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Introduction

The theory of transformations of two linear second order
differential equations of Jacobian form

y" = q(t)y ., _ - (9)
Y* = Q(T)Y , (Q)

with continuous coefficients q,Q has been expounded by 0.B o =
ravka in /1/.

If j, J are open intervals and te j, T€J, then by a trans-
formation of the differential equation (Q) into the differen-
tial equation (q) we mean the ordered pair [f.h] of functions
f(t), h(t) defined in an open interval i, i< j, and having
such properties that h(i) = I, IcJ, f€ c(a)(i). he C(3)(i).
f(t) h°(t) $ O for every tc i, and that for every solution
Y of (Q) the function

- 77 =



y(t) = £(t) Y[n(t)] (1)
is a solution of (q) in i.

The transformation problem for general equations of the
n-th order has been studied by F.N e u m a n in /2/.

In this paper we shall be concerned with the transforma-
tion problem for linear homogeneous differential equations of
the second order in a general and Sturm forms, Let us recall
that by a solution of a linear second order differential
equation of a general form

y" + a(t)y + b(t)y = 0, (ab)

where a,be C(O)(j), we mean every function y, ye& C(z)(j) satis-
fying the equation (ab) identically. By a solution of a linear
second order differential equation of Sturm form

(p(t)y")"+ q(t)y = 0, (pa)

where p,qe C(O)(J), p(t) # 0 in j, we mean every function vy,
yeC l)(j), py’e C(l)(j). satisfying the equation (pq) identi=-
cally.

Consider now the following general linear differential
equations of the second order

y" + a(t)y’+ b(t)y = 0, (ab)
Y" + A(T)Y + B(T)Y = O, (AB)

where a,be C(O)(j), A,Be:C(o)(J), and the linear differential
equations of the second order of Sturm form

(p(t)y")” + q(t)y = 0, ‘ (pq)
(P(T)Y")" + Q(T)Y = 0, (PQ)
where p.qec c{©)(3), p(t) # 0 in 3, P,aec{®(3), P(T) ¥ 0 in 3.

By a direct calculation we derive necessary and sufficient
conditions set on the functions f = f(t), h = h(t) for every
solution Y of (AB) and (PQ) to be transformed by equation (1)
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into the solution y of (ab) and (pq), respectively.

a) Linear differential equation of the second order of
a_general form
Definition 1. By _a_transformetion of the_general linear second
order differential equation (AB) into_the_general linear second
order differential equation (ab) we _mean an_ordered pair [_f,h] \
of functions f(t), h(t), defined in_an open_interval i, 1cC j,
and having such properties_thet h(i) = I, Ic3J, f&C e (1),
hec'®/(1), fh” ¥ 0 for te i, and that_for_every solution Y of
(AB) the function y defined by (1) in_i_is a solution of (ab).

e e e w - oo wn e

The function f will be called_the multiplier and the
function h the parametrization of the_transformation [f,h].

- S D e wn w SR e wn wm e e

Theorem 1. Let (ab), (AB) be the linear second_order_differen-
_g_i_a_l_e%gat_:!..o_r_\.s__oi a general form, whereby a,beC 0 (1),
A,BecC (J). The differential equation (AB) is_transformed
into (ab) by_the_transformation [f,h] if_and_only if_the_para-

hetrization h satisfies the nonlinear differential eguation

FA(hyh (1) 8L - a(e)) s 2agnyn(n)- BLL _a(e))2 4 (2)
h*(t) 4 h*(t) .

+ & a(r)(a(h)h (r)- B8 L a(e))-B(h)n () +
2 h(t)

2n i, ang or, f is_given by the formula

1 1 .
- d A(h)h"(t)d
F(t) = s @ E(B(t)te!{(_) (t)t,tz-:i. (3)
Vih® ()l

where k # O is_a multiplicativ, onstant

o
o @ wm - e e -
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Proof. Let the differential equation (AB) be transformed
into (ab) by means of [f,h]. We seek conditions which the
functions f,h must fulfil for the function y(t) = f(t)Y[h(tﬂ
to be a solution of (ab) for every solution Y of (AB)., Since
f.he:c(z)(i), we can by differentiating twice the equation

y(t) = £(t)¥[h(t)]
obtain :
y () = F()° ()Y [n(e)] + £°Ce)v[n(e)] (4)

yo(t) = f(t)h'z(t)Y"[h(t)]+[2f'(t)h'(t) +

+ f(t)h"(t)] Yh(t)] + f'(t)Y[h(t)]. (8)
Inserting now y, y°, y" into (ab), we get the identity in i
f(t)h"3(t)"[h(1)] + 7 ()7 (x) + F(IR"(E) +
+ a(t)f(t)h"(e)] YT(e)] +
+ [f-(:) +a(t)f(t) +
+ b(t)f(t)] ¥ [n(t)] =0,

which is true for every solution Y of (AB)., Comparing this
with equation (AB), then with respect to the assumption

f(t)h°(t) 0 for tei, h(i)c3a,

we‘obtain
2f°(t) h(t alt) . alh , ., 6
Foh (0 T&&; TR [reed] o ees ®
fo(t) a(t)f’ét) b(t) . slh ,ted . 7
£(t)h"%(t) " f(t)h"2(t) e (t) [ (] . ¢ )
We can very simply deduce from (6) that
£48) . L [achyho(e) - DoL8) .
-4 [Atmn° () ey ] (®)
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Since f€ C(z)(i), then %— € C(l). which enables us to write

A(h)h*(t) - -E-(U-} - a(tyecPyy . (9)
t

£=  [£°\° . /§°\2
Since e =(-f-) +(-f-) . we obtain from (7) that

. . . 2 .
(iLi&l) .,(iliil) = B(h)h"2(t) - a(t) &L _ pey ,
f(t) f(t) f(t) (10)

which on eliminating the expression %— by means of (8),
reduces to

l(A(h)h'(t) S W a(t))' . .’:(A(h)h'(t) - R
2 h*(t) 4 h*(t)

- a(t))z + %e(t)(A(h)h'(t) - ﬁ;ff% - a(t)) -

- B(h)h*2(t) + b(t) = 0

Thus the parametrization h fulfils the differential equation
(2). On multiplying (6) by the function h’ (¥ 0) we get

2S00, B | ae) - A(h)h(2) = O (11)
f(t) h™(t)

which after integration yields
1n £2(t) + 1n|h"(t)] + {.(t)d: - (A(h)h'(t)dt = ln|c|,
c g0, a constant,

whence

1 1 .
£(t) = K o = (a(t)dt . !(A(h)h (t)dt
[h™ ()l

where k = & Vlcl . C § O, Hence the multiplier f is given by
formula (3).
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Suppose conversely that assumptions (2) and (3) on func-
tions f¢ C(z)(i). he C(z)(i) are satisfied. Then we have to
prove that the transformation [f,h] transforms (AB) into (ab).

Let Y be a solution of the differential equation (AB). We

will show that the function y expressed by equation (1):
y(t) = f(t)Y[h(t)] is a solution of the differentiel equation
(ab). with respect to (1), (4) and (5) we obtain

f(t)Y(h) = y(t)

FEIN ()Y (h) = y7 (1) = S8 y(a)
f(t)
F(1)h2(t)¥"(h) = y*(t) = ——dee (2f"(t)h"(t) +
F(t)h"(t)

+ £(t)h"(t)) . (y (t) -—:—E—f-;—l y(t)) -

-2 vy .
f(t)
Inserting h(t) for the independent variable T in (AB), we ob~
tain with respect to the foregoing equations (10) and (11)
following from (2) and (3), successively

. 1
0 = Y*(h) + A(h)Y"(h B(h)Y(h) = .
(h) + A(h)Y“(h) + B(h)Y( )m ;?:7;72?:;
l L4 L4 rl
. - = e S—— ( 2f h f(t)h" -
[y=ce) et (2 (O () HOR () (v ()
- --‘--lf' L] y(t)) - I.:.LQ. y(t)] +
f(t) f(t)
1 . f7(t) 1
A( R )emmmnm—— t)- s B(h -
+ A( )f(t)h,(t) (y (t) Tt) y(t)) + prvs (h)y(t)
1 1 L4 >
= "(t)= (wmemmemmmm(2f (t)h (t f(t)h"
oI U e n )«
+ A(h)h"(t))y” (1) +(Z42) L (267 (t)h"(r) +

f(t) f(t)h"(t)
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+ f(t)h"(r) - {iﬁl - a(h) L "; 8+ B(h)h"3(t))y(t)] =

f(t
1 " . .
m [y (t) a(t)y (t) + b(t)y(t)} B

from which we see that y satisfies the differontial equation
(ab).

Remark 1. In asssuming that ac¢ C(l)(i). Aé?c(l)(I), I = h(i),
we obtain with respect to (9) that hec(3) (i), and the para-
metrization h with respect to (2) satisfies at i the nonlinear
differential equation of the third order

2 .
-{h,e] (é_iﬂl + ﬂ;éﬂl - B(h)) h"%(t) =
2 .
= aft) L a8 by, (12)
4 2

h* w2
where the symbol {h'tl = ---LJ- - %ﬁ-:ii-(:-)l and denotes the

h (t)
Schwarzian derivative of the function h,

writing -q and -Q instead of b and B, respectively, then the
assumptions of Remark 1 are fulfilled and the equations (ab)
and (AB) go over into linear second order differential equa-
tions of the Jacobian form

y" = q(t)y , £a)
Yr =Ty, (@
where qe C(o)(J) Qe:C(O)(J), whose transformations were stu=-
died under the assumption that fe€ C(a), he 0(3) by O.Borévka
in /1/.

For this special case we get the following statements on
functions f and h as a Corollary of Theorem 1l:

Setting in (ab) end (AB) a = O in j and A = O in J and
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Let (q)., (Q) be linear second order differential equations
of the Jacobian form, whereby qéc(o)(J), Qé c(o)(a). The dif=-
ferential equation (Q) is transformed into the differential
equation (q) by the transformation [f,h] by Definition 1 exactly
if heC 3)(:i.) and the parametrization h satisfies the nonlinear
differential equation of the third order

- {h.e] + e B(e) = a(r)
and the multiplier f is given by the formula

F(t) = e kg0 .

el

b) Linear second order differential equstions of Sturm form

Definition 2. By_a_transformation of the_Sturm linear second
order differential equation (PQ) into_the Sturm_linear second

e e e wn e wm e

order differential equation (pq) we_mean an_ordered_pair [f.h]

of_functions f(t), h(t), defined in_an open_interval i, iCj,

and having such perties that h(i) = I, IcJ, f¢ C(l)(i),

h€C(1)(i), f(t)h'(t) P OLOI. ted, %J;QC(l)(i)o g.n_g.
t t

for svery solution Y of_ the differential equation (PQ) the
function y defined by egquation (1) in interval i is_a solu-

Jupction y
h

ion_of the differential equation (pq).

he function f will be called_the multiplier and the

unction h the parametrization of the_transformation f,h}.

Theorem 2. Let (pq), (PQ) be_linear second order differentia

- e N - e e e

equations of Sturm_form, whereby p,qe C (3), P £ O in j,

P,0eclO)(3), P 4 O in 3. The differentisl equstion (PQ) is_
iransformed into_the differentisl equation (pq)

by_the_transz

formation [f.h] exactly if_the parametrizetion h sarisfies in
i the nonlinear differentisl eguation

N e @ em mn e e e e ew e - e
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1 (,,(t, mm.‘.u.z(wg__. )’)' .
2 P(h) P(t)h"(t) .
‘ ] az‘ ] 2 ‘ l 2
‘4 pm( tPt(lh) u (p(t:h?(t) 3 i

.2
- 21.'5.2.:‘.:.)_& Q(h) + q(t) = O (13)

nd the multiplier f is_given by the formul

f(t) = kY[P(h)/p(t)h°(t)| . tedi , (14

is

here k is_a_nonzero_mul iplicative constant

- - an wm wn e wv wn e w

Proof. Let the differential equation (PQ) be transformed
into the differential equation (pq) by the transformation
[f,h]. Let us seek conditions which the functions f,h must
fulfil for the function y(t) = f(t)Y[h(t)] to be a solution of
(pq) for every solution Y of (PQ). By differentiating the trans-
formation equation

y(t) = f(t)¥[h(e)]
we obtain

y'(t) = f(t)h" ()Y (h) + £7°(r)¥(h) .

Multiplying both sides by P(h)/fz(t)h’(t) and inserting for
Y(h) from the foregoing equation gives after rearrangement

. . P ‘
B(h) ¢ (h) ._.?..ﬂ!"l...y (t) -_.g.hJ.f._SlfJ._y(t) .
f(t) fo(t)h (t) f7(t)h (t)
Performing the differentiation, we find that

- 8P ve(h) + Een(p(h)Y* (h))°= P{h . )'-
£ 4L)ECh) (h) ¢ —(P(mY" () (—ri—)——-—y(r)

£4(t) FE(t)h ()

_(P!h)f"t) \'Y(t) - Pé?);"t! vo(t) .

£2(t)h (t) f2(t)h’(t)
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since (P(h)Y“(h))” = - Q(h)Y(h)h"(t) and inserting for Y,Y’

yields
£7(t) P(h) . P(h)f (t
- (t -—S—L-L-L, y(t) | +
f(t) [f‘?t)h'(t) LR T ]
1 . y(t) P(h . ‘
4 odemm [ = Q(h)h°(t = ( -1r—i~3——— (t)) -
f(t) [- atmnee) f(t)] Zon o

- (BRI Yy ey - BERILSL ()

h)f (t .
F2(t)h"(t) fo(t)h"(t)
or

- P(h) y.(t)y . [_ psh)f‘zgt) - P!h)f"t) ) .

(t)h"(t) f2(t)h () £7(t)h (1)
L h)h (e -
LI (o) = 0 .

This is a linear second order differential equation of Sturm
form for the function y. It must be therefore identical up to
the nonzero multiplicative constant with the linear differen-
tial equation (pq) which is of the same form. Consequently

B o cp(r) (15)

£4(t)h(t)

fP(t)h’(t) f(t)h"(t) f

o2 . .
zrmwi-(%umm)un_g%m.cq(t,, (16)
From (15) we obtain

.....'.';L'.‘.!...... - cf3(t) . ' (17)
p(t)h (t)

Because of fe C(l)(i) it is obvious that also —?Efﬁgz—j-ec(l)(i).
p(t t
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Hence

(2Ll ) 2 2ef(e)E7(2) & (18)

p(t)h’(t)

From (18) and (18) we obtain

() .1 LA L) B FICILMCI N (19)
f(t) 2 f(t)h'(t) P(h)

From (16) on substituting for %— from (19) and for #2 from (17)
we get

.]2.-.((,;(:) BRh () (Bl )y,
P(h) p(t)h"(t)

( p(t)h’(t) 2 ( P(h) _ -2
P(h) p(t)h’(t)

.2
-%ﬁlQ(h) +q(t) =0 .

+ % p(t)

From (17) we get that the multiplier f is determined by (14),

where
* 1

Vel
Suppose conversely that the assumptions (13) and (14) on
functions f and h are satisfied. We have to prove that the
transformation [f,h] transforms the equation (FQ) into (pq).

k =

Let Y be a solution of the differential equation (PQ). We
show that the function y expressed by equation (1) is a solu-
tion of the differential equation (pq). From the transformation
equation (1) and from its derivative follows

Y(} 1
(h) f(t) (t)
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Y7 (h) = e y7(t) - .T.I_‘LL.. y(t) .

f(t)h () F(t)h"(t)
Multiplying both sides by EfE} gives
t .
1 . P(h) . P!h)f’(t)
e P(h)Y (h) = t) - t
f(t) (h)Y"(h) fE(t)h°(t) v {t) f2(t)h’(t) v

whence by differentiating

= 'f';"'g' P(h)Y (h) + e (P(h)Y"(h))" =
f(t)

£2(t)
P(h) . . Pgh)f'(t) .
= t - -
£9(t)h°(t) y e ( £7(t)h"(¢) A
- E&Elil@ﬁl. yo(t) .
f(t)h (t)

On substituting on the left hand side for Y“(h), we obtain

. -2
- f.éﬁ‘ul— y (t) + B0 E () y(t) + .;%;.). (P(h)Y“(h))°=

£3(t)h"(t) #4(t)h"(x)

e (PR e P(R)f( . - Péh)f"t) .
¢ f(t)h“(t) ) ¢ f2(t)h (t) )y f9(t)h () vyt
or ;
e (P(R)Y* () = (g (1)) -
f(t) fo(t)h"(¢)
_ o B(MET(E) - _ P(h)E°3(¢
( S On(6) )" y(t) ?QT%;;:%:% y(t)
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Since

1 . . .
B esmre—— P(h)Y h h h)h =
0 e [(P(h)Y*(h))* + @(h)Y(h)h*(t)]

(gt 22y 7 (EERELS) ey (e -

B £S(t)h (t) f2(t)h"(¢)
2 . .
- E*ﬂli_Tlll y(t) + =2 Q(h) 2B y(t) = (cp(t)y (t))7+
f5(t)h (¢) f(t) f(t)

+ cq(t)y(t) = c [(P(t)y"(£))" + a(t)y(t)] .
i.,e, y is a solution of the differential equation (Pq).
Remark 2., In assuming that the coefficients p,P are of class
c{?), 1.6, pecl® (1), Pecl® (1) and p(t) # 0 in 1, P(T) 4 O

in I, I = h(i), it follows with respect to the assumption given
in Definition 2

EME(R) . ¢ c(1)(4) (20)

£2(t)h°(t)
that he c(®)(1) and fec(@)(y),

Indeed, it holds with respect to (19) and (17) that

PeRIEC(E)_ ep2(h"(8) (. B(h)l_ - |

£2(t)h" (1) 2P(h) p(t)h’(t)
Consequently
p2(2)h (8] ( By oD (qy . (21)
P(h) p(t)h’(t)

If we set Z(t) = ~2h) , then by our assumption zec(l)(n .

P(t)h’(t)
and h*(t) = ~2de | since ~Elccll)(4), then heo(2)(y),
Z(t)p(t) z(t)p(t) ,
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Completely analogous can be deduced from (21) that héic(3)(1),
as well as from (20) that f¢€ 0(2)(1).

With respect to (13) the parametrization h satisfies in i
the nonlinear third order differential equation

LRI [% PPy L Eéfiﬂl - UL Th 2y -

P(h) 4 P%(h) P(h)

1 p(t 1 p°3(t t
-.52.‘..1-.4.22.“- . (22)

p(t) p(t) p(t)
2
1l h™ (t 3 h"(t
where { h,t| = &= -- ——51-1 .
{rel=2 h“(t) 4 h"%(r)
Indeed, setting for simplicity B, X(t), yields from
(17) that p(t)
cf3(t) =~ x(t) ,
h“(t)
whence by differentiating
26F(£)F7(t) = X7(t) ~Fe - x(r) RLEL. |
h™(t) h™%(t)

From the foregoing relations we get
2 E8) LX) _h(g)
f(t) X(t) h*(t)
Substituting for ;— and f2 into (16) gives

RS OO R UL RE (G

X(t) h*(t) X(t) h7(t) X(t)

N

- B8 ) shi(e) B(h) -, ch 3(1)Q(h)
h(t) ~ X“(t) h°(t) x(t)

= cq(t).
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Replacing X(t)p(t) for P(h) gives by rearrangement

- B (X)) _ ho(e) )2 - B8 X°(t) _ he(t) 1)+

4 X(t) h’(t) 2 X(t) h”(t)

« AN pe2hy L og(r
X(t)

and on performing the operations indicated

_pl8) X340 _'2 X (t) hu(t) , he3(e) \
4 ¢ X%(t) X(t) h°(t) h°%(t) )

JRR) X)) b)) o ople) o xex) Xy
" ( ) ( —1;~L-l

Xx(t) h°(t) 2 X(t) X°(t)

_hmge) , heEAe QD) he2(ry =
o R ) e e e

or

ihm () _3 h"!t) Qh)__ h-2 .
2 h'(t) 4 n%%(r) ' P(t)X(t) ()

P R ST M TS R LGS N . W €S I
2 " x(t)  p(t) hT(r) 2 x(r)

L4 L 02
lp(e) X () o LXxX T(t) _ g(t)
2 p(t) x(t) 4 x5(t)  p(t)

where X = LG)] o« Inserting for X into (23) yields
p(t)

- G] -

(23)



- {h,e] = L p2(¢) - L BN pe 1 h*3(t) -
{n.e] P(h)h (6) - 3 S he(e) [.-21—1 (t)

(h)
- h) ho2(, ....(..J. “(t) -
T'r‘v‘)lh e .1:.,‘,..(_1]
19.-.(..).[2..(.!‘.1;, -2.15).] [.'.’...L’l).h(t)-
p(t) *P(h) p(t) P(h)
-.P.:.L‘J.]z R €9 B ' (24)
p(t) p(t)

Equation (24) may be arranged into the form of (22).

Putting in the linear differential equatiors (pq), (PQ)
respectively p & -1 in j, P & =1 in J, then these equations
go over into linear second order differential equations of Ja-
cobian form

y" =aq(t)y . (q)
Y* = Q(T)Y , (Q)

where qec(o)(j), Qec(°)(a) and the differential equation
(22) into the equation

={h.t] + Q(h)h*3(t) = q(t)
and the multiplier f is given by the formule
k
f(t) = » kO,
[ho(t)]

This repeatedly proves the Corollary of Theorem 1.
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SOUHRN

TRANSFORMACE DVOU LINEARNECH HOMOGENNECH DIFERENCIALNICH
ROVNIC 2,RADU OBECNEHO A STURMOVA TVARU

JITKA LAITOCHOVA

Je definovéna transformace [f,h] diferenciélni rovnice
(AB) do diferencialni rovnice (ab) a diferencidlni rovnice (PQ)
do diferencidlni rovnice (pg) pomoci rovnice

y(t) = f(t) Y[h(t)] ,

kde Y zna&i reSeni rovnice (AB), resp. (PQ), y redeni rovnice
(ab), resp. (pq). Jsou nalezeny nutné a postaiujici podminky
pro funkce f,h za nichZ transformace existuje., Dédle se naché-
zeji podminky, za nichZ lze UGvahy o transformacich rovnice obec-
ného a Sturmova tvaru provést pro linedrni diferencidlni rovni=-
ce Jacobiho tvaru,
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PESOME

TP AHCOOPMALIMA IBYX JVHEJHHX IVSSEPEHUMANBHHX YPABHEHME 2-I0
TIOPSIAKA OBUE! Y ITYPMOBOJ $OPMH

PUTKA JANITOXOBA

Onpenexsercs Tpaﬂc@opuauuﬁ[f, ﬂ nudppepeHUBTBHOTO ypaB~
HeHusa (AB) B nuddepeHuuarbHOoe ypaBHeHMe (ab) ¥ auddepeHuManb=
Hoe ypaBHeHue (PQ) B ypaBHeHMe (pq) NpPKU NOMOmMM YpEeBHEHUS

y(6) = £(6) ¥ [aw)] ,
rne Y o6OsHaugeT pemeHue ypeBHeHuS (AB) wmau (PQ), y pemeHnue
ypebHerus (ab ) wau ( pq ). Hallnenn HeoGxonuMHe U AOCTATOUHHE
ycxoBUSL O OTHOmMEeHMO K QyHKumam £, h , NpU KOTOPHX 2TO npeol-
pasoBaHMe cymecTByeT. lJalee onpeneseHH YCAOBMUA NPH KOTOPHX BO3=
MOXHO DaCCYXIEeHMs O NpeoGpasOBaHMAX ypaBHeHuit o6melt wu lrypmo-
Boit fOopMH mepeHecTM Ha JauHeliHne ypaBHeHus dopMu AkoGu.
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RNDr. Jitka Laitochova
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