 on the set B x {|z„| < s}. Finally we obtain P(z) 4= 0 
i = 0 

for all z e B x {0 < |z„| < e}, which is a RCRD in C". • 

1.3. Semigroups in Z" 

The set Z" is an Abelian group with addition as its group operation and with 0 
as its neutral element. In what follows we shall often use some special Abelian sub-
semigroups of Z". 

A semigroup A will be called ordered, when it is endowed with a reflexive, transitive 
and antisymmetric binary relation < , called order, so that for every y e A the follow­
ing implication holds 

a, PeA, a ^ ^ = > a + 7<y9 + y. 

A subsemigroup K of Z" containing 0 (its neutral element) is a monoid. 

Let Q be an n x n nonsingular matrix of reals. The set KQ = {a e I", aQ = 
= (Pu P2,..., P„), pt _ 0} is a monoid and, since Q is nonsingular, KQ n (-KQ) = 
= {0}. Moreover, for any positive integer X and <xeKQ there is XaeKQ; therefore 
KQ can be called a cone. If the matrix Q consists of integers only, the set KQ will be 
called a rational cone. Rational cones stem from special linear transforms of the first 
n-tant of Z". 

Linear transforms of Z" onto itself will be considered. Any of these transforms can 
be characterized by a transform matrix U with integer elements and with det U = 1. 
The set A a Z" is transformed onto a set A' by such matrix U, when A' = {a' = aU 



for every a e A}. By such transform the order relation in A can be carried over 
to the set A' in an obvious manner. The set of matrices U has a canonical structure: 
it consists of a finite number of some special matrices. Let Ekt, k 4= I, be a square 

matrix of order n with elements etJ = \ . _ . _ . . Then Ukl = I + Ekt is a 
( t to r i — K, j — / 

transform matrix and / — Ekt = Ukt
l. The following theorem has been proved in [9]. 

A square matrix U of order n has integer elements and det U = 1 if and only if U 
is a product of matrices Ukl and matrices Us"^1 with l ^ ( t , ! , 5 , I | n . 

These transforms defined by a matrix U "preserve cones" in the following sense: 
Let K be a cone, let UK be the set of aU, a e K and U the above described trans­
form. Then UK is a cone; similarly, if K is a rational cone, UK is also a rational cone. 

2. THE n-D z-TRANSFORM 

2.1. Basic theorems 

Definition 2.1.1. Let / be a sequence with values in C, defined on the set A c Z". 
Then the function E: D -> C, D c C" defined by 

(2.1) E(z) = X / ( a ) z * , zeD 

is called its z^-transform, provided the series converges on the relatively complete 
Reinhardt domain D. 

We shall write this correspondence as 

/ ^ - E D ( o r / » ^ E c ( z ) ) . 

This definition has some obvious corollaries. 

Theorem 2.1.2 (analyticity). The z-transform FD of a sequence, if it exists, is 
analytic on the set D. If D is a CRD, then FD is analytic on the logarithmically 
convex hull of D. 

This theorem follows from the general theory of power series in C"; its proof can 
be found in textbooks on function theory, e.g. [10] p. 45. 

Evidently, if the z^-transform of a sequence/^ exists, then the zA,-transform of its 
restriction fA, to the set A' a A also exists. Further, 

Theorem 2.1.3 (linearity). If fA-^FD., gA»^GD,. and the sets A = A' n A", 
D = D' n D" are both nonempty, then for any constants X, fieC there is 

(Xf+ng)A^(XF + fiG)D. 

The proof is obvious. 
Since the set D is indirectly determined by the set A, we can also make use of the 

notation: FD = Z(fA) and formulate the following 



Theorem 2.1.4 (additivity). If the domains of convergence D and D' of Z(fA) and 
Z(fB), respectively, have nonempty intersection, then (as far as the left-hand side 
exists) 

Z(/A.B) = Z(fA) + Z(fB) - Z(fAnB). 

The proof is again almost self-evident; only the fact that the intersection of two 
relatively complete Reinhardt domains is either empty or again a relatively complete 
Reinhardt domain is to be taken into account. 

Theorem 2.1.5 (inverse transform). Let befA ^ FD. Then for all a e A 

/ - a - p ^ i r * ) . - " . . 
where r is an n-tuple of positively oriented circles, all points of whjch are contained 
in the set D a Z". 

Remark. Here and further, the integral over E is to be understood as follows 

7^vJrX(z)dz^ 

= / ^ J ° " " - M r i e * S . . . r„e*») r., r2 ... r„ -*«+••-*.> d<Pl ... d<pn, 
(27t) 

where r ; are the radii of the circles, F consists of. 

The proof is similar to that of the corresponding theorem of Laurent series in one 
dimensional function theory. Its details can be found e.g. in [10]. 

Strictly speaking, the z-transform as given in Definition 2.LI and its inverse is 
a one-to-one correspondence between pairs (A,fA) and (D, FD). While the set A 
uniquely determines D by Definition 2.1.1, Theorem 2.L5 yields Z" instead of A 
for the first member of the pair (A,fA), since the corresponding formula can be applied 
for all a eZ" . This is quite common in inverse formulae of functional transforms: 
we obtain from them classes of equivalence between fA and FD. Here A has to be 
understood as the intersection of all sets Ak with (Ak, fAk) =± (D, FD); this ends up 
with the set A consisting of all a such that the integral in Theorem 2.L5 is nonzero. 

To derive a theorem on z-transform of transformed sequences, we shall use the 
extended notation convention from Section 1.1. For any integer square matrix U 
we may denote z = wu and we obtain w = (z17) -1. Further, z" = waU supposing as 
before that a is a row-vector. 

Theorem 2.1.6. (On linear mapping in the space domain). Let be FD(z) = Z(fA) 
with A the first n-tant, i.e. A = {(at, ..., a„): a, j> 0, i = 1,2,..., n}. Let further U 
be an n x n square matrix of integers such that det U = 1. Then the function G 
with G(w) = F(wu) is the z-transform of the sequence g defined as g(a') = f(a'U~i) 
for all a' e K, where K = AU. The convergence region of this transform is contained 
in / ) "" 1 . 



Proof. Denote a' = aU and in formula F(z) = £ j (a) z" perform the substitution 
xeA 

a = v!XJ~x as shown above. The rest becomes obvious, when using the rules on zv 

as described in Section 1.1. (In this theorem and proof some almost selfevident nota-
tional conventions have been used.) • 

2.2. Some examples 

We want to show here by examples that our Definition 2.1.1 is a meaningfull 
generalization of the commonly accepted l-D z-transform and that this generaliza­
tion is not trivial. 

Example 2.2.L Take a constant X e °C", °C" = {z e C": zk + 0, k = 1, 2 , . . . , n}. 
Then j(a) = X" is a sequence defined everywhere in Z". Let its z^-transform be con­
sidered for various sets A c Z". 

i) If n = 1, without loss of generality we may assume e.g. A0 = {k: k >. 0}, 
A! = {k:k< 0}. Further, ZAa(f) = 1/(1 - 2z)for all \z\ < l}\X\,ZAl(f) = lj(Xz-l) 
for all |z| > 1/U|. The corresponding convergence domains D0, Dt are disjoint, 
the z-transform of the "whole" sequence does not exist. 

ii) For n > 1 the situation is similar only for the case A0 = {a: a; >. 0, i = 
= 1 ,2 , . . . ,«} : 

z,o(j) = ri 7—V-, 
i = i (1 — A;z;) 

with D = {z e C": |z ; | < l/|A,|}. 
iii) For n = 2 and A' = {(i, k), i >. 0, \k\ = i} after some rather tedious calcula­

tions we obtain 
Fx(z) = (1 +A1z1)A2z2 f o r h i A 2 2 i Z | < x 

(1 - X^XJZ^ZJ) (X2z2 - Xxz{) 

and \XiZt\ < \X2z2\. From the Reinhardt diagram of this region we reveal that the 

convergence region is a relatively complete Reinhardt domain. 

Similarly, for A" = {(i, k): i >. 0, k 2; — i} we obtain 

ВД = ^ 2 ^ 2 

(1 - Я2z2) (Я2z2 - Я^z.) 

for |A1z1 | < 1, |A2z2 | < 1, |AiZi| < |A2z2 |. The Reinhardt diagrams are open do­

mains, they are given in Fig. 2a), b). Note that A' c A" and for the corresponding 

convergence regions D" a £)'. 

Taking now A'" = A" \ A', i.e. A'" u A' = A" we obtain 

F3(z) = X I V = ; ^ 
*eA»' (1 - A2Z2) (1 - X^Z^) 



with a corresponding convergence domain D'" as in Fig. 2c). For all z e C with 
(|zi|> |z2|) e D' n D" n Z)'" we have in accordance with Theorem 2.L4 

E3 + F. = F 2 , D" = £>' n D'" 

which can readily be checked. 

d) 

1/A-i 

e) 

-|Z,I 

0 
Fig. 2. 

The sets A', A", A'" are sketched in Fig. 2 a), b), c). The Reinhardt diagrams of the 
corresponding convergence domains are the shaded regions in Fig. 2 d), e), f). 

Example 2.2.2. For 

/(«) = 

there is 

(1 + a, + a2)! 
, a, = 0 , i = 1, 2 , 

Z{/} = ľ̂ £ for z є c2 . 
Zi - z 2 

;o 



Indeed, 

/l + Z-l + Z-l + ...-(l + zl + zl + ... 
1! 2! V 1! 2! 

= 1 + - (zi + z2) + I (z2 + Z l z 2 + z2) + ... 

and the result follows by inspection. Many more transforms can be derived in a similar 
manner from the Taylor series of one-dimensional analytic functions, e.g. for z s C 2 

we have: 

fO for i + k odd 

z _ . | s i n ^ + " - - - - | = / ( . , fc) = ( - 1 ) ' for . + k e y e n ,- ^ o, fc = 0 . 

In a similar way we obtain for i _• 0, fc _ 0 with In 1 = 0 : 

< 1 , \z2\ < 1 , 
1 + i + k z1 — z2 1 + z2 

and 

1 _^ 1 
ln 

1 + 2. 

1 + i + k zt — z2 

ln 
1 + z 2 

(-íf+k _ 1 In 
1 - Z , 

1 + i + k z, — z2 1 — z2 

zJ < 1 , z2 < 1 . 

We may conclude: 
If for n - 1 there is F(z) = / 0 + j x z + j2z

2 + ..., |z| < g, then for i = 0, fe = 0 
and M = 2 

. ^ f j z Q - Z . E f z , ) | | | | 
Ji + k — > l 2 ^ < t? , | z 2 | < g • 

z l — Z 2 

Example 2.2.3. Let fA =i F D and let ij e °C be a complex constant such that the 
point (z', £)e D, z' e C""1. Define the sequence a: A' -» C, A' — Z"_ 1 as folows: 
g('a) = 'Y.f(a) £"", where ' denotes summation over all the values of «„ such that 
(a^ a2 , . . . , a„_ l5 a„) e A, i e A' is the set of (n — 1) tuples a' such that there exists 
a„ with (a', a„) e A. Then, as it can readily be seen, 

Z(gA) = FD(z1,z2,...,zn^1,Q. 

This result could be called theorem on partial summation. It is formulated for 
the nth coordinate only to simplify the notation. The result can be generalized: 
more than one of the coordinates of z e C could be fixed and accordingly, the sum 
defining g should be modified. 

Example 2.2.4. Since the partial derivative of a power series is again a power 
series with the same region of convergence, we may state: If fA ^ FD, then 
zk(dF\dzk) ^ <xkf(a) with « e A - 2", z e D <= C . 

Example 2.2.5. Let again be fA ^ FD. Choose a constant X e "C such that the set 
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XD = {w = (Xyzu A2z2, ..., X„zn), ze D] is again a relatively complete Reinhardt 
domain. ThenL^a) Xa ̂  F ^ A ^ , X2z2,..., X„z„) with a e A, D' = A_1D. 

Example 2.2.6. The computation of the inverse z-transform of rational functions 
F: C" -> C, e.g. F(z) = P(z)\Q(z), where P, Q are polynomials, 2(0) 4= 0, can easily 
be performed. This inverse z-transform consists of the coefficients of the Taylor 
series, which in this case can be expressed as values of the corresponding partial 
derivatives. Thus, from P= FQ we obtain e.g. for n = 2: If P(z,w)jQ(z,w) = 
= I / ( i , j ) z V , then 

i = 0 
j = 0 

pik + qp k q 7,1 I k+q-i-JQ 

3-* 3w« i=o A (fc - /)! (c2 - ; ) ! 3zfc"' 0w«-J V 7 

where substitution of z = 0 is understood. Denoting P(z, w) = '£bikz
iwk, Q(z, w) = 

= Y,aikz'wk> aft e r simplification we obtain 
i = k 

7 = 9 

-** = I-*-..,-j/(U) • 
i = 0 
7=0 

It would be much easier to derive this result with the use of convolution of sequences 
(see Section 3.1). 

Example 2.2.7. To illustrate the notational convention as used in Theorem 2.L6 
and the transform matrix U as introduced in Section 1.3 take the sequence X", a e A0, 
X e °C2, A fixed. Its z^0-transform equals 

^ ( z ) = 7 7 — T ~ u i . V ^ = { ^ C 2 : | z 1 | < | A 1 | - \ |z2 | < \X2\~
1}. 

With U = the first quadrant A0 becomes transformed onto A0U = 

= {a': a[ + a'2 ^ 0, a2 ^ 0}. Since for w e C2 there is wu = (wu H^/WJ), we obtain 

1 
F(wu) = G(w) = 

( l - A ^ l - ^ - 2 ) 

as the z-transform of the sequence g(a') = A"'""1 = A(Bl'+"-',c'2') = X\''(X^)"2'. The 
correspondence 

G(z) -± A1>(A.A2)«-, z e £ > \ (a., a2) eAoU" 1 

may easily be verified. Here, D17 = {z e C2: z u e D}; since zu = (z (1 ,0), z ( _ 1 , 1 )) = 
= (zj, zx

1z2), there is 

Dv = {zeC2:\z1\<\X1\-K\z2\<\X2
1z1\}. 
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2.3 THE CHARACTERISTIC TRANSFORMS 

The result of Example 2.2.4 shows that the following definition might be useful. 

Definition 2.3.1. Let A c IP; the z-transform W£ of its characteristic function 
XA is called the characteristic transform of the set A; the region of convergence of W 
is called the characteristic domain of A. 

It follows that 

<(z) = I2*. 
aeA 

Some examples have been already given. From ii) in Example 2.2.1 we conclude that 

w£°(z) = fl-±~; 
1-1(1 - z,) 

in iii) of the same example the following relations are given 

mffr)-,, z ' ( \ + / 0 . 
(1 - zíz2)(z2 - zi) 

Wf(z) = (1 - z2) (z2 - z.) 

< " ( z ) = 
( 1 - - 2 ) ( 1 - Z l z 2 ) 

The characteristic domain depends on the set A only and it is uniquely determined. 
We may therefore speak of a mapping m(A) = D. Theorem 2.1.4 can be taken as 
a subadditive property of this mapping, or more precisely 

m(A u B) <= m(A) n m(B) 

provided the left-hand side is nonempty. 
The characteristic domain of a set 4 c Z" is a relatively complete Reinhardt 

domain, if nonempty. 

Theorem 2.3.2. If the characteristic domain of a set A <= Z" is nonempty, then for 
any two elements £, r\ e A there exists an integer t such that c, + f/7 <£ A. 

Proof. Indeed, £ + ty e A for all i e Z would imply that the series £ (- ') ' 
has an open set of convergence, which is impossible. «•=•-<*» p 

In n-D digital systems theory so called asymmetric half-planes are considered e.g. 
as H = A0 u {(<xu oi2): at > 0, a2 < 0}. The set H is a cone with Hn(-H) = {0}, 
but m(ff) = 0. 

Theorem 2.3 .3 . The set A a Z" has a nonempty characteristic domain if it belongs 
to a rational cone K. 

13 



Proof. It is sufficient to prove that any rational cone has a nonempty characteris­
tic domain, i.e. that the series *>] z" converges in an RCRD. Let the rational cone K 

aeK 

be defined by a nonsingular integer matrix V(see Section 1.2) as follows: aeK iff 
the vector Va = ft has only nonnegative coordinates. Denote z = wv and write 
£ z" = YJ (wr)a. All terms of this series are contained among the terms of the 

aeK aeK 

series "T w*1, which is convergent for all Iwl = \wxw2 ... w„\ < 1. Since d = Idet VI 

is a positive integer, the last condition is equivalent to |w2w2 ... w„\d < 1. From 
w = zK~l we obtain lw|d = \zY\, where Y is an integer matrix. The sum *T z" will 

aeK 

be convergent for all zeC satisfying |z r | < 1 and we are left with a set of n i n e ­
qualities |z',<"| < 1. If the matrix Y consists of nonnegative integers only, then the 
series "£ za converges in a complete Reinhardt domain (see Definition 1.2.1). If Y 

aeK 

contains negative elements, then the domain of convergence is relatively complete 
and the statement is proven. • 

It can be proved that any cone is contained in a rational cone. (For n = 2 this 
statement and proof is essentially contained in the paper by R. Eising [5], but the 
method can hardly be generalized for n > 2.) It means that for the characteristic 
domain of a monoid M c Z ' t o be nonempty it is sufficient if M is a cone. Theorem 
2.3.2 shows that a corresponding necessary condition must include requirements 
similar to that of M n ( — M) = {0}. An appropriate weaker condiition could be 
of importance in n-D systems theory. 

The existence of the characteristic transform is closely related to the existence 
of n-D z-transforms of some classes of sequences. 

A sequence f will be called A-bounded on the set A c Z" if there exists a vector 
X e *C" such that |j(a) X"\ < M for some M > 0 and all a e A. 

Theorem 2.3.4. If the set A c Z" has a nonempty characteristic domain, m(A) 4= 0, 
then all A-bounded sequences have convergent z^-transforms; if m(A) = 0, then there 
exist A-bounded sequences, which are not z^-transformable. 

Proof. I f j i s A-bounded, then 

\zAf}\ = M£ 
aeA 

Here and further 

£ = £i .h ...f» 
A Ai A,-y A« 

Since £ z* converges in an RCRD, say D c C", then this inequality implies that 
aeA 

there exists an RCRD £>' = XD, where ZA{f] is holomorphic (here, XD = {w.w = 
= Xz,ze D}). On the other hand, no constant sequence is z^-transformable if 
m(A) = 0. • 
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Example 2.3.5. The sequence j(a) = A | a |, a e Z, X e *C has its z-transform 

-*/)-, ( 1 . : p ' . A < | Z | < I M , 
(z - A) (1 - A-) 

provided U| < 1 although m(A) = 0. For f(a) = a!, a e Z, a ^ 0, its z-transform 

does not exist, although m(A) = {z e C, |z | < 1}. 

A further lemma can easily be proved. 

Lemma 2.3.6. Every sequence f, which is A-bounded on a rational cone K <=: Z" 

has a convergent zK-transform. 

This lemma follows from Theorem 2.3.3. Further applications of the concept 

of characteristic transform will be shown in subsequent sections. 

Some characteristic transforms can easily be found using Theorem 2.L6. 

Example 2.3.7. Let U be a nonsingular matrix of integers, det U = 1. Then the 

characteristic transform WB of the region B = A0U, where A0 = {a e Z", a ; S: 0} is 

the first n-tant, equals 

Wl.) - j ^ p 

and its characteristic domain m(B) = Dv . E.g. for 

U = we obtain zu = (z,, z2jzi) 

and therefore 

WB(z) = ^ for all z e C 2 such that \z°\ < 1 , 
W ( l - Z l ) ( Z l - z 2 ) ' ' 

i.e. jz-x| < 1, | z 2 | < jzTij. For U = we obtain the result as for WA" in this 

section. 1- -J 

Together with the theorem in Section 1.3 on the canonical structure of the set 

of transformation matrices U, det U = 1, we have now a method of construction 

of characteristic transforms for regions in I", for which such one-to-one mapping 

to the first n-tant does exist. This method can also be used for integer nonsingular 

transform matrices Fwith det V = — 1 . E.g. for 

V = 

we obtain zv = (z±z3, ztz2, l/z3). Here B = A0V consists of points a' satisfying 

a[ + a'3 ^ 0, -a[ + a'2 - a 3 |> 0, - a 3 ^ 0 and from Theorem 2.1.6 follows for 
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the characteristic transform of the set B 

W»(z) = 

(1 - z l Z 3 ) ( l -zxz2)U ~~\ 

3. THE CONVOLUTION 

3.1. Convolution and Product of sequences 

In the preceding section the algebraic structure of the set A was mostly irrelevant. 
From now on, it has to be assumed that A is a commutative semigroup with addition 
as its semigroup operation. Additional requirements (e.g. such as the existence 
of the neutral element) will be formulated whenever necessary. For sequences j , g 
defined on the sets A, B, respectively we shall introduce their convolution as follows: 

Definition 3.1.1. Ifj: A -> C, g: B -> C, A, B c Z", then the sequence h: A + B -> 
-» C, defined by 

(3.1.1) %) = I/(«W) 
aeA 
l)eB 

is called convolution of/ with g (and denoted by h = / * g) provided the sum exists 
for all a + ft e A + B. 

To obtain the common form of formula (3.1.1) we may rewrite it as follows 

A(y) - I 7 ( « ) t7(y - «) , yeA + B, 
xeA 

where Vj denotes that for every yeA + B the summation is taken over all such 
a e A for which y - ae B. Evidently 

(3.1.2) f * g = g*f. 

Also 

(3.1.3) W)»0=f*(*g)~Hf*g), 
(f + g)*h = (f*h) + (g*h) 

provided the right-hand sides exist. 
The domain of convolution is equal to that of the constituents only in exceptional 

cases. Some cases are of special interest. If e.g. A = B = Z", we arrive at the case 
given in Section 1.1. If only one of the sets, say A = Z", then A + B = Z" for all 
possible choices of B. Here the most important example is as follows 

Example 3.1.2. Le t / : A -> C, t h e n / * 5": Z" -> C and 

(/*^)(y) = If(y-a)^(a) = 
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j(y - fi) for y - fi e A 

0 for y - | 8 M > w n e r e a e l" • 

For p = 0 this operation simply extends the domain of j , putting its value equal 
to zero for a £ A. 

Definition 3.L3. Let / : A -> C; then the sequence ff T -> C is called " j shifted 
by j8 G Z"" if 

According to the previous example, the shifted sequence 

(314) f(y)-\f{y + P) f ° r y + P e A 

{XlA) j-W-|o for y + P$A' 

This definition is not always satisfactory. The main reason is that <5" * (5~" * / ) 4= j 
if A =)= Z". We shall deal with this problem in the next section. Here an important 
theorem on n-D z-transform has to be formulated. 

Theorem 3.1.4. Let fA -==. FD, gB ^ GH and let D n H = K * 0. Then, provided 

the left-hand side exists, there is 

fA*9B^(F . G)K. 

Proof. Take the right-hand side of the correspondence for z e K. Sinde the inter­
section of relatively complete Reihardt domains is again an RCR domain we have 
to consider the product 

X j ( « ) z a I a ( / ? ) z " = X j (a)a ( /?)z^" = 
aeA peB aeA 

ISeB 

= I (rj(«)-(y-«))-'= £ ( j * - ) ( " ) - > , 
yeA + B aeA yeA + B 

which completes the proof. • 

A dual theorem can also be proved 

Theorem 3.1.5. Let be 
F(z) = I j ( a ) - * for all zeD, 

aeA 

G(z) = X o(a) za for all zeH 
aeA 

and D n H = K =t= 0. (Here £>, # , .K are relatively complete Reinhardt domains.) 
Then 

^ f F£\<m~ = Ij(a)í(«)-a 
(2-j) 

for all z e K, provided T is a suitable "closed path of integration encircling the point 
0", entirely contained in K. 
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Proof. Consider the following evident fact 

/ , . o 1 f d<5 fl for a = 1 , 

After using the series expansions of E and G in the integral (3.L5), the interchange 
of summations and integration is justified due to the absolute and uniform con­
vergence of the series. Hence, 

(4 J> w iff){im (,) f=<kUf{")m •*-' di -
fieA 

- 7— i *• f /(«) m y-*-1 ̂  = i/w ̂  -*, 
(2TUJ)" O.Ê  J r ^A 

flsA 

with the use of formula (3.L5). • 

This theorem has interesting applications in the following special case: Let/^-—: 
^FD(z) and let B — A. Then the restriction ofj^ to jB has a convergent z-transform 
and it can be expressed as 

(3X6) rM-^l*aK§±. 
where W%, is the characteristic transform of the set B, R = D n £)'. (The reader 
may not be surprised discovering, that the special case B = A in (3.L6) gives the 
well-known Cauchy's formula). 

Some examples could be in order here. 

Example 3.1.6. Let the sequence j 

j » = - r, , A = {«! _ 0, a2 + a i ^ 0} 
(1 + a. + a2)! 

be considered. Its z-transform can be obtained similarly as in Example 2.2.2. 

e
z= _ 1 

ZA{f} = for |zi| < |z2 | . 
Z2 ~ Z l 

The set A contains the first quadrant A0. With the characteristic transform of A0 

and with (3.L6) we can obtain Z{fAo} as follows 

z{jU(c) 
( 2 7 r j ) 2 J r z 2 - z 1 ( z 1 - £ 1 ) ( z 2 - ^ 2 ) 

where |z1 | < |z2 | and therefore T = {z : = ej(?; z2 = r^* , r > l} , hence 

1 C2n rej*l'ereJ* - I) 

/« 



with 

!({..*)-£• 
( r c J * - e " ' ) ( e " - { 1 ) ' 

After some further calculations we obtain 

p<a _ piz 

z{fAo}(i)-- ~ 
s i - C2 

in accordance with Example 2.2.2. 

3.2. The shift operator 

Although the set SA of sequences defined on A <= Z" forms a linear space, sequences 
"shifted by ft", as they are characterized by Definition 3.L3 do not belong to this 
space. For reasons given in Section l . lwe have to construct a different "shift operator" 
so that these operators could be treated by the z-transform. 

Taking S^ as a starting point, the "shifted sequence" would be defined on a "shifted 
region", say A + /?, which may in various ways differ from the originally given 
region A. This can be illustrated by an example as in Fig. 3. 

Fig. 3. 

The shift creates certain "abandoned" regions (dotted area) and some "newly 
occupied" regions. In general, the "abandoned" regions are formed by the set 
A \ (A + P), the "newly occupied" ones by the set (A + /?) \ A (either one or both 
of these may be void). To create a linear space of shifted sequences demands to 
somehow take care of the "abandoned" and "newly occupied" regions. This is the 
basic motivation of the following seemingly overcomplicated 

Definition 3.2.1. For a given set A <~ Z" and a given point /? e Z" the operator Tp: 
SA -* SA is called a complete shift operator if 

1) for any given / e SA the values f(y) are specified for all y e (A + fi) \ A 
2) the values of g — Tpf for any given sequence / e SA are given by 

o(a) = /(a + p) for all a £ A . 

The complete shift operator maps the linear space S^ into the linear space S^, 
but the operator Tp is not linear. Nevertheless, for given numbers k, \x and given 
vectors a, ft the sum XT' + \iTp is again an operator T: SA -» SA provided Tx, T11 
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are complete shift operators. More generally: for any finite set B c Z" and any 
mapping a: B -* C the following operator T: SA -+ S^ can be defined 

(3.2.1) T=XVTV: 
I'leB 

here, T" are complete shift operators. 

Consider now the inverse of T11, formally denoted by (Tp)~l. Note, that for 
T" to be defined, the vector fj and the values f(y), y e A + ft \ A must be uniquely 
specified. Therefore, (T^)"1 will exist if and only if there exists a unique extension 
of g = T'fe S4 to the set A - [3 \ A such that g(a - ft) = /(a) for all a e A. More 
generally: 

Theorem 3.2.2. The operator T: SA -* SA, defined by formula (3.2A) has an inverse 
operator T'1 if and only if equation (1.2) has a unique solution/for any sequence 
xeSA. 

In our next step we want to investigate the impact of the z-transform on the opera­
tor T", i.e. to derive ZA(Tpf) from a known ZA(f). 

Theorem 3.2.3. Let be fA ^ FD and let Tp be a complete shift operator with A n 
n (A + p) + 0. Then 

ZA(T»f) = z-"(ZA(f) + Ij(a) z* - £/(«) *•), 
aeRp aeSp 

where Rp = (A + p)\A, S0 = A\(A + jS). 

Proof. The proof is straightforward: 

Uff) = !/(« + /0 -a - z-' Z /(?) *7 = 
tie A yeA + P 

= '-"( I + S ) = z-"(Xj(y)Z' + Ejz)-Ij(rK) 
ye( / l+^) \4 ye/ln(/i + 0) yeK/j yeS/i 

and the proof is completed. • 

To illustrate the situation, take n = 1 and pt = 1, /J2 = — 1. With the sequence 

/ _ ! = 3 , / 0 = 2 , / . = j 2 = . . . / , = 1,. . . , 

we have A = {a ^ — 1}. For /?x = 1 there is 

* , , = { a ^ 0 } \ { a ^ - 1 } = 0 , Stl = { a ^ - 1 } \ {a g: 0} = { - 1 } . 

Since 
3 - z - z2 

Uf) - r ( l - - ) ' 

we obtain 

-'<'*/>-1(-ír-í--V-JLi 
z \ "(1 - z) zj z z - 1 
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and the sequence TPlf = / ' is therefore 

T-i-2; / , ; = / ; = . . . = / ; = 1 , . . . . 

Similarly for /32 we obtain Rll2 = {-2}; SPl = 0 and therefore 

^т"» = *Штf+if} 
with the value/_ 2 of the original sequence undefined. 

The last two theorems make possible the use of z-transform in solving partial 

difference equations (1.2). Other applications are also possible. 

Example 3.2.4. z-transform techniques are often used in deriving combinatorial 

identities. Starting with the correspondence 

— , m, n ^ 0 ; I_r, + z2\ < 1 , 
1 - 'I - Z2 

which can easily be obtained, we may construct the "convolutional square" 

" ? + ' A ( m + n^ as follows 

*''»-5CГ)C" + ::Г) 
J' = 0 

(see Definition 3.LI). With Theorem 3.L4 we obtain for the z-transform of the 

sequence 

° W ^ T - ^ ' 
On the other hand, Example 2.2.4 yields 

= /(m, n) 
(1 - -i - ^ 

and from Theorem 3.2.2 we obtain 

,T«. °y = (m + i / m + n + 

(1 - -_ - -_)• 

Comparing these results, we obtain 

Ki --/ V" ( m + 1 ) 

J = 0 

where, as usual, I J = 0 if q > k, or k < 0, or q < 0. 
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4. SOLUTION OF n-D DIFFERENCE EQUATIONS BY z-TRANSFORM 

4.1. The existence and uniqueness of solution 

We want to use z-transform to find the solution of equation (1.2). Besides linearity 
(Theorem 2.L3) mainly the shift operator (replacing in a certain sense the partial 
difference operator) has to be treated; here Theorem 3.2.3 will be used. We shall 
show that in the applicability of z-transform the sets Slh Rp play a crucial role. 

When solving linear functional equations of any kind by functional transform 
method some preliminary investigations are necessary. These must include the one-
to-one correspondence of the transform and its inverse, which is a necessary condi­
tion of its application. Often such correspondence can be ensured only on certain 
classes of solutions of the functional equation originally given. This is why functional 
transform methods can hardly be used for obtaining existence and uniqueness results 
for functional equations. As shown by the correspondence of region A of the sequen­
ces /and domain D of its z-transform (see Definition 2.1 A), a similar situation arises 
in solving partial difference equations. Application of z-transform to the solution 
of equation (1.2) can be reasonable only after the existence and uniqueness of its 
solution has been guaranteed. However, this cannot be done without some additional 
information. Indeed, supposing/* is a solution of equation (1.2), we realize that 
any sequence / with / (a) = /*(«) + X", where X e °C" is a constant vector satisfying 
£ apX

p = 0, is also its solution. Therefore if n > 1, equation (1.2) either has no 
fieB 

solution at all or it has an infinite (non-countable) set of linearly independent solutions. 
To ensure uniqueness some additional requirements have to be imposed on the 
solution of (1.2). These may have e.g. the form of boundary conditions or "initial" 
conditions. Here rather complicated situations may arise, which are not attainable 
by z-transform methods. Therefore we shall restrict ourselves to special type of 
solutions, called recursively computable solutions (see [ l ] and also [2], [4]), which 
have been mostly dealt with in n-D digital systems theory. 

The definition of a recursively computable (RC-) solution has to be carefully 
formalized. The basic idea is that of successive computations of the values / (a) 
from earlier computated values/(a'), values x(a) of the input and some given "initial" 
values. The existence, uniqueness and construction of an RC solution of equation 
(1.2) essentially depends on an order relation g in the set, where this solution is 
supposed to satisfy the equation. Supposing in equation (1.2) that a e A <= Z", 
the solution/has to be defined on all the "sets A shifted by ft e B", i.e./: A + B -> C, 
where A + B = {y e Z": y = a + /?, a e A, J? e B). As mentioned above, RC solu­
tions imply that the set A + B is an ordered semigroup, its ordering relation will be 
henceforth denoted by g . To guarantee the existence and uniqueness of the Re­
solution for arbitrary initial values, a certain set G, say "initial set" has to be suitably 
chosen. It has been shown [1], that even in more general cases of linear partial 
difference equations such choice is always possible. Its actual construction can be 
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derived from the order <. and from the sets A, B; it does not depend on the values 
of the coefficients a^ as far as they are not equal to zero. 

The most simple situation arises with a well-ordered set A + B. Since any cone A 
can always be endowed with an order < such that A + B is a well-ordered set, 
recalling Theorems 2.3.3, 2.3.4, we can qualify this special case as the most important 
one in applications of the z-transform. The following Theorem contains also the 
construction of the "initial set" G. 

Theorem 4.1.1.a Let the equation 

(41.1) £ a„/(a + 0) = x(a) , a e A c Z " 
ffeB 

be considered with A, B nonempty sets, B c Z" finite and containing at least two 
elements, ap + 0 for all p e B. Let further an order relation < in Z" be given such 
that A is a well-ordered cone with respect to < . Denote max B = fi° and 

(4.1.2) G = (A + B)\(A + p°). 

Then for any mapping g: G -> C there exists one and only one sequence/: A + B -» C 
such t h a t / satisfies equation (4.1.1) and/(y) = g(y) for all y e G. Moreover, all the 
values f(y), y e A + B\G are recursively computable from the "initial" values 

9(y). 
To give a nontrivial illustration, we shall reconsider the difference equation from 

Example 2 (see [7], p. 93), which is claimed not to have a "well-defined recursive 
solution" under "zero initial conditions". The equation reads as follows (original 
notation of Huang's paper is retained): h(m, n) = 5(m, n) + eh(m — 1, n) + 
+ fh(m, n — 1) + gh(m + 1, n + 1), m, n >. 0 and with "zero initial conditions". 
To use Theorem 4.1.1a, let < be the lexicographic order, i.e. (m, n) < (/, k) iff 
[m < i or (m = i, n < k) or m = i, n = fc]. Since B = {(0, 0), ( - 1 , 0 ) , (0, - l ) , 
(1, 1)}, we have f = ( l , 1). With A = {(in, n), m ^ 0, n >, 0} we obtain A + B = 
= {(m,n): m ^ - 1 , n ^ - 1 } \ { ( - 1 , - 1 ) } , A + /?° = {(m, n), m ^ 1, « ^ 1. 

Therefore 

G = {(m, «): m = 0, m = - 1, n ^ 0} u {(m, n): « = 0, n = - 1 , m > 0} , 

and "zero initial conditions" say that g(m, n) = 0 for all (m, n) e G. A simple figure 
(which the reader is asked to sketch) shows by inspection that the solution can readily 
be computed by recursion. The mistake in Huang's paper also becomes evident: 
the value h(—l, — 1) must not be chosen arbitrarily and therefore it cannot be put 
equal to zero beforehand. 

The last theorem is an overspecialized version of a more general result, which 
has been proved in [1]. In what follows we need a slightly more general result: 
the assumption of A to be a well-ordered set is too resctrictive since it is not included 
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in the problem as it is formulated by equation (1.2). Let therefore the last theorem 
be reformulated without this assumption. 

Theorem 4.1.1. Let the equation 

(4.1.1) Y ai>f(* + P) = *(a)> a e A c Z" 
PeB 

be considered, where A, B are nonempty sets, 4 , 5 c Z", a,, + 0, B finite and with 
at least two elements. Then there exist an order relation ^ in the set A and a set 
G c A + B such that for any function g: G -» C the equation has exactly one re­
cursively computable solution j : A + B -> C satisfying the (initial) conditions/(y) = 
= g(y) for all y e G. 

The proof of this theorem can be found in [ l ] , where also the construction of the 
initial set G is described in case when the set A is not well-ordered. The basic idea 
for this construction lies in construction of the order relation g in the set A and 
a mapping /?*: A -+ B, which satisfy the following implication 

(4.1.3) a' + J?*(a')ea + B => a' z% a for all a, a ' e A . 

This construction is proved to be always possible, and moreover, the initial set G 
can be expressed as follows 

(4.1.4) G = (A + B) \ U (a + /?*(a)) . 
aeA 

Some examples are shown in Section 4.2. The above theorem together with Theorem 
2.L3, Theorem 3.2.3 and the basic Definition 2.LI enables to find the classes of 
n-D difference equations which are directly solvable by z-transform. (It cannot be 
anything surprising in the fact that not all equations (1.2) can be directly solved 
by z-transform: in our rather general formulation even in one dimensional cases 
some equations of the considered type cannot be solved by z-transform.) Since 
the main difficulty lies in discrepancies between the initial set G (see Theorem 4.LI) 
and the sets Sp, Rp (see Theorem 3.2.3), their properties will be investigated now. 

Lemma 4.L2. Let be RB = U Rp, $B = U ->/»• Then 
fieB PeB 

(4.1.5) RB = (A + B)\A 

SB=A\f)(A + P), 
PeB 

and the following equivalences hold true: 

(4.1.6) RB = $oA + BczA 

SB =QoAczf)(A + P)=>AczA + B. 
PeB 

The proof follows from well known identities of set theory. Q 
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Definition 4.1.3. Equation (4.1.1) with a given initial set G ensuring the existence 
and uniqueness of its solution is said to be z-complete if 

(4.1.7) G = SBuRB. 

This definition is motivated by comparison of Theorems 3.2.3 and 4.1.1. Evidently, 
only for equations satisfying condition (4.L7) the z-transforms of their solutions 
can be obtained by direct application of Theorem 3.2.3 and 2.1.3. 

Theorem 4.1.4. The equation (4.1.1) with 0 e B and A 4= 2" is z-complete if and 
only if 
(4.1.8) 0 (A + P) = U (a + $*(*)) , 

PeB XEA 

where the mapping />*: A -> B satisfies condition (4.L3). 

Proof. If 0 e B , then (\(A + fi) cz A a A + B and the rest follows from Lemma 
4.L2 and formula (4.1.4). • 

Example 4.1.5. Let in equation (4.1.1) be n = 1. With the assumptions of the 
previous theorem this equation has the common form 

p 

Y,akf(m + k) = x(m), 
* = o 

where m is a positive integer, p is the order of the difference equation. Here C)(A + ft) 
PeB 

is the set of integers 2: p and /?*(a) = p. Therefore U (<* + /?*(«)) also equals the 
aeA 

set of integers >: p. Hence every initial value problem for a one-dimensional difference 
equation on a half line is z-complete. We shall see that here the assumption n = 1 
together with that of A being a half-line is essential. 

4.2. Difference equations on well-ordered sets 

Since conditions ensuring the existence of a unique, recursively computable solu­
tion of equation (4.1.1) have their simplest form in case when the set A is a semi­
group, which is well-ordered with respect to order ^ (compare (4.1.4) and (4.L2)) 
we start our discussion with the special case. It includes, among others, the mostly 
investigated QP filters in multidimensional systems theory, together with all the 
classical results in one-dimensional digital filtering and, at the same time, it is closely 
related to a certain "one-sidedness" or, casually speaking, to causality of n-D systems. 

From Theorem 3.2.3 the following classification scheme can be derived: 

Definition 4.2.1. The equation (4.1.1) is said to be of 
delayed type if A <= f) (A + P), 

PEB 

semidelayed type if A c A + B 
advanced type if A + B <= A 
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mixed type if it is neither of delayed nor of advanced type 
neutral type if it is both of delayed and of advanced type. 

Some examples could be in order. 

Example 4.2.2. (i) In 2-D digital system theory mostly the following example is 
considered 

i = JV,/t = M 

(4.2A) I «.*/(*. - U «2 - k) = x(a t, a2) , 
i = 0 
k = 0 

with a = (a l5 a2) e A0, a00 + 0, N, M positive . 

This is an equation of delayed type. Moreover, with lexicographic ordering of Z2, 
it is also z-complete and therefore its solution by z-transform methods runs without 
difficulties. Similar is the situation with such equations for n > 2. 

(ii) Equation (4.1.1) considered for A = Z" is an equation of neutral type. Its 
direct solution by z-transform is impossible, e.g., since initial conditions cannot be 
respected or for reasons described in Section 1.1. 

(iii) Equation 
; = JV,1- = M 

(4.2.2) X flikf(«i + '"> oc2 + k) = x(au a2), aeA0, N, M > 0 
1 = 0 
* = 0 

is an example of equations of advanced type. It is also z-complete if aNM + 0. 

(iv) Equation (4.2.1) with A = {(ax, a2): aj > 0, a2 > 0 or a t > 0, a2 < 0} 
describes the so-called ASHP (asymmetric half-plane) filters (see [7]). It is again 
an equation of delayed type, (SB = 0), but now RB $ G (more explicitly G = 
= RBu {(at, a2): a t eZ , a2 = —1} when lexicographic ordering is considered) and 
therefore (4.2.1) cannot be z complete in this case. 

(v) Equation 

(4.2.3) / ( a i , a2) + fl/(a, + 1, a2 - l) + 6/ (a . - 1, a2 + 1) = x(a), 

a e A 0 

is of semidelayed type, but it is not of delayed type. As of its solution, the situation 
is somewhat similar to that of Example 4.2.4. This equation is not z-complete. 

(vi) Equation 

(4.2.4) 4 / ( a „ a2) = / ( a . + I, a2) + / ( a , - 1, a2) + / ( a t , a2 + 1) + 

+ / ( a 1 , a 2 - l ) for A = {(au a2): 0 ^ ax ^ M, 0 % a2 jg N} 

is obtained by discretization of the Laplace partial differential equation. In our 
classification scheme it is an equation of semidelayed type, which is not z-complete. 

26 



(vii) Equation 

(4.2.5) / ( a , + 1, a2) + f(au a2 + 1) = x(a., a 2 ) , 

with A = {(a1; a2): 0 ^ a! g M, 0 ^ a2 :g JV} is an example of mixed type equation 
which is not z-complete. 

It has to be emphasized that all the equations in this example with properly chosen 
initial conditions have a unique and recursively computable solution. Now the follow­
ing theorem on the solution of partial difference equations by z-transform can be 
formulated: 

Theorem 4.2.3. Let the sets A, B c Z" be as in equation (4.LI). Let the set A 
be an ordered semigroup such that (4.1.1) is z-complete, i.e. condition (4.L7) is 
satisfied. Let further initial values g(a) be given for all a belonging to the correspond­
ing initial set G. Then the zx-transform F of the solution / of equation (4.LI), satis­
fying conditions /(a) = g(a) for all a e G, can be expressed by 

(4.2.6) X(z)-_N(z) + M(z)^ 

laez ' 
PeB 

where X(z) <± x(a) and 

N(z) = I ¥ - ' ^ ( ^ V ) 
fieB cteR» 

M(z) = X V - ^ ? ( a ) z - ) 
0eB xsSf 

are determined by the given initial conditions. 

If (4.LI) is of delayed or semidelayed type, then 

M(z) s 0 . 

If (4. LI) is of advanced type, then 
N(z) s= 0 . 

If g(a) = 0 for all a e G, then 
N(z) = M(z) = 0 . 

The proof of this theorem consists of application of Theorems 3.2.3, 4.1.1, 4.L3. 

Although the last theorem did not assume that the set A is well-ordered, we shall 
investigate now this case in more detail. Our attention will be focused on equations 
which are not z-complete. 

Example 4.2.4. Find the solution equation of 

(4.2.7) / ( a . - 1, a2) + / ( a . , a2 - 1) = x(au a 2 ) , a e A0 

satisfying initial conditions/(—l, a2) = 0 for all a2 = 0, if x(a) = 1 for all ae A0. 

') The sum is considered equal to zero if the corresponding set Rp or Sp is empty. 
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Since B = { ( -1 ,0 ) , (0, - 1 ) } , we find that A0 = f. (A0 + /?) and therefore 
0eB 

(4.2.7) is of delayed type. From Theorem 4.1.1 we conclude that (4.2.7) has a unique 
solution. To apply Theorem 3.2.2, we find R(-i>0) = G, R(0,-D = {(at, —1), 
at ^ 0}. Hence the equation is not z-complete. For zero initial conditions and given 
function x(a) we obtain 

E(z) (zt + z2) = L - - <p(zt) , 
(1 - zt)(l - z2) 

where (p(zt) = £ / (a) z\l is a one-variable function. This function cannot be 
<*eK<o,- i ) 

obtained from given data; it is by no means arbitrary. Direct application of zA-
transform fails. 

Trying to improve the situation, we might attempt to substitute "new variables" 
y by «t — yt, a2 — y2 + 1, to obtain equation 

j(n - i , y 2 + i ) + j ( r i , 7 2 ) = < y i , ? 2 + i ) , ?i = o ; y 2 ; > - i . 

This equation is no longer of delayed type, since S ( - I , D + 0. With corresponding 
initial conditions again a unique solution exists, nevertheless it still remains to be 
not z-complete. 

Let now in (4.2.7) the set A* = {(at, a2), at ^ 0, a2 £ Z} be considered instead 
of A0. Evidently A0 - A*. With G* = { ( - 1 , a2), a2 el} we have also G c G* 
and equation (4.2.7) for a e A 0 could have a unique solution provided initial conditions 
on the set G* and values of the input x for a e A* are known. On the set G*\G 
and A*\A0, respectively, the initial and input values can be chosen arbitrarily: 
let us put them all equal to zero. This "new" equations is henceforth characterized 
by the triple (A*, B, G*). Since A* + B \ A* = G* = (A* + B) \ (A* + (0, -1 ) ) , 
and f. 04* + P) = A*, the equation is of delayed type. Furthermore R(-i,0) = G*, 

•^(0,-1) = $> an<l the equation becomes z-complete. With zero initial conditions and 
with the above accepted definition of x as 

11 for a 6 A0 

for a e A* \ An 
we have from Theorem 4.2.3 

E„(Z)(Z1+Z2) = - ~ v-
(1 - z , ) ( l - z2) 

Note that E is indeed holomorphic in an RCRD (e.g. \zt\ < |z2 |, |zj | < 1, |z2[ < 1.) 
To obtain the z^-transform of the solution of the originally formulated problem, we 
have to use Theorem 3.1.5 as characterized by formula (3.1.6); this means 

F ( 2 - ) _ _ _ L f dw^dw2 

*)-{í 

4л2 J г (щ ~ Zi) (w2 - z 2) (wt + w2) (1 - wt) (1 -

ith E = {wt = g éę, w2 = r eÌФ, 0 < g, r < 1, 0 ^ ę, ф й 2я}. 
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After some rather tedious calculation in which we consider |z . | < |w. < 1, 
[z2| < |w2 | < 1 and get 

E(z)=--Lf * ([ ^ W = 
4 * 2 J r2 (w2 - z2) (1 - w2) VJ r, (wi + w2) (w, - z.) (1 - w.)/ 

27UJ f 1 1 , 
dw, = 4я2 Jг2 (w2 - z2) (1 - w2) (z. + w2) (1 - г.) 

1 / 1 1 

1 - 2. V(l " Z2) ( z ! + Z2) ( Z l + Z2) (1 + *.) 

(vfj + w2 + 0 has been assumed, e.g. as |w]_| < |w2 |) we obtain 

1 
E(z) = 

(1 - ^?) (1 - г 2 ) ' 

which can easily be verified as the correct answer to the originally formulated problem. 
The above described procedure can be generalized at least in cases when the initial 

set G is a proper subset of RB u SB. This procedure means "to enlarge" the set A 
to A* in (4.LI), so as this equation with A replaced by A* z> A becomes z-complete. 
Henceforth Theorem 4.2.3 can be applied and the use of Theorem 3.1.4 gives the 
solution of the originally formulated problem. 

4.3. Difference equations on semigroups of Z" 

In the previous section we have seen how difference equations satisfying conditions 
G £ RB u SB can be handled by z-transform. It remains to investigate cases with 
G => RB u SB and with the undispensable assumption that the set A is an ordered 
semigroup, A c Z". A simple example is here equation (4.1.1) with A = I", since 
in this case both RB and SB are empty sets for any choice of B. With given initial 
values g(a), a e G we have more information on the solution/than direct application 
of z-transform can absorb. This may be caused by the fact that z-transform of the 
unique solution does not exist (as it is the case of !-£> difference equations), or perhaps 
that some indirect method has to be applied similarly to Example 4.2.4. 

In the process of proving Theorem 4.1+ it has been shown that the set A can 
always be subdivided into subsets A(0 such that they are well-ordered. It means that 
after such decomposition, say A = A1 u A2, application of Theorem 4.2.3 might 
become possible. This may or need not result in the z-transform of the solution 
of (4.1.1). Let results of this type be shown via the following 

Example 4.3.1. Solve the equation 

/(«.., oc2) + a / ( a . - 1, a2) + bf(au a2 - l) + 

+ cffa - 1, a2 - 1) = 0 
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for a. ^ 0, a2 e Z with G = { ( - 1 , a), q e 1} u {(fc, - 1 ) , fc £ 0} and a(a) = 1 for 
all a e G. 

This is a correctly formulated problem: it has a unique solution. The set B = 
- { 0 1 , Pi, h, h) with 0 1 = ( O , O ) , 02 = ( - l , O ) , 03 = ( 0 , - 1 ) , 04 = ( - 1 , - 1 ) 
and therefore RB u SB = { ( - 1 , a), q 6 2}. We have SB = 0, G + RB, G => RB; 
the equation is not z-complete, but now (contrary to the previous example) the 
initial conditions contain more information than application of z-transform can 
respect. 

Consider A = A0 u Ax with A0 = {(a^ a2), <xx 5: 0, a2 ^ 0}, Ax = {(al5 a2), 
ax ^ 0, a2 ^ — l}. For a e A 0 and for the given initial conditions g the equation 
is z-complete (disregarding, of course, the part of G which does not belong to A0 + B). 
For its z-transform we obtain 

F(z) + azx (F(z) + - f z2) + bz2 (F(z) + I f z\) + 
\ zx k=o J \ z2 k=o J 

+ czxz2(F(Z) + - f 4 + 1 f z\) + c - 0 , 
Zx k = 0 Z2 k = 0 J 

which yields 

F (*\ - aZl + bz2~(a + b + c) + czlZz , , , , 
F * ( 2 ) - (zx - l ) (z 2 - 1) (1 + aZl + bZ2 + cZlz2) ' lZl1 ' N • 

Let now a e A.. The sets R„, S^ are as follows: 

(0, 0) 0 0 
( - 1 , 0) ( - l , f c ) ; f c ^ - 1 0 
( 0 , - 1 ) 0 (fc ,-1) , fc^O 
( - 1 , - 1 ) ( - l , fc ) , fcg-2 (fc,-1) , fc^O 

The equation is again z-complete and for the z-transform F of its solution on the set 
A! we obtain 

F(z) + azx (F(z) + 1 " f z£) + bz2 (F(z) - i f z\) + 
\ Zxk=-1 J \ Zlk=0 J 

+ CZXZ2(F(Z) + 1 "f 4 - I f z * ) = 0, 
\ Zi k=~2 Z 2 fc = 0 / 

from where 

FAi(z) = cZ lz2 + azx + bz2 -(a + b + c) , , , , 
AA ' (1 - zx) (z2 - 1) (1 + azx + bz2 + czxZ2)

 l ll ' 2 | 

Not surprisingly (see Example 2.2A and Theorem 2.3.2) the z-transforms of the 
solution have disjoint regions of convergence. 

30 



Since every semigroup A ^ Z" can be subdivided into a disjoint union of well-
ordered semigroups the procedure explained in the last example can always be applied. 

We may conclude: 

The direct applicability of the z-transform, as it is defined by Definition 2.1.1, 
to solution of correctly formulated initial value problems for n-D difference equations 
with constant coefficients depends on fulfilment of a certain condition called z-com-
pleteness (see Definition 4.1.3). If this condition is not met, i.e. G 4= SB u RB, various 
situation may arise. Examples show that in cases with G c SBuRB the use of z-trans­
form may become possible for an "amplified" region A* c Z" (with a corresponding 
"new" initial set G*) instead of the original region A. Such extension could make 
the equation z-complete. On the other hand, if G => SB u RB, then subdivision 
of the region A into suitably choosen subsets may lead to a small number of z-
complete problems, which are readily solvable. Here the most important example is 
that of A = Z", since for every finite set B the corresponding sets SB and RB are 
both empty sets. For n =- 2 the mentioned subdivision of Z2 often goes by inspection 
when the corresponding "initial set" G is taken into account. There exist examples 
which do not fall into one of these cases and, apparently, no general recommendation 
of how to apply the z-transform in such cases can be given. 

The impact of these conclusions to basic system-theoretical concepts such as 
the concept of transfer function, impulse response, stability etc., deserves further 
investigations. 

4.4. Systems of n-D difference equations 

System of partial difference equations form a natural extension of the preceding 
section. Moreover, in multidimensional linear systems theory these systems are essen­
tial parts of state-space models. Mostly so-called 1-st order systems are considered, 
although there seems to be no unified and widely accepted definition of such systems. 
We aim at discussing these systems from the point of view of their solution by n-D 
z-transform, however, as it has been shown, existence and uniqueness properties 
of the solution are here essential perliminaries. 

In this section mappings x, f, g will be (column-) vectors of dimension m, e.g. 
x: A -»• Cm, A c Z"; capitals besides of sets in Z" will also denote matrices with 
real or complex elements. It is believed that these notational convention will not be 
confusing. We remind the reader that et will denote the point of Z" with all co­
ordinates equal zero except the ith, which is equal to one. With this notation the 
general systems of 1-st order linear system of partial difference equations with 
constant coefficients can be written in the following form 

(4.4.1) Qx(a) = f P ;x(a + e,e,) + u(u), ueAcZ", 
j = i 

where Q, Pt are constant square matrices of order m, ef = + 1 . To simplify what 
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follows, we shall assume that Q and Pt are nonsingular. Therefore we may assume 
without loss of generality, that any one of the matrices Q, P ; is the unit matrix of 
corresponding order. Similarly as in Section 4A , for a given set A a certain initial set 
C is to be found, so as (4.4A) has a unique solution. Here it is much simpler to start 
with a given set G and ask for the corresponding region A, where the recursively 
computable solution is uniquely determined. 

Choose a fixed variable, say the fcth, and write (4.4A) in the following form 

(4.4.2) x(a + ekek) = Q*x(a) - £ P;x(a + e,et) + Pk
lu(a). 

; = i 
i*k 

In the set Z", the vector ekek can be considered as the normal vector of a hyperplane 
H to which belong all the vectors 8;ef, i 4= k. Denote A the half-space induced by 
this hyperplane; it contains the vector ekek. Supposing now that values of x in (4.4.2) 
are given at all points of H, from (4.4.2) the values of x(a) for all a e A can uniquely 
be calculated. We have proved the following 

Theorem 4.4.1. Let in equation (4.4A) k be a fixed integer, 1 ^ H n. Denote 
G = {(<xu a2,..., a„): ak = 0}, A = {(a1; a2,..., a„): ekak ^ 0}. If the values x(a) 
are given for all aeG, then there exists a unique solution s of (4.4A) on the set A 
such that it assumes the given values on the set G c A. 

The assumptions of this theorem are unnecessarily restrictive; in fact, it is sufficient 
to assume the nonsingularity of the matrix Pk only. 

Applying now Theorem 3.2.3 to the situation described above, we obtain the follow­
ing 

Corollary 4.4.2. The z^-transform of the vector Tc'e'x, with the set A described 
in Theorem 4.4.1 and with Te"" being a complete shift operator, can be expressed 
as follows 

ZAJT^'X) = z-""(X(z) - 8lk £ x(a) z"). 
aeG 

Here, 8lk = < „ „ , and G denotes the initial set as given in Theorem 4.4.1. 
' '* (1 for i = k 

From these results we obtain the following equation from (4.4.2): 

z-^(X(z) - £ * ( « ) z*) = (Q* -iz-'"<P,)X(z) + P."1 U(z) 
aeG i = l 

i*k 
or directly from (4.4.1) 

(4.4.3) (Q-i z-^'P,-) X(z) = U(z) - --*«*( £ x(a) z«) Pk. 
1=1 CCEG 

For "zero initial conditions", i.e. if x(a) = 0 for all a e G we obtain 

(4-4.4) X(z) = (Q-tz-'e'Pi)-
1U(z) 

i = l 
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where there is apparently no connection with the integer value k previously considered. 
However, we have to keep in mind that Z~1{X(z)} has to be understood as a se­
quence defined on the set A induced by the considered initial set G. As a simple 
illustration here the last part of Example 4.2.4 could be given. 

The above described procedure cannot be used if all the matrices Pt are singular, 
which occurs in the "difference equation" — parts of most of the state-space models 
of linear shift invariant systems [11]. With our notation, these systems can be written 
in the form of (4.4.1), where P ; are diagonal matrices of rank rt, rx + r2 + ... + r„ = 
= m such that P , . P} = 0 for all 1 = i,j = n, i #= j . If n = 2, (4.4.1) can be re­
written e.g. as 

[en Gia] [K«)l = [Pn »1 [K« + ei)J , [0 0 1 p(« + e2)l + IV 
LQ2i Q22JLs(a)J L° °JL ° J L0jP«JL ° J LuJ' 

where P u and P 2 2 are diagonal and nonsingular matrices. Hence, Theorem AAA 
and Corollary 4.4.2 can be applied to obtain the z-transform to the solution for 
A = {at _ 0, a2 _ 0} from given initial values r(0, «2) and s(a., 0). Details can be 
omitted, since the system under consideration falls into the class of z-complete 
equations. 

4.5. Another approach to n-D difference equations 

While the notation of z-completness is indispensable in solution of partial difference 
equations, the complete shift operator violating the superposition principle could 
be eliminated from our consideration if general z-complete difference equations are 
reduced to those with zero initial conditions. To this end some results on difference 
equations are necessary, first of all the following 

Theorem 4.5.1. Let /* e SA+B be the unique solution of 

(4.5.1) £ « , / (« + fl - 0 
PeB 

satisfying the initial conditions /*(«) = g(«) for all « e G, where G is an initial set 

and g a given function of G. Define g* by g*(a) = <X , 
T . / ° , . t1_ • , ... e l - 1° otherwise. 
Let further / be the unique solution of equation v-

S «,/(« +/J)- - I a ^ * 0 - + j8) 
peB Pep 

satisfying zero initial conditions on the set G. Then 

fh(«) = /(a) for all a e (A + B) \ G . 

Proof. Denote h(a) = /*(a) - / ( a ) - o*(a). We obtain h(«) = 0 for all a s G . 
Now, h satisfies the equation Y,ap nia + P) — Q- Indeed, its left-hand side equals 

£ f l , /* (a + If) - S a , / ( a + /?) - £ a , fl*(a + ^ . 
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For a e A such that a + fie(A + B)\G the first sum equals zero since fh solves 

the homogeneous equation (4.5A) and similarly the remaining two terms yield 

a zero due to the definition ofj. Hence h(a) = 0 for all a e A + B, moreover g*(a) = 

= 0 for a e (A + B) \ G. Therefore fh(a) - /(a) = 0 for all a e (A + B) \ G which 

has to be proven. 

Corollary 4.5.2. The equation 

]_ apf(a + p) = x(a) , a e A , j(a) = g(a) for all a e G 
PeB 

and with given g(a), and the equation 

Zapf*(a +p) = x(a)-Yapg*(a +p), aeA 
fleB /ILB 

with zero initial conditions on the set G, have solutions identically equal on the set 

(A + B)\G, i.e. /(a) = j*(a) for all ae(A + B)\G. 

The proof of this corollary can be given by reasoning similar to that of the previous 

theorem. 

These results, both independent of functional transform consideration, show that 

under certain well described conditions we may restrict the methods of solution 

of partial difference equations to those with zero initial conditions. Nonzero initial 

conditions can always be respected by adequate changes of the input function. 

Perhaps, it is not superfluous to reformulate the corresponding results of Section 

3.2 and Section 4.1. 

Let be considered the class of uniquely solvable initial value problems for the 

equation (4.LI), i.e. the initial set G for (4.LI) is specified. If this equation is z-

complete (see Definition 4.L3) and if the solution is supposed to vanish on the set G 

then a shift operator Vp: SA ~* SA can be defined as follows: for feSA there is 

g = Vff given by 

_ J j(a + P) for a + p e A 

otherwise 

The corresponding Theorem 3.2.3 reads now 

(4.5.3) ZA(V'f) = z~> ZA(f) 

and, accordingly, Theorem 4.2.3 can be simplified: instead of (4.2.6) we have 

(4-5.4) E(z) = ^ L 

PeB 

Although in multidimensional system theory mostly formulae (4.5.3) and (4.5.4) 

are used, it can be seen that their prerequisites and restrictions are rather severe. 

On the other hand, Theorem 4.5.1 and its corrollaries throw some light on the 

origin of the well known problem of BIBO stability of multidimensional systems 

and its dependence on initial conditions. 
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5. CONCLUDING REMARKS 

In this paper the attention has been focused on such development of the z-transform 
method, which could be immediately used in solution of initial value problems for 
partial difference equations. Special results on z-transform of sequences defined 
on Z" were deliberately omitted, since they are sufficiently covered in the literature 
[4]. This orientation of our efforts made it necessary to formulate some results 
on partial difference equation which generalize to some extent also the 1-D (ordinary) 
difference equations and the common procedures of z-transform applications. Some 
basic formulae and rudiments of a table of transforms are summarized in the Ap­
pendix. 

The conclusion, that a wide class of linear partial difference equations can be 
solved by z-transform is certainly not surprising. Here the surprise comes rather 
from the unexpected difficulties and not always evident methods to obtain established 
results. It seems that the class of linear shift invariant systems, for which partial 
difference equations are considered to be their I/O relations, contains much more 
than systems with transfer functions holomorphic in an open disc. 

In this paper system-theoretical corollaries and inverse problems have been left 
aside. It seems that except for special cases of so-called quarter-plane filters, the 
way from an I/O relation to the transfer function is still not clear enough and therefore 
synthesis problems of n-D filters with desired properties encounter so many difficulties. 
It is hoped that topics here presented will promote solutions of the difficult problems 
of n-D digital systems synthesis. 
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APPENDIX 

In Table 1 below a summary of basic formulae can be found. References here are 
theorems or formulae as numbered in the paper. Table 2 and Table 3 list some 
examples of the mostly used case n — 2. Although the number of these examples 
could easily be increased, a systematic "dictionary" of transform relations can 
hardly be given. It is interesting to note that comparatively simple sequences have 
nonrational z-transforms. In the table of characteristic transforms the depicted 
regions have to be understood with the "bordering" lines included. It is hoped that 
this appendix may help the reader to follow the reasoning of the paper. 
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