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Introcluction

In this paper we shall inves.tigate a boundary value
problem

\

(1) x"77 = f(t,x,x'), (t,X,X')\ € [81'63] X 6 '

°(2X'(81)- a(})(,—(al): Al' x(az) = }'\2, RZX’(a3)+23x’(as) = A3.
(2)
dor e, 95085 2 0, dyr dy > 0, gy 93 50, a;<a,<ag.

Denote I = [ai,a3], I, = [al,az], I, = [32,a3].

By method of successive approximations we shall prove the
existence theorem for (1) and (2). Suiccessive approximations
will be formed by means of lower and (ipper solutions, a mono-
tone operator using Green’s functions .and their signs. Monotone
operator on partially ordered Banach spraces was applied at
solving boundary value problems e.g. by K.Schmitt in [1], R.
Bellman in [2] and V.Zeda in [3].
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Let”Gkkt,s){bk = 1,2 be Green’s functions:bélongiﬁg to

.;(1) and (2). G, are uniquely determined by the following three
properties (see [4], [5], [6]).

For arbitrary point s € (ak'ak+1) there holds:

G . k 276 are continuous in t on I.
3 ¢ kt
3%, . . :
—3—5— = tht is continuous in t everywhere on I, except
t

of the point s (a point of incontinwvability of the first

kind) where G, . . (s+0,s) - Gpre(s-0,8) = 1,

G, as 2 function of t is a solution of x °7 = 0 on
5

intervals [al,s), (s,a3] and fulfils homogeneous boundary

conditions (2) for Ay = Ay, = b3 = 0.

Further there holds: If (t) is a solution of x °~ = O

and (2), then the solution x(t) of (1) and (2) is a solution
of an integro-differential equation

(3)
and

if

) 2. gk+1
x(t) = ey + 7 1 e (t9)f(s,x(s),x"(s))ds

k=1 3,

conversely.

Lemma. For Green's functions G, and G, there holds:
s€(aj,a,), then Glgo, vtéll and Gléo, «Vtslz,

zo, ¥ so, ¥
se(az,a3), then G2 =z O, téI1 and G2=O, téI2,
18,1 ) then Gy, =0, ¥t eI, k =1,2,

Proof. From Green’s function properties we get

Gk(a2,s) =0, s e(ak’ek+l)' k = 1,2, Now it suffices to prove
the third part of Lemma. Its assertion can be obtained from

direct calculation c¢f explicit expression of Green’s functions.

1f we denote A = —2(i2y2(83-al) + d283 + *332) { 0, then we
have:

/

//’
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For s & (a;,a,) and a, £t $9 there is

Gy (ti8) = & (dygy(t-ay)(ag-s) + L2¥3(t-ay) +
& hzPolag=s) + dogr) < o.

The same result is obtained for Gyt(tsS) when sé€ (ay,az)

and a; £ t £ s because it has formally the same form.

For s&(ay,a5) and s< t & ag there is
2 - ya
Glt(t's) =3 (Az(s-al) + &3)(22(33 t) + ?3) £ o.

similarly, G, (t,s) has the same form when s € (a,,a;) and

s £t & agz from which we can see that it is non-positive.

A function ¢ C4(I) will be said to be a lower solution
of (1) and (2) if

‘”l g f(tldl&‘)l
dpd ()= d5¢"(ag) & AL L(ay) = Ay o4 (35) + g3d"(ay) € Ay

Similarly /Zé 03(1) will be an upper solution of (1) and
(2) if

ﬂm < f(t'ﬂ!ﬂl)'
Ly ()= dgff'(ag) : A, flay) = Ay goff(ag) + g58"ag) 2 A,
For oA and /{ moreover let

L) & Ao, Feert

Existence theorem

Theorem. Let a function f(t,x,x") have properties:

(i) f is_continuous on IX(RJ.
(ii) f is_non-decreasing in x on ® for t €I, and non-
-increasing in x on () for ter

(iii)  f is_non-decreasing in x~ on ® .
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Then_there exists at_least.one_solution x of (1) and (2)

Act) € x(e) €Ly, ¥rer, «L(r) £ x(r) A0, Frer,
L'(t) £ x7(r) £ Ay, ¥rex

Pr oo f. Define by (3) operator T on Cl(I) as follows:

2 2kl
(5)  Tx(t) = Yoy + ) X G (t,8)F(s,x(s).x"(s))ds
k=1 ak

The function Tx fulfils for every x €C,(I) boundary condi-
tions (2) and Tx GCS(I).
Let « and /@ satisfy (iv). We shall prove that
- < . . 4 .
(6)  L(t) S (TL)(t), (ThY () & p(r), Hrer.

First we prove the second inequality. Considering that /3 is
the upper solution of (1) and (2) we obtain for v = gTﬂ)" f:

- dyv(ay) + dov(ay) 2o

- Pav(ag) - v las) 2 o,
v’ o= (TAYM(t)- ﬂm(t) = f(t:ﬁ(t),ﬂ'(t))-ﬂ"’(t) 2 0 for every
tel.
From these results we get that v(t) <
the second inequality in (6) holds.

0 for any t€I; hence

For functions (T&£ )  and (TA)" from the properties of &£
and /§ , from Lemma and from (ii) and (iii) there follows
(according to (5)) that
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(7) (TL) (1) 2(TR)(t) for any rteq.

_ 7 Il
Further, denote « = & and /% = i% and form sequences

of functions }Lnf and ;ﬂni by means of recurrent formulas
&n+1 = TLn' /%+1 = Tl nZo.

From inequalities (6) and (7) by induction we obtain

na

e

L) & L) & L (t)
Balt) = on S 87t £ g0y,

‘Vté.I.

(8)

N

[[Xa)

From these inequalities it follows

[[\V4
v

£ (t) 2 di(t) 2 . L (t)

(9)
cee = f00)

v

nv

2000 2 R (o,
Yeer,

and for every t € 12 converse inequalities are fulfilled.

Hence, sequences {dni and {A; fare monotone and bounded
from above, casually from below. Further, they are uniformly
bounded and with regard to expression of their terms by (5)
they are even equipollently continous on I, from which it
follows that they are uniformly convergent on I. Because
xn(az) = ﬂn(az) = A2 for every n, there exist functions
X,y € C, (1) such that

{4 ()] =3 x(x), {400 =3 (1),
(10) on I,
[l =3 <o, i) =3 y(n

From (8) and (9) we have
x(t) 2 y(t), Fte I, x(t) & y(ry, 'J/telz,

x7(t) £ y(r), ¥eer.
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From uniform convergence given by (10) and on the basis of the
properties of s k = 1,2 an f, using (5) we get
lT[n(t)i 2 Tx(t), {T/in(t)} — Ty(t) on I,
from which
X = TX, y = Ty.

Thus, functions x and y are solutions of (1) and (2) whereby
for x (4) holds and y has the same property.

Remark 1. Let z(t) be an arbitrary solution of (1) and (2)
for which

/1 § z écl, Vt:e Il' & é z i
Lz, Frer

,brer,,

Then from equality z = Tz for z” = (Tz)  we obtain

d; = (T€)" % 2" £ (Tp)° =ﬂL ¥rer.

By successive repeating this process we get

IEA

. s & -
Xn =z = ﬂn , for every t €I and every n

hence according to (10) it holds

nn

y z £ X, ¥re I, x %z £ Y #télz,

.

- S0ty ¥rer.

z

N

X
If the case x(t) = y(t) for every t€I occurs, then there

exists the unique solution of (1) and (2) for which (4) holds.

Remark 2., Similar existence results are proved in [7]
where the method of modification od differential equation is
used.
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SUHRN

Metoda postupnych aproximécii pre istu
nelinedrnu okrajovu ulohu 3-ho radu

J éan Rusnak

V préci je dokazana existenéna veta pre okrajovu ulohu

x7TT = f(txxT), AoxT(ag) - L3x7T(ay) = Ay, x(a,) = Ay,

yzx'(a3) + ysx"(a3)_£ Ag. Pouzita je metdda postupnych aproxi-

macii, ktoré su utvorené pomocou dolnych a hornych rieSeni, mo-

notonneho operatora s pou21t1m Greenovych funk011 a 1ch znamie-

nok
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PE3OME

MeToxn mocJaenoBaTeJbHHX npubianxeHult nns onHo# HeauHeliHOM!

KpaeBoiji sajauM TPEeThEro Nopajika

in PycHak

B aToii crarne NokasaHa TeopeMa CymMeCTBOBEHMSA NLJS Kpae-
Boft samawm mhma: x''' = f(t,x,x7), dyx"(ay)- dzx"(ay) = Ay,
x(a2)=A2, yzx‘(a3)+ ggx (33)=A3.Mcn0ﬂb5058H MeToJ, mocJeloBaTelb~
HHX npubJauxeHuit o(POpPMIEHHHX IIpM NOMOUM HUKHMX M BEpXHUX peme-

Huit, MOHOTOHHOIO ollepaTropa ¢ npuMeHeHumeM QyHkuni -I'puHa M nx
3HAKOB,
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