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ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM

1992 . Mathematica XXXI Vol. 105

NATURAL TRANSFORMATIONS OF THz SECOND TANGENT
FUNCTOR AND SOLDERED MORPHISMS

ALENA VANZUROVA
(Received July 12, 1990)

Abstract. In [3], all natural transformations of the second
order prolongation functor TT into itself were found. We shall
show here another method of obtaining similar results using
GL(V)-equivariant maps of double vector space VxVxV with
TT-soldering, and avoiding coordinates where possible.

Key words: Double vector space, double linear morphism,
soldering, natural transformation. ’

MS Classification : 53CO5

Given a vector space V, let 1V denote the identity on V,
and Aut(v) the linear automorphisms group of V.

Lemma 1. Let V be an n-dimensional space over a field K
with char K+#2. Let f:V——V be a map satisfying
(1) pf=fyp for all peAut(V).
Then there exists a unique A€X such that £=x.1,.
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Proof. First we shall show that f is an endomorphism. By
our assumption, f commutes with p=u. 1, for u=0, i.e. f(uv)=uf(v)
for all veV, u#0. This equality holds even for u=0. Therefore f
is homogenous. In the case r=1, f is obviously additive. So
suppose rz2, and assume v ,v, from V 1inearly independent. We

shall vprove f(vl+v2)=f(vl)+f(vz). Choose a basis {el,...,en} in
n
vV such that e =v, e,=v, .We can write f(v)= fk(v)ek. Let i=j
k=1
be two different indexis, i, je{l,...,n}. We define ¢*c€Aut(V) by
1¢>'(el)=eJ , (0'(e))=<»:'1 . et(e )=e, for k=i, j.

Using (1) and comparing the corresponding coefficients in the
expressions of w'f(ei) and f(p'(ei) gives

£,(e)=f (e) , £ (e)=f (e)

Similarly, an evaluation of w"f(el) and fgo"(el) where ¢** is
given by qo"(el)=eloe2, qo"(ez)=e1-e2, (v"(ek)=ek for kz2 vyields
fl(e1+e2)=f1(el)+f1(e2). An application of ¢’ with (o’(el)=~ei+e2,
w’(e2)=el+e2, ¢>’(ek)=ek for k>2 and comparison of ¢’§(62) with
f(o'(ez) gives fz(e1+e2)=f2(el)+f2(e2). If n=2, the proof is
finished. Suppose n>2, and choose a fixed index i>2. Define ¢ by
pe =e te , pe,=e te, ¢pe =e te , ¢e =€ for k#1,2,1. Comparing
coefficients in wf(e‘) and fw(ei),we find fi(el+ez)=fi(el)+f1(62)
which proves the additivity of f. Hence f is an endomorphism
of V commuting with all automorphisms of V.

Now let veV be a non-zero vector. Choose a basis {el, e ,en}
in Vv with e=v, and define ¢pe€dut(V) by pe =e ,pe =ve for v=0,1,
veR, k=1. Since wf(e1)=f4p(e1) we have fk(e1)=0 for k>1.
Thus there exists a unique function a:V-{0} ——>% such that
f(v)=a(v).v for all vev, v#0. Let v.,V,€V be non-zero vectors,
and ¢°*€Aut(V) sends v, onto v_. Then we obtain

A(Vz)vzzf(vz)=fqo' (v, )=(p‘f(vl)=Jt(Vl ). p* (v!‘)=>‘(v1 ). v,

which proves that A is a constant function. Since f(0)=0 the
equality f(v)=av is fullfilled for all veV, and the unicity of a
is obvious.

Consider a trivial double vector space C=AxBxC ——AxB where

A,B,V are finite-dimensional vector spaces over reals.
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Any automorphism ¢e€dut(C) can be identified with a quadruple
(Plrwz,wa,v) where QlEAut(A), p€Aut(B), p€dut(v) are the
underlying linear morphisms, and o € Hom(AxB,V) is bilinear. It
holds v(a,b,V)=(w1(a),wz(b),o(a,b)+p;(v)) , [4]. A map f:C——C
will be expressed by means of it components fx’fz'fy

Proposition 1. Let f:C——C be a continuous map such that
(2) pf=fp for all peAut(C).
Then there are uniquely determined A,ueX satisfying
f(a,b,v)=(Aa,ub,Auv)=A.l(u.2(a,b,v)).

Proof.
Using components of f and ¢, we rewrite (2) as follows:

(3) ¢ (f (a,b,v))=f (p (a),¢,(b),o(a,bl+e (v)),
(4) (pz(fz(a,b,v/) )=f2(¢>l(a),wz(b),o(a,b)+¢>3(V) ),
(5) . wB(fs(a,b,V))+0(f1(a,b,V),fz(a,b,v))=

fa(wi(a),wz(b),o(a,b)+¢3(v))‘

In (3), let us fix the vectors b, v, and set w2=lB, ¢3=1V, o=0.
We obtain a map fl(-,b,v):A-——aA satisfying the condition (1) of
L.1. Hence there is A(b,v)eX such that

fl(a,b,v)=l(b,v).a.
This formula defines a continuous function a:BxV—RK.
A substitution ¢1=1A , 0=0 in (3) shows that A is constant on
a dense subset {(b,v)|b=0, v#0} of BxV. Since A is continuous,
it .is constant on the whole BxV.Thus f}(a,b,v)=xa .The existence
of 4 can be proved similarly. Further, a substitution ¢1=1A,
w2=lB , o=0 in (5) yields a continuous function v:AxB—X
satisfying fg(a,b,v)=v(a,b)v. Using_¢1=1A, ¢1=1B, w3=1v in (5)
gives v(a,b)=au. The unicity of A,u is obvious.

The TT-soldered double vector space VxVxV.

Let C, m:C——AxB be a double vector space with the kernel
Vv, [4]. A TT-soldering on C is a couple of linear isomorphisms
xl:V———qA , x2:V———+B.
The space C with a TT-soldering will be called TT-soldered.
A double linear morphism ¢:C—— C’° of two TT-soldered D¢-spaces
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with TT-solderings X,, X, or x;, x;

TT-soldered if the underlying linear maps @

respectively will be called

2, 9, satisfy

xllp3=plx! and x’zp3=¢212
From now on, V will denote an n-dimensional vector space
over reals, with the usual topology and differentiable structure.
Assume a trivial double vector space C°=VxVxV ——VxV with a

TT-soldering x1=x2=1 A double linear automorphism of C°, ¢, is

TT-sqoldered if anq any if P,=p=0.. A TT-soldered automorphism
of C°, ¢=(p,p,p,0), will be called strongly soldered if the
bilinear map o is symmetric.

In this part, we shall investigate differentiable maps
f:C°—>Cc° commuting with all TT-soldered (or strongly
TT-soldered, respectively) automorphisms of C°.

Assume a fixed continuous map f:V" ——V commuting with all

p€dut(v). We shall need some of its properties:

Lemma 2. Let Vi v be a set of linearly independent
vectors in V. Then there exist uniquely determined reals
f(v,...,v ), k=1,...,m such that

k 1 m »
f(Vl,...,Vm)= T fk(vl,...,vm)vk~
k=1

Proof.

The unicity is obvious. To prove the existence, choose a#0,
and consider w=h.1v. By the above assumption,

AM(v ,...,v)=f(Av., ..., AV ).
1 m 1 m

Since f is continuous, this equality holds also for a=0 , i.e.
f£(O0,...,0)=0. Let us add n-m vectors so as {V“...,Vm,vmlpn,
Vn} would be a basis in V. We can write

m

f(Vi,.. .,va)= T fk(vl,.. .,vm)vk,

k=1
Using ¢*€aut(v), ¢*(v )=av, with A=l for k=1,...,m, p (v, )=v,
for k=m+1l,...,n, we get

fk(Avl,...,Av_)=fk(v1,...,v_) for k=m+1l,...,n.
Further, f(v,,...,v)=lim f (av_,...,av )=f (0,,,.,0)=0
k 1 m A0 k 1 m k

for k=m+1,...,n which finishes the proof.
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Lemma 3. There are uniquely determined functions
gk:V—l{O} —sK,

k=1,...,m such that for linearly independent LAV ,v‘eV,
n
f(v,...,v )= Egk(vk)vk
k=1
Proof
Let ie€{1l,...,m} be fixed. Let ViV, and V;,...,V;‘ be
two independent sets of vectors from V with VX=V'1_
By L.2., there are uniquely determined numbers fk(v e,V ),
1 m
f;(v;, . ,V'm); k=1,...,m satisfying
m
(6) f(v,...,v)=Lf(v ,...,v)v ,
1 m k H m k
k=1
m
f(v‘,...,vm)=k§_21fk(v1,...,Vm)vk.

Appiying suitable automorphisms we get

fx(Vl""’Vx‘vi'Vxn"'"‘,’m)=f1(v1""’Vx""’Vn):
=f‘(0,...,vi,...,0)=0
Let vev-{0}. Choose a linearly independent set Vi v, in v
with v,=v . We can use (6) to define the function
g‘(v)=f‘(vl,..-,vm),
i=1,...,m having the required properties.

Proposition 2. Let m=dim V, and let £V —v satisfy

(7) pf=fp for,all ¢€Aut(V)
Then there exist unique )‘1’ e ,A_GR such that
m
(8) (v, ... ,V_)=‘El).kvk for any v, ..,V €V.
Proof. Choose vevV-{0} , and Vi,V EV independent

with v =v. By L.2. and (7) , gt(qo(v))=g‘(v) for any @€Aut(V).
Therefore gx:V—(O} — K is a constant function with a wvalue
denoted by A‘,and the equality (8) holds for any independent set
VooV, By continuity, this formula is true for any m-tuple
from Vv". '

The above proposition does not involve some useful cases as
dim V=1, m=2,3, or dim V=2, m=3. So we shall slightly modify our
assumptions.
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Proposition 3. Let f :V"——V satisfy (7), and has
a differential at a point OeV". Then there exist uniquely
determined reals Aaaa satisfying (8).

Proof. Since f has a differential at O, we can write

f(Vl,...,V.)=(Tf)o(Vl,...,V‘)+g(71,...,V-)

where

1lim ‘(,V)=0, v=(v_,...,v ),

1 m

V-0
and || || is any norm on V".
For a=0 , Af(vl,...,Vn)=A(Tt‘)0(v1,...,vm)+7«g(v1,...,vm). On the
other hand, Af(Vi,..‘,Vl)=f()wl,,..,)wm)=(Tf)O(Av1,...,Avm)
+g()w1,...,AV‘)=A(Tf)O(vl,...,vm)+g(AV1,...,AV-).
Hence Ag(vl,...,vm)=g(hv1,...,Avm). Further, for any v=0,

. (Av) . Ag(v) g(v)
o=1lim < =lim =
r 0 AV a0t A Tv v
which implies g(v)=0 for any v#0. Since g has a differential at
0, it is continuous, and g(0)=0. Therefore f=(Tf)0, f is linear,
m
and f(Vl,...,v-)= ):gx(Vl) where g,:V—V are given by gi(v)=
i=1
f(o,... Vi ,0), i=1,...,m. By (7), any g, commutes with all

automorphisms of ¥V, and by L.1., there exists )“ex such that
gi(v)=)\lv for any vevV, i.e. (8) is satisfied. The unicity is
obvious.

Let us return to our problem. Among the maps f:C° ——C°
having differential at 0eC°=VxVxV, we shall distinguish such
ones that commute with all soldered (or stréngly soldered, resp. )
automorphisms &=(¢,p,9,0) of C°. The equality &f=8f can be
rewritten by means of components in the form (3),(4),(5) with
?,=0, i=1,2,3. If we choose o0=0, Prop. 3. guarantees the
existence of a set of real numbers h‘ ; i,j=1,2,3 satisfying (8)
with m=3. A substitution of (8) into (3) and (4) gives

Amcr(vl,vz)zo, Azaa(vl,vz)=0
for any bilinear (or symmetric bilinear, respectively) map
o:VxV ——V; therefore Au=0, 123=0. Similarly, substituing (8)
into (5), we obtain

(9) Au)«21=0, A

(and A _A_+a_A_=a_,
11 22 12 21 33

=0, A _A_=A_, A_A_=0
12 22 11 22 33 12 21

respectively).
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Obviously, (9) can be fullfilled in three (or four, resp.)
ways:
I. If An=7\12=0, then f is of the form
fl(vl,vz,v3)=0, fz(vl,vz,v3)=kmv1+x22v2,
fs(yx 1y V3)=l31V1+k3272

II. If A12=7\21=0, then fl(vl,vz,va)=)\uvl,

fz“’x’ Vo 73)=A22v2, f3(vl Yy V3)=A31V:+Aazvz+lukzzva'
III. In the case 7\21=A22=0, we have f(v1 Vo v3)=>‘“v1+:\12v2,

= = + .
t‘z(vl,vz,va) 0, fa(vl,vz,va) A31V1 ALY,

(IV. If )«u=122=0, then f is of the form f‘(vi,vz,v3)=)t12v2,
fz(V1 1Vyr V3)=)‘21V1’ f3(v1 Vg V3)=A31V1+>‘32V2+A12)“21V3' )

Oon the set 2Z(C°) of all differentiable maps of the
double linear space C°=VxVxV into itself, we can define usual
composition, and addition in the following cases:

f .9 if nlf=nlg, f t, 9 if n2f=n2g ,
f+g if g(c°)cv, f,gez(c’)
Denote by Z‘(Co) (or Z"(C"),respectively) the subset of all
fez(c®) satisfying &f=f® for any TT-soldered (or strongly
TT-soldered) double linear automorphism $:c°— C°. zs(c°) as
well as Z"(C°) are closed with respect to the above operations.
It can be verified the following:

Proposition 4. By means of the aboie operations, the set
Z'(C°) (or Z“(C"), respectively) is generated by the following

maps:

(10) (vl,vz,va)————-»A.l(u..z(vl,vz,va)), A, LER
(11) (v, v, v,) ——(v +v_,0,0)

(12)  (v,v,v )—(0,v+v_,0)

(13) (v,.v

ot va) —(0,0, V1+72)

( and (14) (vl,v ,73)———+(v2,v‘,73) ).

2

The maps of the type (10) commute even with all
D¢-automorphisms.
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Natural transformations of TT into itself.

The second order 1lifting functor TT will be here regarded
as‘ a covariant functor from the category of n-dimensional
differentiable manifolds and their diffeomorphisms to the
category of fibred manifolds and morphisms. TT assigns a double
linear fibration TTM to a differentiable manifold M, and for any
diffeomorphism ¢:M—>N, the assigned map TT¢:TTM —TTN is a
double linear morphism. All three underlying vector fibrations
are identified with TM.

Consider a natural transformation ¥:TT ——TT. Let a:f{t“ — %"
be a diffeomorphism with «a(0)=0. The space TTOFRn is canonically
D¢-isomorphic with the trivial Dg¢-space X xX'xX". The map TT
regarded as a double linear automorphism has the components
(15) TT0a=(TOa,T0a,'I‘Oa,c'r°)

where Toa is a differential of « at 0e€%" ,and o, is its second
differential at O. Clearly, (15) dis a strongly soldered
D¢-automorphism of the trivial Dg¢-space X"xX"x%X" ,and it depends
only on the 2-jet of a at 0. This fact enables us to define a
map v:L:————uluto(!t“xK“xin) by v(jsa)=(Toa,Toa,T0a,cr’1) where Li
denotes the group of all invertible 2-jets (2-jets of local
diffeomorphisms) on %" with source and target 0, and Auto is the
group of all strongly soldered ©Df£-autumorphisms. It can be

verified that L: is a semidirect product of L; and the Abelian

group Homs(lt"xﬁn,!t") of all symmetric bilinear maps; jza
corresponds to the couple (To“'aa)‘ Expressing L: via this
semidirect product, we find that v is a group isomorphism.

The following diagram is commutative
TTOOL
T & ———— TT &"
o o
n n
v X \I/ \l/llloﬁ
TTOa

7T %" - nox".

Therefore y " commutes with all strongly soldered
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D¢-automorphisms of the Dg-space TTOK" , i.e. woK“EZ“(TTOI").
Further,any natural transformation ¥ is fully determined by wox".
In fact, choose a map ¢:U——%" in a neighborhood U of xeM with
o(x)=0. Then the diagram

T‘I‘xw
Ty —mo 5 TT K"
M |y R
/] \|/ vV Y
TTX«J

TT —ow 5 TT &
x (o]

commutes which proves our assertion.

Finally, if fezss(TTOR“) there exists a natural
transformation ¥: TT —— TT such that wol\‘" = f. We define
wxM=(TTx¢>)_1.f.(Tqup) where ¢ is a map chosen as above. The map
YyM:: TTM —— TTM coinciding with wxM on the fibre over xeM is
differentiable, independent of the choice of ¢, and satisfies
w0£"=f. So we have proved:

Proposition 5. There exists a bijective correspondence
between all natural transformations of the functor TT into TT
and the set Z (TT X").

ss o

Proposition 6. Using the operation of composition and the
operation + (the action of the vector fibration V=TM on the
affine fibration TTM,[5]),the set of all natural transformations

of TT 1into itself 1is generated by the following natural

transformations:
(16) XETy(TM) —. (). X)eT, y(TH), A, AT ER
2
(17) XeT (TM) ——0€T (TM) where 0 is a zero vector,
y y+Tp(X)

Tp:TTM ——TM is a tangent map of the natural projection

p:TM —M,
(18) XETy(TH) —>(Tou)x(y+Tp(X)) where x=p(y), and o, denotes

a zero section of the vector fibration TM

7

(19) XETy(TH) —)e!(y+Tp(X))ETO(TxH) where xep(y), and
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e“:TxN-—oTo(TxH) is a canonical isomorphism,

(20) XETy(TN)-——ai“XeT (TM) where i, denotes a canonical

TpiX)

involution on TTN.

Proof. By Prop. 5., the set of all natural transformations
of TT into itself is generated by the natural transformations
corresponding to the generators of Z'S(TTOR“) described in
Prop. 4. An evaluation in 1local coordinates shows that the
transformations from (16)-(20) correspond respectively to the

maps given by the formulas (10)-(14).
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