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Abstract

We present n-dimensional analogues to some results obtained by Ezeilo
and Omari (8], by studying the existence of T-periodic solutions for cer-
tain third-order nonlinear differential systems of the form X" + AX" +
G(t,X") + CX = P(t), where the dissipative term G and forcing term P
are vector-valued functions, and A and C are nonsingular constant ma-
trices. We shall demonstrate in this study that the transition from the
scalar to the vector field is by no means trivial.

Key words: Nonlinear dissipation, -harp and nonuniform nonreso-
nance, Leray—Schauder alternative/continuation method, Mawhin’s
coincidence degree.
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1 Introduction
In the paper by Ezeilo and Omari [8], the problem of nonresonant oscillations
of the solutions of the third order scalar differential equation

"

" +az" + g(2') + cx = p(t) (1.1)
*Supported by grant No. 1425TK of Obafemi Awolowo University.

147



148 Awar Simon UKPERA

and when g = g(t,2') depends also on the t-variable, its generalisation

2" 4+ ax” + g(t,z') + cx = p(t) (1.2)
where a and ¢ are nonzero constants, and g and p are scalar-valued functions, has
been extensively investigated subject to the 2m-periodic boundary conditions

z(0) — z(27) = 2'(0) — z'(27) = 2" (0) — 2" (27) =0 (1.3)

Arising from the analysis of an appropriately posed eigenvalue problem, their
main results establish the existence of 27-periodic solutions employing first the
sharp nonresonance conditions
g9(z')

zl

(91) kK +a”(la']) <

<(k+1)*=at*(je']), keN,
where o : (0, +00) — R are two nonincreasing functions such that

. +
mJefa% (la') = +oo,

and then the nonuniform assumptions

. t ! !
(92) k* <47 (t) < liminf g(,—lm) < lim sup g(tm_,,z_z <At(t) < (k+1)?

|z/| 200 X |2’ |—o0 -

uniformly in 2’ € R for a.e. t € [0,27], where v* € L!(0,27) such that strict
inequalities hold on subsets of [0,27] of positive measure, according as g is
autonomous or nonautonomous. Some uniqueness results are also given by
appropriate modifications of the above conditions.

Since then several other articles have appeared in the literature dealing with
similar equations in the scalar case. Notable among these is the work of Andres
and Vlgek [5] who dealt with the problem of existence of periodic solutions
for certain parametric differential equations involving large nonlinearities of the
form (1.1) with the coefficient a, however, t-variable, and c¢ nonlinear. More
general equations than (1.1) and [5] involving nonlinear coefficients have also
been studied in Aftabizadeh, Xu and Gupta [1] and Rachiinkovd [13]. The
survey paper by Andres [4] which gives a comprehensive bibliographical review
of some third order equations since 1969, also includes existence results that are
consequences of nonlinear pertubations of linear problems at resonance as well
as at nonresonance up to [5] (see [1-3], [7-9], [11] and [14]).

Alternative sharp hypotheses have recently been proposed by Minhds [11]
for the problem (1.1)-(1.3), by weakening the condition on the oscillation of g,
with the conditions (g;) replaced by the two conditions

. ) :
k2 < liminf &) < g(=") 2
(93) 2 |-te x! T |:cl,1'[l'l_pS:1t1£0 z! < (k + 1)
and
2 !
9) k? < limsup g(f ), liminf 29(2')

z'—+o0 &' /400 ‘—:;,_‘2—— < (k + 1)2>
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where G denotes the primitive of the nonlinear function g, that is,

G(y) = / ") dr.

Our interest in this paper is to study the vector versions of the above prob-
lems, and seek to evolve similar or even equivalent hypotheses of the sharp
nonresonance type for their solvability.

Specifically, we shall investigate nonlinear differential systems of the form

X"+ AX" +G(t, X")+CX = P(1) (1.4)
subject to the T-periodic boundary conditions
X(0) - X(T)=X"(0) - X(T) = X"(0) = X"(T') =0 (1.5)

on [0,7] with T'" > 0, using the vector analogue of condition (g;) in the first
instance here. Investigations using the remaining three conditions are being
considered separately and will appear shortly.

Accordingly, X € R", A and C are constant real n X n nonsingular matrices,
and G : [0,T)xR™ — R™ and P : [0,T] — R" are n-vectors, which are T-periodic
in t. We shall assume further that G satisfies the Carathéodory conditions, that
is, G(-, X') is measurable for every X' € R"; G(t,-) is continuous for a.e. t €
[0,7), and for each r > 0, there exists an integrable function ~y, € L*([0,T], R)
such that [|G(t, X')|| < v-(t), for || X']| <7 and a.e. t € [0,T].

As in the cited paper above, our main results are built around the unbounded
nonlinear perturbations of an associated linear differential operator. However,
the transition from the scalar to the vector field has invariably introduced as-
pects of linear algebra, multi-variable calculus and analysis which cannot be
ignored. These new additions inevitably neccessitate the need to redefine, mod-
ify and re-present some of the results obtained for the scalar case. Moreover,
an abstract framework suitable for the application of Mawhin’s coincidence de-
gree [10] is provided in line with the approach given in Afuwape, Omari and
Zanolin [2], to guarantee the solvability of our stated problem in an appropriate
functional setting.

Let X be a point of the Euclidean space R" equipped with the usual norm
[|X|]. For any pair X,Y € R", we shall write (X, Y") for the usual scalar product
of X and Y so that in particular, (X, X) = || X|.

It is standard result that if D is a real n x n symmetric matrix, then for any
X eR",

SallX|I* < (DX, X) < AglIX]P?, (1.6)

where 64 and A4 are respectively the least and greatest eigenvalues of D. In
general, X\;(D) shall denote the eigenvalues of any matrix D, and ||D||y its
spectral norm.

The following Banach spaces will also be frequently refered to:

(i) the classical spaces of k times continuously differentiable functions
C*([0,T),R™), k > 0 an integer, where C° = C and C*® = Nik>0C*
with norms || X ||ox and [|X||co respectively;
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(ii) the space of T-periodic functions CX([0, T], R™) defined by
Ch ={X:[0,7]) > R": X € C* and X is T-periodic}

with the norm on C*;

(iif) LP([0,T],R™), 1 < p < 400, the usual Lebesgue spaces
with the norms || X||z» and ||X||eo for p = +o0;

(iv) the Sobolev space W' ([0, T],R™) defined by

qu:,x ={X:J->R": X, X' ..., X*~1) are absolutely
continuous on [0,7], X*) € C7(0,T) and
XD0) - XO(T)=0,i=0,1,2,...,k—1, k € N}

with corresponding norm || X ||y x.1.
T

2 Preliminary analysis and the abstract setting
We shall define the linear differential operator £ : dom £ C L® — L! by
LX :=-X""—-AX" - BX'—-CX (2.1)

where
domL = {X € L*®: X € C?, with X" absolutely continuous on [0, T
and satisfying (1.5)}

In the Hilbert space L?, we shall fix the orthonormal basis {¢x.:, ¥k} with

$o,i(t) = (721)%, tho,i(t) =0

2.1 2.1 .
Or,i(t) = (T) 2 cos(kwt), Pr.i(t) = (T) 2 sin(kwt),
fori=1,...,n, whereke N,w= 2 teR.
Thus, if X € dom L C L?, its Fourier series expansion is given by

n

o0
X ~ Z Z(ak,i¢k,i + bk, i)

1=1 k=0

withbo; =0, w =25, keN,i=1,...,n
It follows that £X would have the expansion

~ I\/‘Z Z (kw)? [ay, i sin(kwt) + by, ; cos(kwt))]

i=1 k=1

+ A\/>Z Z(kw) [ak.; cos(kwt) + by ; sin(kwt)]

i=1 k=1



Periodic solutions of certain third order differential systems - - - 151

+ B\/72 Z kw [ag,; sin(kwt) — by ; cos(kwt)]

i=1 k=1
— sz Z [a,; cos(kwt) + by ; sin(kwt)]
=1 k=0
= \/722 (C = K*w’A)ari + kw(B — k*w*I)bs.i] cos(kwt)
=1 k=0
\/'ZZ kw(B — k*w*ay; — (C — k2w? A)by,i] sin(kwt)
=1 k=1
=y Z (Meyi@hi + ok ,ibr,i)Pr,i + (e iar,i — Meibii)ra]  (2.2)
i=1 k=0

where
Xi=1, poi=0, M;=C~ k*w? A, i = kw(B — k2WiI),

for each i = 1,...,n and k € N. Therefore, X € ker £ if and only if for each
i=1,...,nand k€ N

Ak,i@k,i + pk,ibri = 0 = piak; — Mg, ibgi-

This occurs if and only if for each i = 1,...,n and k € N, either
ag,i = 0= by, (2.3)
or
A = C — k2w?A =0 = kw(B — k*w’I) = pp; (2.4)
Let

K :={keN:kw?A-C=0=ko(k’w’I — B)}

Then, K is finite since A, B,C are n x n (finite) symmetric matrices. Thus

kerl={X €domLl: X =Y > (akibri+britri)}

i=1 ke K

It follows that ker L fits the unique continuation property.
Moreover, since ker L = ker £L*, where £* is the adjoint of L,

ImL={ZcL": /Zi¢k,i =0= /Ziwk,i},
foreach k € K, 1 =1,...,n, where ¢y ;,%r; € L*, so that ker L and Im L are

orthogonal.
We choose the projection Q : L' — L' given by

Q7 = i Z |:¢k,i/zi¢k,i + ki / Zﬂﬁk,z}

i=1 keK
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and let P = Qe : L® — L. Setting, for each k € K,1=1,...,n,

ag; = /ﬂ7i¢k,i, b = /fﬂidJk,i, XeL™,
we observe that ImP = ker £ and ker Q@ = Im L, so that
L® =kerP®kerL and L>=ImL®ImQ

as topological direct sums. N

Note that for every X € E = L?, we write X = X + X, where X = PX =
* fOT X(t)dt and X = X — X. Observe that PX = 0.

Thus, E = E + E, where E = P(E) = ImP and E = kerP = {X € E :
PX =0}.

Hence, kerL is finite dimensional, Im L is closed in L' and dimkerf =
codim Im L = 2n, so that £ is a Fredholm mapping of index zero.

The right inverse of £, denoted by K, and defined by K : domK C L' —
dom L NkerP C L, such that dom/X = Im L and ImK = kerP, is associated
to the pair (P, Q) by LK(I — Q)Z = Z, for each Z € L', and KLX = X, for
each X € dom L N kerP, so that K is a compact linear operator.

Thus, by virtue of the Carathéodory assumptions on G, the Nemytskii op-
erator defined by G : L® — L'. GX'(:) = G(-X'(+)) is L-compact on every
bounded subset of L™, since K is compact.

Finally, we take E = I (the identity map) and F = —P(:) € L!.

Under the above conditions, the T-periodic solutions of (1.4)—(1.5) are the
solutions X € dom L of the operator equation

LX =EGX+F, FelmL (2.5)

The reader who is interested in the solvability of the abstract equation (2.5)
may refer to Afuwape et al [2] and Omari and Zanolin [12] for further details.
Our approach will look more closely at the conditions (2.3) and (2.4) and ex-
amine some of the several options opened up as a result of them. These two
conditions represent the resonance and nonresonance situations respectively.

3 Solvability of X" + AX" + G(t,X') + CX = P(t)

Sequel to condition (2.4) of section 2, we recall that the linear homogeneous
system

X"+ AX" +BX'+CX =0 (3.1)
has no nontrivial T-periodic solution if and only if either
M(ATIC) # E2w?, with k; =0,1,2,. .., (3.2)

or
C#0, X\(B)#kWw? withk=12,..., (3.3)
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Consequently, by the Fredholm alternative, the PBVP
X" 4+ AX" + BX'+ CX = P(t) (3.4)

together with (1.5) has exactly one solution (in the Carathéodory sense), for
every P € L' subject to either (3.2) or (3.3).

Condition (3.2) has been used exclusively in a preceding article [3] to evolve
various nonresonance results for systems of the type

X" 4+ AX" + BX' + sH(t, X) = P(t) (3:5)

subject to (1.5).

The problem of obtaining analogous existence results for systems such as
(1.4) subject to nonresonant conditions based on (3.3) is our main focus in this
paper. Indeed, (3.3) implies that for the associated cigenvalue problem

X"+ AX" +CX = -)\X' (3.6)
together with (1.5), we easily deduce that

(i) any A # k%w?, for each k = 1,2,..., is not an eigenvalue; and

(ii) A = k%w?, for some k = 1,2, ..., is an eigenvalue if and only if C' = k?w? A4,
A nonsingular.
We observe that (i) implies in particular that any A < w? is not an eigenvalue,
and also by (ii), the first possible eigenvalue is A = w?.
Each of the statements (i) or (ii) has an important bearing on the solvability
of the PBVP for the non-autonomous system

X"+ AX" +2X'"+CX = P(t) (3.7)

with P € L!.
It is clear for instance, from (i) and the Fredholm alternative, that a solution
for (1.4) can be expected if the ratio (G(t,X’),X’)/HX’H‘) is such that

k2w2 <G(t>XI)7X,>

< . < (k+ 1)%w?,
gk

for ||X'|| sufficiently large, and a.e. t € [0,T], provided that some control is put
on the closeness of the ratio to k*w? and (k + 1)2w?.

The main role of statement (ii) is to provide an adequate background against
which the sharpness of our conditions on G' can be tested.

Our existence result is based on the following proposition for the Leray-
Schauder alternative:

Proposition 3.1 Let B be a suitable nonsingular constant matriz such that the
homogeneous linear system

X"+ AX"+BX'+CX =0
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has no nontrivial T-pertodic solution.
If all the T -periodic solutions of the A-dependent family of equations

X" 4 AX" + (1= NBX' + CX + \G(, X') = AP(t)

are uniformly a-priori bounded independently of A € (0,1), that is, there exists

an open bounded set Q) € W%’l such that 0 € Q, and for any A € (0,1) each

solution X € W%‘l of the A\-dependent system ultimately satisfies X ¢ 0.
Then the equation (1.4)-(1.5) has at least one T-periodic solution.

Proof Let us define the following operators

L:domL=Wy»' CL*® -5 L', X+ LX:=X"+AX"+CX
N:Qcw) -1, X +— NX := P(t) - G(-, X")
A:domAcCcwi' — L, X — AX := —BX
The above homotopy therefore translates into the equivalent functional equation
LX - (1-X)AX —ANX =0 where (X,)) € (domLNQ)x (0,1)
with
LX —(1-XMAX —ANX #0 forevery (X,)\) € (domLNaN) x (0,1)
and ker(L — A) = {0}.
Clearly L is a linear Fredholm mapping of index zero. Moreover, N and 4
are L-completely continuous and thus N is L-compact on Q (see Rachiinkova
[13]). The assertion of the Proposition now follows from Mawhin [10] (Theorem

IV.5). O

Let v and B be constants defined by

(K*w? + (k 4+ 1)%w?), g = %((k +1)%w? — KAw?).

N =

vV =

The following preliminary result will be required in the construction of the
a-priori estimate (2 of Proposition 3.1:

Lemma 3.2 Let X = X (t) be any twice continuously differentiable function of
t and A be any constant matriz. Then, there exists a constant § > 0 such that

T T
e / X7 de < / X 4 x| dt
0 0

T ) 1 T
5(/ [1X"] dt) g/ | X"+ AX"|| dt
0 0
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Proof From the Fourier expansion of X (t) given componentwise as

o0
z;i(t) ~ag,; + Z(a’” cos(kwt) + by, ; sin(kwt)), (3.8)
k=1
1=1,...,n,keEN w= gT— we have
o0
zi(t) ~ Z kw(—ay,; sin(kwt) + by ; cos(kwt)) (3.9)
k=1
o0
' (t) ~ Z 3w (ag ; sin(kwt) — by ; cos(kwt)) (3.10)
k=1
Thus,
T ) T n oo o
/ IX" +vX'||"dt = = Zkzwz(klwl —v)*(ag,i® + bri°)
0 2 =
=1 k=1
T n o
> 025 )0 D Kw(an” + bi”)
i=1k;=1
T,
= [ e (3.11)
0

by the definition of # given above, and the first inequality follows. Furthermore,
setting A = pl, we have

o0

/||X”'+,u\’"|dt /ZZkz 2 (kwag,; — pby,;) sin(kwt)

=1 k=1
- (kw bi,i + pag,;) cos(kwt)] dt

/ ZZk 2072 (kw + 1) (ak + bri)

i=1 k=1

T [Z Z(kzuﬂ +u2)7

i=1 k=1

xZZk 41 a,hi+biy,-)_]]_%

i=1 k=1

> (B S ) )

=1 k=1
T n oo . i
x (5 YD k' (ah +b:)" (3.12)
i=1 k=1

by the Holder inequality, so that the segond inequality of the lemma also holds,
with § = nvV2T (307, (K*w? + p?) 1) 7z, O
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We shall now prove an existence result for (1.4)-(1.5) which represents vector
analogue of Theorem 1 of Ezeilo and Omari [8].

Theorem 3.3 Let C be a nonsingular matriz and assume that G satisfies

(Gt X"), X')

G) K +a (X)) <
' B

< (k4 1)%% = ot (|| X)),

uniformly in X" € R™ with || X'|| > 7 >0, and a.e. [0,T], where k € N, w = 2%,
and o : R} — R are two functions which are such that

(G2) m DOHX'IIai(HX'II) = +00

li
[IXx]|—+

Then system (1.4)—-(1.5) has at least one solution, for every P € L'([0,T],R")
and all arbitrary matriz A.

Proof We shall consider (1.4) in the equivalent form
X"+ AX" +vX' '+ CX =vX' - G(t, X') + P(t) (3.13)

Then for each P € L'([0,T),R™), there exists exactly one function W = KP €
W([0,T], R™), satisfying (1.5) and

W”’-‘I"AW” +le +CW — P('), (314)

by the Fredholm alternative, where K : domK C L' — W73~‘1
Making the change of variable Z = X — W, (3.13) becomes

Z"+ AZ" +vZ' +CZ =vZ' +vW' - G(Z' +W')

=vZ' — (-, 2" (3.15)

Il

where we set y(t, X') = G(t, X' + W'(t)) —vW'(t), X' € R", t € [0,T]. Then,
7 is continuous and moreover by hypothesis (1) and (G2),

(, X) = vX'|| = Gt X!+ W' (1) = w(X' + W ®)]

S(HXIIJrliWIIOO)( Bk )

< (X)) + W'l (B = e (1X]D)
< BIX'|| - ki, (3.16)

uniformly in X" € R™ and a.e. [0,T] with ||X'[| > 71, for every k; > 0 and
r1 > 0 depending on k; and ||[W']| .
This implies that for a suitable constant k2 > 0,

(8, X1 = vX'|* < BIX|° = 28K | X7 1| + Ko, (3.17)

for all X' € R™ and t € [0,7].
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Next, we define the Nemytskii operator
N :Cl([O7T]7Rn) - C([OvT])Rn) by NZ=vZ _7('721)'

Then, the Hammerstein operator KN : C1([0,T],R") — C([0,T],R") is com-
pletely continuous and its (possible) fixed points in C! are the solutions in C*
of (3.15) which, by the transformation Z = X — W determine the solutions in
W31 of (1.4).

For solving the fixed point problem

Z=KNZ,

in C', we use the Leray-Schauder continuation method given by Proposition 3.1.
Accordingly, we consider the problems depending on a parameter A € [0, 1],

Z=)KNZ. (3.18)

It is sufficient to find a constant R > 0 such that || Z]| < R for every Z satisfying
(3.18) for A € (0,1), or equivalently,

Z"+ AZ" + \(t,Z2")+ CZ =0, (3.19)
where we set vz (t, X') = (1 — N)v X' + My(¢, X'), X' € R™.
Therefore, let Z € C? be a solution to (3.19) for some A € (0, 1). Multiplying

).
(3.19) scalarly by Z"'(t)+vZ'(t) and integrating over [0, T"] using (1.5), observing
that

.
/ (AZ" +CZ, 2" +vZ'ydt =0,
0

we obtain

T
/ (Z" + 9\ (t, 2", Z" +vZ'ydt =0 (3.20)
0
That is
T
/ (2", 2" +(2" v Z') + (a8, 2'), 2") + (a1, Z),vZ")) dt = 0 (3.21)
0

Noting that (Z, Z) = || Z||?, it is easily verified that (3.21) can be written as

T T T A
/ ||Z’”+1/Z’||2dt+/ HZ”'JrVA(t,Z’)Hldt—/ (. 2) = vZ'| dt = 0
0 0 0

(3.22)
so that, on dropping the second integral,

T T T
/0 12" + 2t < / la(t, 2') — v 2| dt = A2 / (6, 2) - vZ'| de
0 1]
(3.23)
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which, by (3.17), yields

T T T
/HZ’”+1/Z’|]2dt§ﬁ2/ ||Z’||2dt—2,3k1/ 1Z'|dt + keT  (3.24)
0 0 0

On the other hand, by Lemma 3.2, we know that for every Z € C? satisfying
(1.5), we have

T ; T .
g / 12\ dt < / 12" + v Z'| dt,
0 0

so that from (3.24), we derive
T
1Z'] 2 = / 1Z'|| dt < (28k1) " ko7 = ¢ (3.25)
0

Next, we observe that by (3.16), v satisfies, for some constants ks, k4 > 0, the
condition

(8, XN < [lv(E, X)) = v X' + v ]| X|] < B3| X + ka

Hence, integrating (3.19) over [0, T], we obtain

T
I /0 2(t) dt |

IN

T T
/0 e (e, 2 de < IE N, [ Ihte, 2 e
0
1y (Ksl| 212 + kaT) < 65" (ks + kaT)
= C (326)
Thus, combining (3.25) and (3.26) yields

IN

T
121, T [ 2@+ 12,0 < T e+
0
= C3 (327)
Also, observing from (3.19) that
T T
127 + 42", < (=N [ 12Z1de4 [ 20l de+ TICTN 2l
0 0
< vc + (k)gC] + k4T) + Te3Ae := ¢y, (328)
we conclude by the second inequality of Lemma 3.2 that
1Z"]|2 <67 %ca:=cs ’ (3-29)
and then
12 loo < VT Z"||12 = esVT = cg (3.30)

It follows from (3.27) and (3.30) that
1Zllcr = 1Z]lco + 112" lloo < €3+ c6:=c1 (3.31)

for every solution Z of (3.19), for arbitary A € (0,1). Thus || Z]|c: < Q follows,
for some 2 > ¢7 > 0.
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