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Abstract 

D. London gave an inequality involving a semi-convex function of m 
commuting matrices. Here similar and related inequalities are obtained 
for convex functions. Corresponding generalizations of other classical in­
equalities are also given. 
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1 Introduction 

D. London [1] considered for commuting matrices Ai,...,Am and x E C n , 
x / 0 , the following inequality 

f(Axx,x) (Amx,x)\ {f(A1)...,Am)x,x) 
J \ (x}x) >•'" (*,*) ) - [x,x) { ] 

where / is a semi-convex function. 
In this paper we shall consider similar inequalities for convex functions but 

for more m-tuples of matrices, as well as many related inequalities. Some of our 
results are further generalizations of results obtained in [2] (see also [3]). 
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138 B. MOND, J. E. PEČAЫĆ 

2 Preliminaries 

Let A E Cnxn be a normal matrix, i.e., A*A = AA*. Here A* means A*, the 
transpose conjugate of A There exists [4] a unitary matrix U such that 

A = U*[\u\2,..., \n]U (2) 

where [Ai,..., An] is the diagonal matrix (\jSij), and where Ai, A2, - . . , An are 
the eigenvalues of A> each appearing as often as its multiplicity. A is Hermitian 
if and only if A«,i £ In = {1,2,...,rz} are real. If A is Hermitian and all At 

are strictly positive, then A is said to be positive definite. Assume now that 
f(\%) G C, i G In is well defined. Then f(A) may be defined by (see e.g. [4, p. 
71] or [5, p. 90]) 

f(A) = U*[f(\1)J(\2),...1f(\n)]U. (3) 

As before, if f(\i), i G In are all real, then f(A) is Hermitian. If, also, f(\%) > 0, 
i E In, then f(A) is positive definite. 

We note that for the inner product 

(f(A)x,x) = J2\yi\2fM (4) 
i = l 

where y e Cn, y = Ux and so ^ = 1 |2/2|
2 = ]P 2

n
= 1 | ^ | 2 . 

If A is positive definite, so that A, > 0, i £ In and f(t) = i r where i > 0 
and r G If, we have /(A) = A r . 

3 Inequalities for Hermitian matrices 

Theorem 1 Let / : Ji x J2 x . . . x Jm -~t R be a convex function and let 
9ij : Ij -± Ji(Ij,Ji C R, j = 1 , . . . , k] i = 1 , . . . , m) be giuen functions. Further 
let Aj} j = 1, . . . , k be Hermitian matrices with eigenvalues \ji in IJ; XJ G Cn, 
j = 1, . . . , k with Ylj=i(xj>xj) — 1* 27*en 

/ { 2(0ij'(^j)*j>*i)'' *'' Yl(gm3(Aj)xJ^xj) ( 
[j=i i=i j 

< ^ ^ l i ^ O . - ' M ^ m i t i i j ) ) ^ , ^ ) . (5) 

i=i 

Proof First we note that 
k n A: 

i = i * = l i = i 
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where yji is defined in a manner corresponding to (4). We now have, by (3) 

•!" { .£'(íwí/-i)*ii*i). • • • > Yl^mMi)xhxi) 
J = l J = l 

{ k n k n 

£ 2 bül VІ(AІ»), . • ->X̂ X̂  bJi!2 î(Aj*) 
j = l î = l j = l î = l 

/e n 

< J2Y^ÌУji\2f(9ij(Ьji)> • ->9mj(Ьji)) 

J = l 1 = 1 

k 

= ]£(/(.ПjҶ-4j)>'' • >#™i(Л?))æi' жi) 
J = l 

(6) 

where we have used the well known Jensen inequality for convex functions of 
several variables. • 

Remark 1 For k = 1, we have, for x / 0, the inequality 

(£i(A)x,a.) (flfm(i4)a?,a?) 
/ 

;,a;) (x,x) 
<(f(gi(A),...,gm(A))x,x)/(x,x). (7) 

For m = 2, this is Theorem 7 from [2]. Moreover, (7) is equivalent to (5). 
Indeed, using the classical Jensen inequality and this result, we have, assuming, 
without loss of generality, that all Xj ̂  0, 

f{ Y^(9lз(Aз)X3>Xз)> • • • > J2(9mj(Aj)Xj, Xj) 
3 = 1 3=1 

< 

=./< 

' S(ђ.ђ) ( цfЙ д ) E(^-^)^^pi 
i=l v Эì э) j=l v J ' эj 

=./< k ' ' " ' & 

ZL/ (X3 > æ J ) Z ^ ( Ж І > æ І ) 
k J = l І = l 

V ŕ т • v Л f / ( f f . i ć A i ) * л * i ) (ffmi(Ai)aгj-,*i) 1 

IŁrУ -ІЄIlöЄIl Ь 1 

2_j (Xj, Xj) 

J = l 

< ^ ( я i t . , i ) ( / ( g - j ( ^ ) ' - - - » W ^ ) ) « Я * i ) (by (7)) 

fc 

= X)(/UljӢj)> • ••^mi(A i)þ i,Ж i). 
J = l 
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The following results can be proved similarly. 

Theorem 2 (Holder's Inequality) Let Aj {j ^ 1, •. •, k) be normal matrices 
with eigenvalues \ji in Ij and let gj,hj : Ij —> R+ (j = l,...,Ar) 6e given 
functions. Let p,q be two non-zero real numbed s u c n ^na^ P~l + <7-1 — 1/ 
Xj £ Cn, j = 1 , . . . , k, not all Xj = 0. Then 

(a) ifp>q are positive, 

k 

53(toi.*i)(i4i)*i,*i)< 
i=i i = i 

i/p 

i = i 

1/9 

• (8) 

f&j If either p or q is negative, then the reverse inequality in (8) holds. 

Holder's inequality can be given for several functions (see, e.g., [6]) as follows: 

Theorem 3 Let r,*, i = 1, . . . ,s be non-zero real numbers such that 

XX1 = i; 

let Aj, j = l , . . . , k 6e normal matrices with eigenvalues in Jj{C C) and let 
fij : Jj —> R+ (i = 1,. . . , s, j = 1,.. .,k) be git/erc functions, with Xj £ Cn, 
(j=l,...,k). Then 

(a) Ifn > 0, i = !,...,« 

5 / k 

E ПЛІ (Л-)*І.*І < П D ^ ^ - ђ 
l/r 

(9) 

fbj I/ri > 0, r, < 0, fi = 2 , . . . , s) then the reverse inequality holds in (9). 

Remark 2 By the substitutions g —> gr, h -> br, p —> p/r, a -> g/r, we can 
obtain an analogous result to Theorem 2 in the case p~x -f q~~l = r - 1 . 

Theorem 4 (Minkowski's Inequality) Le£ Aj, j = 1 , . . . . jfe be normal ma­
trices with eigenvalues from Jj{C C) and let gj,hj : Jj —> i? + $ = 1 , . . . , k) be 
two positive functions. Ifp> 1, £ben 

E((^'+ / li)P( j 4i)a ľi'æi) 
i = i 

1/p 

< {EK(Л>І.-І) | + {Í>?(Л)*І.*І)} 
I/P 

(10) 

If p < 1, P / 0. £ben inequality (10) is reversed. 
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Remark 3 As in Remark 1, we can prove Theorems 2-4 by using Theorems 
9-11 from [2], respectively, i.e. we have that the corresponding theorems are 
equivalent. 

The following three theorems are consequences of results from [7]: 

T h e o r e m 5 Let the conditions of Theorem 2 be satisfied with 

0 < m < 9j(Xji)hj(Xji)-
q/p < M, 

i = 1 , . , . , n; j = 1 , . . . , k. Then, for p > 1, 

k k 

(M - m) J^i^iA^x^Xj) + (mM*> - Mm?) J^(fcJ(A i)x i , xs) 
j=i i = i 

k 

< (MP - m?)Y,((gj.hj)(Aj)xhxj). (11) 
i=i 

lfp<0, (11) also holds; while for 0 < p < 1, the reverse inequality holds. 

T h e o r e m 6 Let all the conditions of Theorem 5 be satisfied. If p > 1, then 

k , k v 1 /p / fc x 1/q 

(12) 

/C / K v 1 / p y JC 

5Z((̂ ' •/li)(̂ i)xi'̂ ) ^ K(l]( î(Ai) î̂ i)) (]C(^(A>i'xi-
i=i v i= i y v i= i 

where K is given by 

K = |P |1/2?M1/(?(M - m) 1 / p |mM p - M m p | ^ | M P - m ^ " 1 . (13) 

Ifp<OOrO<p<l, ine reverse inequality in (12) holds. 

Proof We have, noting (5); 

k k n 

X^((^i)(A7>i>*i) =^$^l^|2^i(AiOfti(Aii) 
j = i \ j j=i i '=i 

( fc n \l/P / k n \ l/<? 

E E iw«iM(̂ ) E E iw« WW 
i = l 2 = 1 / \ j = l 2 = 1 / 

/ fc \l/P / k \ 1 /9 

= *(E(^(^i)*i^i)) ( p » ] ( ^ ^ i ) . \J = 1 / \3 

where we have used a converse of Holder's inequality, 
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Theorem 7 Let the conditions of Theorem 4 be satisfied with 

0 < m < Gj{Xji) < M, 0 < m < Hj(A^) < M 

for j = 1, . . . , k} i = 1 , . . . , n where 

Gj = 9M + tb)-9/p, Hj = hjigj + hj)-^. 

Then for p > 1 

> K 

X^((^i + / l i ) P ( Л i ) ж i ' æ i ) 
J = I 

I/P 

i / p 

J = l 
+ X>j|Иi)*i.*i) 

L j = l 

l / p 4 

(14) 

where K is defined by (13). If p < 1, p ^ 0, i/ie reverse inequality holds. 

Another converse of Holder's inequality can be obtained as a consequence of 
Theorem 2 of [8]. 

Theorem 8 Let the conditions of Theorem 2 be satisfied with p > 1 and 

rn<9]/q(\ji)/h1/p{\ji)<M 

(j — 1 , . . . , k; i = 1 , . . . , n). Set 7 = M/m. Then 

UP 

^(tfiAj)*},*, 

Lj=i 

]Г(føj •Лi)(Дj)xJ-,xi) 
i = i 

Y,((9j •hj){Aó)xi>xj) X;(A?ИІ)«J.-J) 
Li=i 

1/9 

(15) < [6Mp + (1 - J J m P ] 1 ^ - [0M~q + (1 - ^ m " ^ ] - 1 ^ 

where 6 is the unique solution in (0,1) Of 

q{Y - l ) [ x ( 7

p ~q) + l]~l/q +p{l~q ~ l)[x{Tq - 1) + lj-d/fl)-! = 0. 

Remark 4 For k = 1, Theorems 5-8 give Theorems 12-15 from [2], respect­
ively. 
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Recently, another converse of Holder's inequality was obtained in [9] (see 
also [10]). Using a discrete case of this result, we obtain the following: 

Theorem 9 Let the conditions of Theorem 2 be satisfied with p > 1 and 

0 < a < gj(Xji) <A, 0 < b < h^Xji) < B 

fy=l , , . . ,Ar; z = l , . . . , r a ) . Then 

-i i/p 

^{9Pj(Aj)^j^j) 

-i=i 

where T is given by 

Г k 

Y^{Щ{Aj)xj,Xj 
J=I 

ï/q 

<ry^((<7j..hi)(Ai).ri)xi) (16) 
i = i 

Sf. -L ël ãĹ-L. 61 
Г = m a X ; p я -*—-L 

aB Ab 
(17) 

Remark 5 Moreover, as in [10], we note that the following interpolation of (16) 
holds: 

E^J ÍA? ' )* - ' ' ^ 

- I І / P 

L i = i 

Y^(h](Aj)xjtxj) 
-\i/я 

i = i 

< 
1 

Lj=i 

1 

Я 
J2(hqj(Aj)xз>xj) 

L i = i 
^rEífoiAjX^-v.-v)-

j=1 (18) 

Indeed we have 

k k n 

T^((9jhj)(Aj)xj>*j) - ^X^1^I^|2^(A^)^(A^) 
.7=1 i = i f=i 

A; n 

= E E i-v.f(-"« (Ai0 î (xJi)) 
j - i *=i 

> E E IW< I' ( " ^ ( A i 0 + % ( A ; « ) ) (by a Lemma from [9]) 

& П Â; n 

=; E E M ' - W + J E E »W.I2*J(A#O 
^ i=i»=i * i=ii=i 

= -Yl^^x^xj) + -22{h9j(Aj)xj;xj) 
p 3=1 q i=i 

( k \ l / P / A; \ */$ 

^ ( ^ ( • A j Q g j . g j ) j I y^C 1!vA?) 2^ ^i)) (^y ^ e Arithmetic-geometric 
i = 1 ' ^ i = 1 ' inequality). 
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A discrete case of the the well known Griiss inequality gives the following 
([11, p. 70]): 

T h e o r e m 10 Let Aj (j = 1, . . . , k) be normal matrices with eigenvalues Xji E 
Jj(C C), j = 1 , . . . , k; i = 1, . . . , n. Further, let gj,hj : Jj —•>R (j = 1, . . . , k) 
be functions such that 

<t><9j{*ji)<$, 7 < M A i i ) < r , 

(% = l , . . . , n ; j = l , . . . , k ) . 

If Xj £ Cn

} j = 1 , . . . , k with Yljz=iixj>xj) ^ 1> ^ e n 

X^(Ui • hj){Aj)xj,Xj) - Ys(93iAj)xJ>xj) ] Q M ^ i ) * i ' * i 

i=i i= i i=i 

< I ( * _ * ) ( r - 7 ) . (19) 

Analogously, using the discrete version [12] of Karamata's inequality, we get: 
T h e o r e m 11 Let the conditions of Theorem 10 be satisfied but with (j) > 0, 
7 > 0. Set 

vW + v ^ l~ j' 

E (^(-AjOxj,^) £ (MA,)-*,, a?i) 
K'2 < J— J— < K 2 . (20) 

£ ( U i 'hj)(Aj)xJ>xj) 
i=i 

4 Inequalities for commuting matrices 
The following result is valid [4, p. 77]: 

If Aj, •/ = 1, . . . , m are pairwise commuting Hermitian matrices, then there 
exists a Hermitian matrix H and m polynomials pj(t) (j = 1, . . . , m) with real 
coefficients such that 

Aj=Pj(H) ( j = l , . . , m ) . (21) 

Using this and previous results we can obtain related results for commuting 
Hermitian matrices. 
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Theorem 12 Let f : Ji x J2 x ... x Jm —•> R be a convex function and let 
Aj = (A\j,..., Amj) be an m-tuple of m commuting Hermitian matrices for 
every j = 1,. . . , k. Let the eigenvalues of Aji be in J;; Xj 6 Cn, j = 1, . . . , k 
with Ylj=i{xJixj) ~ 1- Then 

{ k k } k 

Y^{AlJXJ>Xj)> • • • . Yj{Am3X3^X3) \ < Yl{f{Al3> ' ' • ' Amj)xj}Xj). (22) 
i=i i=i J i=i 

Proof By (21), we have a set of polynomials with real coefficients {gij}, i = 
1,. . ., ra; j = 1, . . . , k such that, for every j = 1,.. ., k 

Aij =9ij(Aj) i = l , . . . , m 

where .Aj is a Hermitian matrix. Thus, (22) becomes (5) which has already been 
established. • 

Remark 6 Similarly (7) gives for commuting matrices Ai, . . . ,v4 m , a? ̂  0, the 
inequality (1), i.e., 

p .r(Aia?,x) (A m x, : r)\ (/(Ai,. . .,.Am)ar,g) 

(ar,a?) ' " " ' (a?,a?) / ~ (a?,a:) 
(23) 

Note that this inequality was considered in [1] but for a wider class of semi-
convex functions. Thus, we can use a result from [1] to obtain (23) for convex 
/, and then, as in Remark 1, we can use Jensen's inequality and (23) in the 
proof of Theorem 12. 

T h e o r e m 13 Let Aj,Bj be two commutative positive semi-definite Hermitian 
matrices for each j = 1, . . . , k. Let p, q be two non-zero real numbers such that 
p~l -f- q~l = 1, XJ E Cn, j = 1, . . . , k, not all Xj = 0, then 

(a) If p,q are positive 

k 

Y^{A3X3^B3Xj) < 
3 = 1 

1 1/P 

3 = 1 

Зi^З ) 

i = i 
3^3) 

1 / ç 

(24) 

(b) If either p or q is negative, then the reverse inequality in (24) holds. 

This is a similar consequence of Theorem 2. In the same manner, Theorems 
3-11 give, respectively 

Theorem 14 Let rt-, i = l , . . . , s be defined as in Theorem 3 and let Aj = 
(Aij,.. ., Asj) be an s-tuple of s commuting positive semidefinite Hermitian 
matrices for every j = 1 , . . . , jfc. Let Xj £ Cn (j = 1 , . . . , k). Then 
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(a) Ifn>Q, . = ! , . . . , 

1/Гi 

E ((n^w*,) <n (EK î.̂ ) I • (̂ ) 
j=i \ S - = i J ) i=i y = i / 

(b) If r\ > 0, r2- < 0 (i = 2 , . . . , $), then the reverse inequality holds in (25). 

Theorem 15 Let Aj, Bj be two commutative positive semidefinite Hermitian 
matrices for each j = 1 , . . . , k. If p > 1, then 

k \ VP r k ]1/P ( k 1 1 / P 

^((As+Btfz^zA <ij2(A^jtx3)\ + | 2 ( ^ i - a ? i ) } • (26) 

Ifp<Q, p^fi Q, then inequality (26) is reversed. 

Theorem 16 Let the conditions of Theorem 13 be satisfied with 

0 < m < X7?/p < M, 

(i = 1, . . . , n; j = 1, . . . , k) where Ayi,..., Xjn are eigenvalues of Aj and 
Lfji,..., pjn are eigenvalues of Bj. Then, for p > 1, 

Ar k 

(M - m) J2(APjXj}Xj) + (mMp - Mmp) £ ( f l j * i f *,) 
i= i i= i 

< (M* - mp) J2((AjBj)xj}Xj). (27) 

i= i 

If p <Q1 (27) also holds; while for Q < p < 1, £he reverse inequality holds. 

Theorem 17 Le£ all the conditions of Theorem 16 be satisfied. If p > 1, £hen 

l / * / AT \ i / « 

(28) 
j = i \ j = i / \ i = i / 

where K as given bt/ fi*?). Ifp<QorQ<p<l, the reverse inequality in (28) 
holds. 

Theorem 18 Let the conditions of Theorem 15 be satisfied with 

0 < m < G(Xji,fj.ji) <M; 0 < m < G(nji, Xj{) < M 

for j = 1 , . . . , k] i — 1,"... , n where G(x,y) = x(x-^y)~^/p and where {Xji} and 
{p>ji} are eigenvalues of Aj and Bj respectively. Then for p> 1 

k / k \ llp/ k 

Y,(AjXj,BjXj) > K £(4f*,-,*,-) £(£**;,*il 
i= i \ i = i / \ i= i 

J2((Ai + BjУxj,xj) 
i/p 

> K 7 t(Ajxi>xi) 

I/P 

+ Xtø-v.-v) 
J-=l 

l/í>-

where K is defined by (13). If p < 1, p ̂  0. £he reverse inequality holds. 
(29) 
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Theorem 19 Let the conditions of Theorem 13 be satisfied with p > 1 and 

™ < *)["/(*)[> <M 

(j = 1 , . . . , k] i = 1 , . . . , n) and Xji, fiji are defined as in the previous theorems. 
Set 7 = M/m. Then 

J2(APJXJ>XJ) 
Li=i 

k 

^(AjXj^BjXj] 

Li=i 

2^(AjXj,BjXj) 
Li=l 

£(яb>*;) 
i = i 

1/p 

i/я 

(30) < [6Mp + (1 - 6)mp]l/p - [6M~q + (1- 6)m-q]~1/q 

where 6 is defined as in Theorem 8. 

Theorem 20 Let the conditions of Theorem 13 be satisfied with p > 1 and 

a < ^ji < A} b < fiji < B, 

(j = 1, . . . ,k; i = 1,.. .,n) and Xjiypji are the eigenvalues of Aj and Bj, 
j = 1 , . . . , * . Then 

т i/p 

2^(AjXj,Xj) 

i = i 

where T is given by (17). 

Y^(Щxhxз) 
Li=i 

Чч 

^T^AjXj^BjXj) (31) 

i = i 

Theorem 21 Let Aj,Bj be Hermitian matrices with eigenvalues from [<j>,$] 

and [7, T] respectively. If Xj E Cn,j — 1, . . . , k with Ylj=i(xj> xj) — 1> then 

k k k 

£_j(AjXj, BjXj) — 2^(AjXj, Xj) ^^(Bзxз > xз) 
i = i i = i i = i 

<ì(ф-^)(Г-7). (32) 

Theorem 22 Let the conditions of Theorem 21 be satisfied but with (j) > 0, 
7 > 0. Further let K be defined as in Theorem 11. Then 

K-2 < ł ž l 

k k 

zLr (AjXj yXj) 2-u \ßзæi' xз) 
•?= 1 / r^2 <Kl. 

zZ(Ajxj) Bjxj) 
3 = 1 
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