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Casopis pro péétovﬂﬁl matematiky a fysiky, rot. 75 (1950)

ON THE ZEROS OF THE POLYNOMIALS OF LEGENDRE.
PAUL TURAN, Budapest.
(Received February 5, 1950.)

I. The polynomials of Legendre?) .
Py(z), Py(z), ..., Pu(x), ...
can be uniquely defined by the orthogonality-property

/-

1
fP,,(:c)a:'dz =0 -
R}

(L)
' r=0,1,..,(n—1)
and by the normalisation '
Pl)=1,n=0,1,2.. . (1,2)
The explicit representation of Rodriguez '
Pae) = o e — U1 B(E

can be easily verified. A classical reasoning, based upon the orthogona-
lity- property (1,1) shows that the zeros of P,(z) are real, simple and
lying in — 1 < z < 1; the property (1,3) gives that they are symmetri-
cal to z = 0. Denotmg the zeros of Pp(x) throughout thls paper by
Xy (¥ = 1, 2 . n) we may write

Ty = COBD,p h (1, 4)

where the numbers ;9,,., the zeros of the tngonometncal polynomial

P, (cos?), sa,tlsfv the inequality - s ,

- V< <Ban<...<dm<aw ALB)

Generally speaking the numbers O obey simpler laws than the €108 Z,,. .
2. Many efforts have been made to locate the numbers #,, as preci-

sely as possible. BRUNs?) proved in 1881 '

1) For a detailed theory of these polynomlals 8ee the book of G. Szegts Ortho ;
gona.l polynomials. Amer. Math. Soc. Coll. Publ. 1939. . o
) Zur Theorie der Kugelfunctlonen Journal fur Math 90 (1881), p %22—»-328
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v—4

+%n<0 < - +%n(l<v<§n) 2,1)
StievLTsEs) and A. MarkoFF*) improved this to
v—1$ " ’
- < 9
Ea <t < Tgn0Se<in @)
-and finally SzEed®) obtained
— ;(n < Bon <‘ 1% 1< v< ). (2,3)

- Very éimple and elegant proofs for all these-iﬁequaﬁties have been
given by FrsEr®) and Szead?).

3. Another group of results has been initiated by Szret®) who
showed that the 4,, - values with 1 < » g 4n form a convex sequence;
more exactly that

"Iu = '91”“‘0 < 021;—791” < 19371"‘”79215 <. < 01+[}n].»“"'¢9(}n], ne (3’1)
From it follows, as HiLLE®?) showed, that

1 — 21, < 21 — 22 < ... < Tinl,n — F1+[in], ns (3:2)

i. e. the 2eros 21y, T4, - - ., 14 14n), n together with 1 form a convex sequence
too; or — somewhat unprecisely — proceeding from left to right the
distance of two consecutive positive zeros of P,(r) decreases monotoni-
eally, -

4, As to a comparison of the zeros of P,(x) and P, (x) we have
the. separation-theorem?™) accordmg to which the zeros of P,(x) sepa-
rate the zeros of P,_,(z), i. e.

1> Tin > T1,n—1 > Tog > T2, n—-1 > ... > Tp1,n-1 > Tpy > — 1, (4,1)
or -
0< < P <...< ’191;——1, -1 < Opn < 7, 4,2)

%) Sur les racines da Péquation X,, = 0. Acta Math. 9 (1886), p. 385—400.

4) Sur les racines de certaines équations (seconde note). Math. Ann. 1888, -

- -p. 177—182.

- .'8) Inequalities for the zeros of Legendre-polynomials and related functions.

: Transwt. of the Amer. Math. Soc. 39 (1936), p. 1—17.

. %) Bestimmung von Grenzen fiir die Nullstellen des Legendre-polynoms aus
der Stieltjesschen Integraldarstellung desselben. Monatshefte fiir Math. und Phys.
43 (1936) p. 193—209 aud Trigonometrische Reihen und Potenzreihen mit mehr-

* fach monotoner Koefficientenfolge. Transact. of the Amer. Math. Soe. 39, p. 18—59.

7) 8ee his papér®).
8) See his paper®).

%) Uber die Nullstellen der Hermiteschen Polynome. Jahresbericht der
_deutachen Math. Verein (1933), p. 162—165.

10) 1 don’t know whom thls theorem is aécmbed to. A proof for it one can find
" in ﬂzeg& book p..

v
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Hence to each zero z,,,—1 of P,_1(x) we can associate uniquely the zero
Zpy Of Py(2) (as its right neighbour) so that

/

Toiin < Ty p1 < Zpn

v=12,...,(n—1).
Now weshall show that the distance of these two associated z,, and z,, 51
zeros (if they are positive), decreases when proceeding from left to the
right. More exactly I shall show the following

Theorem. We have with the above notation of the zeros of Py_1(x)
and Pu(x) the inequalities

43)

Tin — T n-1 < Ton — T2, n-1 < - < Wiin—1),n — Tgn-}n-1-  (4:4)

5. I found this theorem in 1941 with a ,,STIELTIES-type* proof.
I communicated this to Prof. Szred in 1946 in a letter; in his answer'!)
he sketched & proof of STurM-type for the above theorem. As a matter
of fact he proved the corresponding inequalities on the circle

M1 — B < Pz n1— B2n < ... < Fpyn—1)n-1 — Fgn-npa (5,1

and extended it to the class of ultraspherical polynomials. Though
subsequently I observed, my method can furnish a proof also for Szre’s
inequalities (5,1) and probably the case of ultraspherical polynomials
can be settled too in this way, in this note I confine myself to my ori-
ginal proof of theorem (4,4).

An important part of my proof of theorem (4,4) was the fact that
Ap(x) =\Pp(x) — Pn—l(x) Pn+l(xl
is monotonically decreasing in ‘
1

| e RSN (5,2)
From this.I could easily deduce the interesting inequality
) An(z) :>— 0 .
n=12.. —1<z<l. (5:3)

Many simplifications and extensions of these two results have been .
given in the mean time. Szec02) gave four very elegant proofs of the
inequality (5,3); one of these proofs, the idea of which is due to .Pélya,
can be extended, as he remarked, to all. ultrasphenca.l polynomials.

0. SzAszla) showed that -

Py(z)? 2n + 1 ‘ .
zr“ﬁrz;;‘.m— M) Sg oy —1S2s+ L 6

"11) Dated from May 3. 1946

12) ,,On an inequality of P. Turén concerning Legendre- polynommls “ Bull.
of Amer. Math. Soc. Vol. 54 (.1948),]) 401—405.

\
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- “and .by a suitable lémit process alse the- interesting inequalityv'.;

: 'J,,(x)=—Jﬂ_1<x>'J,,+l : Boe>0,u>0 (58)

where Ju(x) denotes the usual Bessel- functxon Further interesting -

~ generalisations of (5,3) are obtained by Forsyrag!4) and by SaNsoNs!).

- As to the-part (5,2) of our assertion BEckENBACH!®) showed among other
" interesting results that the polynomials 4,(x) are convex from above .

for all x-values. These results will be extended to determinants of

Hankel-type with .ultraspherical polynomials as elements in a forth- -
. coming paper of BEckENBACH, SEIDEL and O. Sz4sz!?). As to our theo-
- rem (4,4) Prof. Sz4sz obtained 18) the lower estimation

2 1
, 3 (n + 1)V2n+1 O (5.8)
N Ci=k2,..,m =12 ..,@0—1) ‘ ’

In what follows I shall give my original proof for (5,2) and in the Appen-
dix for (5,3).

U 6. An unexpected possibility for applications of results of type
" (4,4) is opened by some unpubhshed theorems of FEJR which I mention
~-here with his kind permission; he found his resplts during the winter-,
term of the academic year1928/29. He could characterise certain sequences
of numbers’
Cu -

4:1;"[2-% . - .
. A=1: ' T (s,1)
i ) CieCok-.-Crx :

[in —-—x, n—ll >

.........

> of the interval [0,1] for which .

' Cox*1>C1k>C2k> >Cu>0~‘§'k+11,k—12 . (6,2) -
pRe nnd the na.tural sepa,ratlon condltlon '

M “) I know these results only from a hthoprm’oed copy oi a lecture of Prof.
ef’ SzAsz

S Certain i mequa.lmes concemmg “to Legendre polynommls Bull. of the -
Amer Math: 8oc. Vol. 55 (1949), p. 66. Prelim. rep.

v o 18y, 8u una dxsugua,ghanza. di"P. Turén rela.twa ai polmoml di. Legeindre
Holl. della Unione Mat. Itl. 1949, ser. III, no. 3, p. 221—223 and ,,Su una dum
guaghanza relativa ai polinomi di Legendre", ibid, Ser. III, no. 4, p. 1-—3. -

.18) Convexity thsarems for Legendm polynomxa.ls Prehm rep Bull. of the
Amer. -Math, Soc. Vol. 55, p. 41. .

-y ..Remxrrent deﬁermmanta of orthogonal polynommhr“ To appear in Duke
”m&l .

“1 Commumnated to me m a lettet from 3 Jurw 1949




l>Cu->C1k 1>Czk> >Cvk>€v,k 1>C-+1,k>
5 o> Ce-1,k-1 > L > 0,

holds a.nd certdin classes of /unctwns, integrablein [0,1] in Riem&nn’s sense,

1. . SN

(8,3)

for which suitable Riemann-sums tend to [i@)a monotbnically. The
: P ¢

séquences found by him include also the classical equidistant-case .

: v

IR s §
v=1,2,.,k k=12,

His class of functions_consists generally speakmg of functxons which are
monotonic and convex in [0,1]; he found necessary and sufficient condi-
tions for. this phenomenon. Wequote exactly only that part of his
results which shows the connection with our theorem. Denotmg by
L(f, A) reqp bv ri(f, A) the left- resp. right-Riemann-sums of f(z), i.e. -

. Wit A) = Z /(cwl,k) (Cok — Lei1,0) (6:4)

| rlf, 4) = Zﬂcvn Cr—loird 6B
and mtroducmg the notatlon

. }——Clk,—jah e — 81,61 = bk b kit = o = W, e
_ C G k-1 = biess ot — Cor ik = B (6,6)
G Gk e = b1, Gtk — G = 8y S = Cu—o = by . '
he pro;red_ that in the special case ' . , :
Bo=by> .. Zbea L (6,7)

his necessa.ry and sufﬁcxent condltlon is. fulfilled and thus the left -

mcreasmgly }

Rlemann-sums L(f, 4) tend to f [(t) dt. monotomcally { decreasmgly

mgcereasing

decreasmg} and convex from .

lf f(z) is in [0, 1] posmve monotomca,lly {

{above

belo w} further the nght Rlemann sumsy ri(f, 4) tend to f @ dtmo-

} lf f(x) is in [O, 1] posxtlve, mono'oomca.lly )

} and convex from {:gg’:;} Here and later in the brackets

notpnical!y {g:;g?;gglf;
{dec’reasing

increasing
either alwaya the upper expres&uon or ashva.ys the lower one is unders- ;
: tood of couree And if . -

RRILE




‘

'alga,;{:...gak, (6,8)

. : . .
. mcrea.smg]y}

, A) tend t t) d i

then the sums l(f, 4) tend to of £f(t) d¢ monotonically {decreesmgly
if f(z) is in [0,1] positive, monotonically {flecreasmg

mcreasing} and convex from

sbove - ] increa-
{b oo } and the sums r(f, 4) tend to f {(¢) dt monotonically { decroa.

singly| *  {decreasing
singly | if f(x) is in [0,1] positive, monotonically {m creasing} and convex

from {%21 ow}‘ As a glance to (6,7) shows, our theorem means that taking

for A the system P of points, the & row of which consists of the non-
negative zeros of the k** Legendre-polynomial (replacing in the »*» row,
if y is odd, the 0 by an arbitrary positive number whichis >{;(41),»+1 and
< C‘(,,l) +1) the condition

by > b3 > ... 2 br
is fulfilled, i. e. the sufflclency-cntenon (6,7) of Fejér is ,,almost“ ful-
. filled for this important P-system. We shall not discuss here the question
how to modify the construction of P in order to obtam an A-system
satisfying the criterion (6,7) of FEJER.
7. Before turning to the proof of our theorem we need some lemmas. .
Lemma I. Let 0< & <1 and y, >y, > ... all those values in
0 < z <1 for which
. ' ’Pn(yv)l =9 (7,1)
- Then ’
. 'Pn(.?ll)l > |Pn(?la)l > (7,2)
PIGOf It is known according to a theorem of SONINE“) the polynomial
n(n + 1)Ppl@) + (1 — %) Py(z)?

is for 0 < < 1 an increasing function of . Replacing z by v, ¥, - ..
we obtain that numbers

, n(n + 1)79’ + (1—9? P, (yv)z
a.nd also the numbers

.

i . ’ (1 —Y )Pn(.%)’,
form for» = 1, 2, ... a decreasing sequence of numbers. Since the num-
bers (1 —y,2) form for » — 1,2,... an increa.sing sequence, Our asser-
: hon obvmusly follows.

8. We consider the’ xm TeSp. Ty, n—1 MO negative zeros of Pp(z) resp.
Py_;(x). The zeros 7, of P,’(x) satisfy obviously the inequality

~ 19) Seee. g. Bzegd’s book?), p. 160—161.

18



Zypt,n <My < Ty o : (8,1)
We assert moreover the following ' " '

Lemma II. With the above notation we have for Tyt1 n :2 0 the
inequality
Typl,n < N << ;tv,ﬂ-] < Zyw

Proaof: We have obviously

8gPy(x) = (—1) o (8,2)
for ) ) .
Xyt < T< Ty (»=12,...,0—1), (8,3) -
and . K
sgPn1(z) = (—1) : 84
for : ) : ‘
Tytr,n—1 < T<Tpu— P=12,..,n—2) ~ (8,9)

Using the identity*’)
(1 —2)Py(z) = — nxPn(z) + nPaa(a),
we obtain since %, n—1 >0

‘ "’an(xv n—1) = 39(1 — 2 v, n——-l)Pn(xv, n—1) = — SgNT,, ﬂ—-lP(xv,n——-l) =
= — 8gPp(z,, a—1) = (= 1)+

using (8,2), (8,3); further
sgP, r:(xv+1, n) = 8g(1 — 2?41, 4)P u(xv+1 n) = Sgpu—l(xr{-l.n) = (—1)':
using (8, 4) — (8,5). Hence the interval L.
0L5) i1, < 2 < Ty, nt (8,6)
contains at least one zero of -P,'(z). Since Rolle’s theorem gives that each -

.

of the intervals (8,3) contain exactly one zero of P,'(x), it follows a - I,

.. fortiori that each of the mtervals 8,6). eontam exactly one My Q e. dv .

'9. Further we need ~ © - - , : R B

Lemma I11. The polynomia-l , . _
- A7) = Pp(e) — Pya(2)Pn41(2)

.decreases for Lz < 1 monotomcally )

+ 1= v
Proof: Sta,rtmg from the well-known recyrrence-formula o
(n + 1)Ppya(x) = (20 + l)rP»(x) —nPp1(2) S eI

20) See e. g. SZEGU’S book p. 83, formula (4. 7. 27).

_*1) A simpler proof of this lemma follows from the identity -
Caln+ 1) dM,) 0, : : ' ‘

.2 da? R“P()’ , )

"eommumcated to me by Prof 0. Szész in a letter of June 3. 1949 T

R _ . S VT B



we obtain
(0 + DAn(z) = (n + DPal@ — (20 + 1aP(z)Par(z) +
+ nPp1(2)?
(n 4+ )4, = 2(n + 1)P,Py = (2n + )PPy —
— (20 4+ V2P, Py — (20 + 1)2PyPpy + 2P, 1P,y

- Since?3) )
) N X ’ 1 ’
Py(x) = — P»,,(.T) — Pn-~l(x)
Poa(a) =~ Po@) = = Ppa(@)
we obtain
0+ DAy (0) = — "5 Prar— " P

l 2n + 1)a2
4 L s 2 po@) Py (@),
This is a negativ defiﬁi_t quadratic form of P;,(x) and P;,v_l(x), if the

determinant is < 0. But this is apart from a positive factor

. - (1 4 (2n + 1)a®P — 4(n + 1)2? =
= (1 — ) [1——(2n—{—1)x] (14 2(n+ a4+ 2n + 12 <0
for

i Z;z’j{—* <zZL1. Qe d
10. Now we prove our last

®

Lemana TV. We have for all positive x, ,_; zeros \
1Pa(@1, n)] < 1Pa(@g,n—1)| < ..o < |Pul@p—-gn-1)i (10,1) I
Proof. Replacing in Lemma III. z by «,,,1 our assertion follows if we

: show that.

1
But using e. g. Bruns's inequality (2,1) we have -

n—1)|n n—1
T[}(”A1)] 1 > cos [%( %)I = cos

Lgn—1)), n—1 = COPy(n—1)), n—1 =

.
—F =1 My
>"27i-—1 2n+l _Q'e'd‘

: ”) See BzEad's. book P- 84

~
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Remamk Usmg mstead of-Lemma. III the mequalnty of footnote“) we
had obtained the chain (10, 1) for all non negatwe Zysn—1 ZErOS mstead
of the positive ones.

‘11. We can now prove our theorem formulated as (4,4). Let be (see
'Lemma II.)

O < x,+1 n < 771 < xv,n—-l < Zyn < nav—l < xr 1,n-1 < xv—~1 ne. (llyl)
We have to consider the graph of the function

Y =1Pnx)!. ' (11,2),

in the intervals _ _ . .

: . Ty S 2K Tom, (11,3)
Tresp. .

 Ly—1, n—l < x< Ty—1,n- - (11,4)

Our Lemma II. shows that in these intervals Pn(x) % 0, i. e. the func-
tion (11,2) decreases monotonically and they have in the respective in- .
tervals well- determmed monotomca]ly decreasing inverzes say :

N . x = ¢u(y), 9+(0) = Ty, Oé ?/:<__ an(xV,n:—I)lr
resp. ‘ .
x=gr1(¥), §—100) = 2, n, 0 y < |Pp(@yy, n—1)]- ,
Lemma IV. means that g,(y) is defined in a larger mterva] than go—1(y) .
and Lemma I. gives that for : '

0 < Y < lP (xv-l n—-l)i

}lgm(y)l < 6.

we have

Hence we have - o .
1Py, p)l 1Pp(Ey -y, g

Tan—geia=| [ galdi= [ lgaGldy<
‘ L C Y n~—l)l. _ L N ’P;luv:n——l)‘ . -

) < 6[ ; lmwldy < { ’ !gL(y)l dy= "~
1Pu(@y - : T

AZ, (!. ’ gv(y)dyl~xm—xv,n lQed

: Appendlx .,_' - s N
I2. Here I give my ongmal proof for the mequahtv _ :
: o An(z) = Py — Pu~1(x)Pn+l(x) 20 . e
: o oom=12.. ——l<:c<l o e T

Sinee A,.(a:) is even, it is sufflclent to conmder 0< x < 1 Usmg the '
“formula (9, 2) we have, . -
(A +1)4y(z)-= (n + I)Pn(x>*—~ <2n + 1>xP,.<x>P» @)+ nP, *lw

i - >




. \Ar, '."z. ‘.‘ . o L
ST -

Tlns is- a posmve defmJt quadra.tw form if ‘its’ determma.nt. isls 0.
Thls is - - .
T @n4 1P —dn(n 4+ 1)K 0,

Oé'-’ﬂg _2___._“"("'"{'1) ) i]g‘.])

it

a . 2n 41
On the other hand, since

- 4,0 =0,
Lemma III. gives immediately the positivity for
1 : ‘
2n+1£ z< 1. (12,2)

But the intervals (12,1) and (12,2) cover for n > 1 the whole interval
0< z<1. Q. e d

"Added in proof. Using Fe]éns criterion (6,7) and instead of the
method of this paper the much shorter one of Szegd, mentioned at
the beginning of 5., the vague statement at the end of 6. can be made

" exact in different forms. Here I mention only one theorem in this
" direction. ' i

. Iffor k= 1,2, ... the k*» row of the matrix 4 in (6,1) is formed by
“the k positive zeros of the (2k 4 1)** Legendre-polynomial Pgy () of

"~{1,1) and f(z) is in [0,1] monotonically decreasing and convex from
_below, then . the left-Riemann-sums l,,(f,A) of (6,4) belonging to.this

“matrix A tend to f f(at monotonically decreasingly for n =1;2, .

"All the proofs mcludmg of course Fejér’s proof for his cntenon will
be glven in a ]omt paper

—

o~ 0 nulovych bodech Legendrovich polynomb
(Obsah pfedeélého (‘.lénku ) )

B Oznaéme Tip > To = ... > Tpy nulové body Legendrova polyno-
mu P,.(a:) Hlavnim cilem élé,nku je ditkaz nerovnosti B
LB < @2 n-v--‘tz, =1 < ooo < Z[n—1)],n— x(i(n—l)],n—-l V
Jest vytéeno, také moznost, pouiitl téchto .nerovnosti v souvislosti -
.8 nékterymn vysledky Fejérovymi. V dodatku je podén diikaz nerovnostl

. Pl — Poa(z)Pasi(s) 2 @ pro—1 S S L

i

(7\\- B :_7;{»4:_ et s
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