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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM 

1994 Mathemat ica XXXIII Vo l . 114 

ON CERTAIN T H R E E - P O I N T R E G U L A R BOUNDARY 
VALUE PROBLEMS FOR N O N L I N E A R 

S E C O N D - O R D E R D I F F E R E N T I A L EQUATIONS 
D E P E N D I N G ON T H E P A R A M E T E R x 

SVATOSLAV S T A N E K 

(Received Oc tober 26, 1993) 

A b s t r a c t 

Applying a method based on a surjectivity result in R n , we investigate 
the existence and uniqueness of solutions of the differential equation 

x = f(t, x,x , A) 

depending on the parameter A satisfying for a suitable value of A the 
three-point boundary conditions x'(0) = A, x(l) — B, x(2) = C. 

K e y w o r d s : Second-order differential equation depending on the 

pa rame te r , three-point boundary value problem, surjective mapping . 

M S Class i f icat ion: 34B10 

1 Introduction 
Consider the differential equa t ion 

x" = f(t,x,x',X), (1) 

where / E C ° ( ( 0 , 2 ) x R 3 ) depending on the parame ter A. A me thod based 
on a surjectivity result in R n (see [2], [8]) is developed by means of which it 
is considered the problem to de termine sufficient condi t ions under which there 

1 Suppor ted by grant no. 201/93/2311 of the Grant Agency of Czech Repub l ic 
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exists a unique value Ao of the parameter A to any numbers A, B,C (E R) SO 
that equation (1) for A = AQ admits a (and then unique) solution x satisfying 
the boundary conditions 

x'(Q) = A, x(l) = B, x(2) = C. (2) 

This paper was motivated by an interesting paper of Seda [8] that is con­
cerned with the correctness of the boundary value problem 

x" = f(t, x, x'), x'(a) = A, x(b) - x(tQ) = B, 

where a < tQ < b, A, B are real numbers. 
We observe that some boundary value problems for differential equations and 

functional differential equations depending on a parameter have been studied for 
example in [5]-[7] using the Schauder linearization technique and the Schauder 
fixed point theorem. In [1] and [3], a suitable implementation of parameters into 
homogeneous linear differential equations quarantees the existence of a solution 
x satisfying x(ti) = x(t2) = x(t3) = 0 (—oo < t\ < t2 < t3 < oo). 

2 Definitions, lemmas and results 

L e m m a 1 Assume h : R n —» R n is a continuous mapping. If h is injective, 
then h is a homeomorphism of R n onto itself if and only if it satisfies the 
condition 

lim |/i(x)| = oo. (3) 
| x I —• oo 

P r o o f For the proof see [2; p. 23] and [8]. 

Let X = {(x(t),x'(t)); x £ C1((0,2))} be the Banach space with the norm 

\\(x, x')\\ = max { max |.r(tf)|, max IxYr)! ) 
, ,V n 0<t<21 V 0 < t < 2 ' V n y 

and let F : X —> R 3 be a continuous operator. Consider the boundary condition 

F(x(i),x'(t)) = (A,B,C), (4) 

where (A, B, C) E R3 . Condition (2) is a special case of (4). 
Say that x G C2((0,2)) is a solution of boundary value problem (1), (4) 

if there exists a Ao E R such that x is a solution of (1) for A = Ao and x 
satisfies (4). 

The existence of a solution to boundary value problem (1), (4) is given in 
the following theorem. 
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Theorem 1 Let equation (1) have the following properties: 

(Hi) The Cauchy problem x(0) = XQ, X'(0) = x\ for equation (1) has a umque 
solution x(t, XQ, XI, A) on (0,2) for each (#o.£i,A) G R3 , 

(H2) Problem (1). (4) has a/ raosl one solution for each (A,B,C) G R3 , 

(H3) (Compactness condition) If {x(t,Xk,yk, A^)} zs an arbitrary sequence of 
solutions of (1) such that 

{F(x(t,xk,yk^k), ^'(t.Xk^kAk)} 

is bounded, then the sequences {xk}, {yk} and {\k} are bounded. 

Then there exists a unique solution of boundary value problem (1), (4) for each 
(A,B,C)eR3. 

Proo f The mapping H : R 3 —> X defined by H(«r0,yo,^o) = (x(t,x0,y0, \Q), 
x'(t, XQ, go, Ao)) is continuous (see [4]). In view of continuity of H, the composite 
mapping h = F o H is continuous from R 3 into R3 . Problem (1), (4) has a 
solution for each (A,B,C) G R 3 (and then unique by (H2)) if h is surjective. 
To show the surjectivity, we shall use Lemma 1. 

Condition (3) in Lemma 1 means that the b-preimage of each bounded set 
in R 3 is bounded in R3 , which is equivalent to condition (H3). 

Corollary 1 Under assumptions (Hi)-(H3) problem (1), (4) has a unique so­
lution for each (A,B,C) G R 3 and this solution as well as its derivative are 
continuous functions of the variables (t,A,B,C) in (0,2) x R3 . 

Proo f Let h, H be defined as in the proof of Theorem 1. Under assumptions 
(Hi)-(H3), h is not only surjective, but even homeomorphic (see Lemma 1). 
Because H is also homeomorphic, F|#(R3) as well as its inverse mapping 

(^liT(R3)) is homeomorphic, too. This implies thdD the solution x of problem 
(1), (4) and its derivative continuously depend on (t,A,B,C) in (0,2) x R 3 . 

Lemma 2 Assume assumptions (Hi) and 

(H4) f(t,., y, A) is increasing on R for each fixed (t, y, A) G (0, 2) x R , 

(Hs) f(t, x, y,.) is increasing on R for each fixed (t, x, y) G (0, 2) x R , 

are fulfilled. 
Then problem (1), (4) admits at most one solution for each (A,B,C) G R 3 . 

Proo f Suppose there exist two solutions X{ of (1) for A = Az- (i = 1, 2) satisfying 
boundary conditions (2) with x = ar,*, and suppose A2 > Ai. Setting w -=- #2 —#1, 
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then w'(0) = w(l) = w(2) = 0. If w has a positive local maximum at a£ E (0, 2), 
then iv(0 > 0, iv ' (0 = 0, w"((,) < 0 which contradicts 

w"(Q = / ( 0 *2(0« 4 ( 0 , A2) - / ( 0 x i ( 0 , 4 ( 0 , Ai) > 0. 

Since UJ(0) > 0 implies uj"(0) > 0, we see w(t) < 0 on (0,2). Then with regard 
to iv(l) = 0 we have w'(l) = 0, w"(l) < 0. On the other hand 

w"(l) = f(l,^2(l),4(l),A2) - f(l)x2(l)1x'2(l),\1) > 0, 

therefore w"(l) = 0 and then necessarily Ai = A2. Now, if w(0) = 0, then 
(cf. (Hi)) w = 0. If iv(0) 7̂  0, then we can assume without loss of generality 
Hj(0) > 0, hence 

w"(0) = / (0 , i 2(0) , 4 ( 0 ) , A2) - / (0 , Xl(0), 4 ( 0 ) , A2) > 0, 

consequently there exists a r £ (0,1) such that w has a positive local maximum 
at r which leads to a contradiction. 

Lemma 3 Suppose that f satisfies the condition 

(He) For each numbers S > 0, M > 0 and L > 0 there exists a number Ji > 0 
such that 

f(t, x, y,X)>S for all t <E (0,2), x > - M , |y| < L, A > K, (5) 

f(t, x, y, A) < - 5 for a/l * E (0, 2), a, < M, |y| < F, A < -K. (6) 

Betf #(£) be a solution of (1) for A = Ao on (0,2) swch ^hal 

\x'(0)\<Q, \x(l)\<Q, \x(2)\<Q (7) 

for a positive constant Q. 

Then |Ao| < K, where L{ corresponds in condition (HQ) to S = L = 4Q and 
M = Q. 

Proof Let x be a solution of (1) for A = Ao on (0,2) satisfying (7) with a 
Q > 0. Assume A' corresponds in condition (HQ) toST = L = 4 Q , M = Q and 
suppose Ao > K. 

If x(0) > Q, then x"(t) > 4Q for all t <E ( 0 , 0 (C (0,2)) where -Q < 
x'(0) < x'(t) < 4Q. Therefore x'(t) > -Q + 4Qt, x(t) > Q - Qt + 2Qr2 for 
t G ( 0 , 0 , consequently a?(t) > 0 on ( 0 , 0 and if f < 2 and £'(£) = 4Q, then 
necessarily #'(2) > 4<5 for t £ (£,2). Hence x(l) > 2Q which is a contradiction 
to | x ( l ) | < Q . 
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If a?(0) < - Q , then there exists an rj E (0, 1) such that x{rj) = - Q , x'tf) - ° 
and if 77 > 0 we have x'(rj) > 0. Therefore x{t) > - Q and x'{t) > min{# I7/) + 
4Q( l-7/),4Q} on (77, 2), hence 

г ( 2 ) - æ ( l ) = / ar'(s)dв > 2Q 

which is a contradiction to |a?(2) — a?(l)| < 2Q. 
Let |a?(0)| < Q. If \x{t)\ < Q on (0,2), then x'{t) > min{a?'(0) + 4Q/, 4Q) tor 

t E (0, 2) and therefore there exists a <£ E (0, | ) such that a?'(0 = 4Q, x'(t) < 4<9 
on (0,f). Then a?'(i) > 4Q on (£,2) consequently, 

re 31 
a?(2) > a?(0)+ / a?,(s)ds + 4 Q ( 2 - 0 > - Q + (-Q£ + 2QcT2) + 4Q(2 - 0 2 y O 

Jo 

and we come to contradiction with |a?(2)| < Q. Let 0 < e < 2 and |a?(l)| < Q 
for tf E (0,6?), |a?(e)| = Q. Then in case of x{e) = Q we have x'{e) > 0, a?'(0 > 0 
for t E (£,2), consequently a?(2) > Q which is a contradiction to |a?(2)| < Q- I n 

case of x{e) = - Q we have x'{e) < 0 and therefore it is necessarily e € (0, 1). 
In the opposite case (that is e > 1) since a?'(r) > min{a?'(0) + 4Qt, 4Q} on (0,e), 
we have 

a?(e) > a?(0) + / x'{s)ds > a?(0) + / a?'(s)Js > 0 
Jo «1o 

which is a contradiction to x{e) = - Q . Then, of course, there exists a r E {e, 1) 
such that X{T) = —Q, signx'(T) = sign(T — e) and as above we get a contradic­
tion. 

The case Ao < —K can be treated similarly. 

Lemma 4 Assume that f satisfies the condition 

(H7) For each numbers L > 0 and K > 0 there exists a number M {> L) 
such that 

f(r,a?,y,A) > 0 for all t E (0,1), a? > M, \y\ < L, |A| > K, (8) 

f(r,a?,y,A) < 0 for a// r E (0,1), a? < - M , |y| < L, |A| < K. (9) 

Le/ a?(tf) 6e a solution of (1) for A = AQ on (0,2) si/ch that inequalities (7) are 
satisfied for a positive constant Q. Then 

[a?(0)|<M + Q, 

where M corresponds in condition (H7) to L = Q anJ J\ > |Ao|. 

P r o o f Let a? be a solution of (1) for A = Ao on (0, 2) satisfying (7) for a Q > 0. 
Suppose that M corresponds in condition (H7) to L = Q and K > \XQ\. 
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Assume x(0) > M + Q. Then using (8) we obtain x"(0) > 0, hence x'(t) 
(> x'(0) > —Q) is increasing on each interval (0,£) (C (0, 1)) where x'(t) < Q. 
If 

\x'(t)\<Q on (0,1), (10) 

then by the mean value theorem there exists a t0 £ (0,1) such that (Q <) 
M < x(0)~x(l) = — £''(l0), which contradicts (10). Suppose (10) is not fulfilled. 
If x'(0) = Q, then x"(0) > 0 and since \x(l)\ < Q, x has a local maximum at 
a f i G (0, 1) and therefore x(tx) > x(0), x'(tx) = 0, x"(tx) < 0. On the other 
hand x"(t\) — f(t\) x(t\), 0, A0) > 0 (by (H7)), and we obtain a contradiction. 
Let x'(0) < Q and let (0,£i) (0 < £1 < 1) be the maximal interval such that 
x'(t) < Q on (0 ,6 ) and x'fa) = Q. Then 

Ґ1 

.(fc) = x(0) + / x'(s) ds> M + Q-Q^> 
Jo 

M 

consequently, x"(£i) > 0 and x'(t) > Q on (£1,1). Therefore x(l) > Q which is 
impossible. 

Assume x(0) < -M - Q. Then using (9) we get x"(0) < 0 and x'(t) (< 
#'(0) < Q) is decreasing on each interval (0,£) (C< 0,1 >) where x'(t) > —Q. 
Let (10) be fulfilled. Then by the mean value theorem there exists a r0 G (0, 1) 
such that (-Q >) — M > x(0) — x(l) = —x'(t0) which is a contradiction to 
(10). Suppose (10) is not fulfilled. If x'(0) = - Q , then x"(0) < 0 and since 
lx(l)l < Q) x has a local minimum at a t\ G (0,1) and therefore x(t\) < x(0), 
x'(ti) = 0, x ; /(ti) > 0. On the other hand x"(ti) = f(tX) x(ti), 0, A0) < 0 by 
(H7), a contradiction. Let ;r/(0) > — Q and let (0,£) (C< 0,1)) be the maximal 
interval such that x'(t) > —Q on (0,e) and x'(e) — —Q. Then 

x(e) = x(0) + / ^ ( s ) Js < -M - Q + Qe < -M 
Jo 

consequently, x"(e) < 0 and x'(t) < —Q for e < t < 1. Hence x(l) < —Q which 
is impossible. This completes the proof. 

Lemma 5 Suppose that f satisfies conditions (HQ) and (H7). Let xk(t), 
k = 1,2,.... be a sequence of solutions of (1) for X — Xk on (0, 2) such that 

14(0)1 <Q, Mi)l<Q> M2)I<Q, - 6-1,2,... , 

where Q is a positive constant. Then the sequences 

{xk(0)} and {Xk} 

are bounded. 
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Proof By Lemma 3 there exists a positive constant K\ corresponding in con­
dition (H6) to S = L = AQ such that |A*| < Ki, k = 1,2,.... Using Lemma 4 
we get 

M 0 ) | < M + Q, fc=l,2,..., 

where M (> Q) corresponds in condition (H7) to L = Q and I\ = Ki. 

T h e o r e m 2 Assume ^hal assumptions (Hi), (H4)-(H7) are satisfied. Then 
problem (1), (2) has a unique solution for each (Ay B) C) E R 3 and lhzs solution 
as well as its derivative are continuous functions of the variables (t, A., H, C) on 
(0,2) x R 3 . 

Proo f Let assumptions (Hi), (H^)~(H-i) be satisfied. With respect to Theorem 
1 and Corollary 1 where F(x(t))x'(t)) = (x,(0),x(l),x(2))) it is sufficient to 
show that assumptions (Hi)-(H3) are satisfied. Assumptions (H4) and (H5) 
((H6) and (H7)) imply that assumption (H2) ((H3)) is fulfilled (see Lemma 2 
and Lemma 5, respectively). Hence theorem is proved. 

Example 1 Consider the differential equation 

x" = (1 + t2)(x + cos(^/2)) + (1 + |x'|)A. (11) 

This equation fulfils all assumptions of Theorem 2 and therefore there exists a 
unique Ao G R to any (A., B, C) G R 3 such that equation (11) for A = AQ has a 
(and then unique) solution x satisfying (2). 
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