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1. Introduction

The conditional probability is generally defined thus: Let (X, <7, P) be a probability
space, (Y, #) a measurable space and T : X — Y an arbitrary measurable mapping.
Let us put

V(B =P(ANT 'B), Adesd, Bed

Then v, and PT ™! are measures on 4 where v, is absolutely continuous with respect
to PT~! (denoted by v, < PT~1!). According to the Radon-Nikodym theorem there
exists an integrable function P(4/y) on Y such that

vu(B) = P(4 0 T™H(B) = [ P(4]y) dPT™'(y) (1)

holds for all sets B e #. The function P(4/y) is uniquely determined by (1) almost
everywhere with respect to PT 1. v

The function P(4/y) is called the conditional probability of the event 4 under the
condition of T(x) = y [or the conditional probability of the event 4 with a given value
T(x)]. Cf. [3], page 203.

Let E, be an n-dimensional Euclidean space and %, a o-algebra of the Borel
subsets of E,. In case of X =F,, & =#,, Y=FE,, #=2%,, T:E, - E, being
a measurable function and the probability P having the density function f(x) with
respect to the Lebesgue measure (if the density function with respect to the Lebesgue
measure is involved in the sequel, we will not write it), the function P(4/y) is uniquely
determined almost everywhere with respect to PT ! for the so-called “coordinate-
functions” T(x) = T(x,, ..., x,) = x;, (i = 1,2, ..., n) by the relation

P(Aly) = J h(x/y)dx, — Ae%, : (2
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where

L(ZQ, if xeT ! and g(y) > 0 as well
HCxly) _aw . B
N\, ifx¢ T™'(y)or g(y) =0

is the so-called conditional density function and g(y) the density function of the pro-
bability distribution of T(x). See [2], page 71.

Below we will deduce sufficient conditions for the existence of conditional density
functions under some weakened assumptions laid on the function 7'(x). To the proof
we will use results from the theory of integrals with respect to the Hausdorff measure

2. The basic concepts and theorems

Definition 1. Let X be a separable metric space with a metric g, p a natural number
and a(p) a volume (p-dimensional Lebesgue measure) of the p-dimensional sphere
with diameter one. Under the p-dimensional Hausdorff (outer) measure of the set
E < X we understand

HP(E) = sup {a(p)inf[ ) (diam E)? : E < U E;, diam E; < ¢,i = 1,2, ...]}
£>0 i=1 i=1

with diam E = sup ¢(x, y), and the infimum being taken over all the coverings of the.
x,yeE

set E having the properties mentioned. (Cf. [3], page 58).

It holds

1. Every Borel set in X is HP-measured (see [3], page 58).

2. H" defined in E, is identical with the Lebesgue measure in E, (see [4], theorem
1.17).

3.If H" is defined in E, and k < n (k,n natural), then H"(E,) = 0 (see [4],
theorem 1.18).

The definition of the Hausdorff measure H? can be also extended to p =0 as
follows:
the O-dimensional Hausdorff measure H°(4) equals the number (possibly o) of
elements of A.

In what follows we use the following notations:

H} the m-dimensional Hausdorff measure defined in E,
det M the determinant of the square matrix M
M’ the matrix transposed to M

f:En -)Ek’f: (f11 ’ﬁc)
Df(x) the matrix with the elements

ofi(x)
]

J

» X =(x,,...,x,,)

Jf(x) = Vdet Df(x) (Df(x))'.
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The function Jf(x) is continuous on E, for the functions of class C; (i.e. when fj(x)
have continuous derivatives of the first order in E,). If k = 1, then Jf(x) = | grad f(x)|.
In paper [1], page 426, the following two theorems are formulated more generally.

Lemma 1. Let f: E, —» E, (k < n) be a Lipschitzian mapping of class C,. Then for
an arbitrary H,-measurable set A < E,

o

Af Jf (x) dH(x) = EI H, A 0 f71(y) dHY). 3)

Lemma 2. Let f: E, —» E, (k £ n) be a Lipschitzian mapping of class C, and let
g E, > E, be Hy-integrable. Then

EI g(x) Jf(x) dHy(x) = bj (IJ( )g(X) dH; ™ (x)) dHy(p). )

Remark 1. According to property 2 of the measure H, the above statements (3)
and (4) can be written in the following form

[If(x)dx = [H (A f™(»)dy, (39
4 Ei
Jg(x)Jf(x)dx = [( | g(x)dH;™"(x))dy. @)
En Ex f-1(0»)
Lemma 3. Let T : E, — E, be a Lipschitzian function of class Cy such that for all

x € E, we have | grad T(x) | > 0. Next h : E, — E, be a H-integrable function and let A
be a measure on A, defined by the relation

— 1 et
B = g Terad Ty ] O (), BES,
Then
En Ey T-1(»)

Proof: Let us define a function g(x) by the relation A(x) = g(x) | grad T(x) |. By
appealing to (4') we get

é[ h(x)dx = ,;f g(x) | grad T(x)| dx = Ej (T_j;( )g(x) dH!"'(x)) dy

A is completely o-finite measure on &, and H),~' < 1. According to [3], theorem 2,
page 133, it is possible to introduce the new measure A in the integral on the right side,
which leads to

fh(x)dx = [( | g(x)|grad T(x)|dA(x))dy.
En Ey T-1(y)
The statement is an immediate consequence.
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3. Theorems on the existence of conditional density functions

Theorem 1. Let (E,, #,, P) be a probability space, (E,, B.) a measurable space and
T:E,—> E, a Lipschitzian function of class C, such that | grad T(x)| > O for all
x € E,. Next let f(x) be a density function of the probability P and

g0) = [ )i,

with A being defined in the same way as in Lemma 3.
Then for the conditional probability P(A[y)

1 f(x) dHn—l(x) lf
— —————dH, ) g(y)>0
P(Afy) = < 8 ant-1(y) | 8rad T(x) |

0, if g(y)=
Proof: According to (5) we have for 4 € 4,

P(A) = J f(x)dx = f 2 fdx=[( [ f(x)dix))dy @)

Ei ANT-1(y)

(6

and thus for A€ %#,, Be %,
PANT ' B)= [ fdx=[( [ fx)dix)dy=
ANT-YB) B ANT-Yy)
1
B i(mj_lmf ® Terad 79 |

because (analogous to the proof of Lemma 3) the conditions for introducing a new
measure in the last integral are satisfied. Due to (7) we have for an arbitrary Be &,

PT'B)= [ f()dx=[( | f(x)dA(x))dy = [ g(y)dy.
T-1(B) B T-1(y) B

dH,~ 1(x)) dy ®)

a) Suppose that g(y) > 0. Including the new measure PT ! in the last integral
(conditions satisfied), we obtain

= f(x) n— 1
P4 T H(B) j(mrjx(yngm H, W) FORMRY

wherefrom by definition of the conditional probability the statement (6) follows.
b) If g(y) = [ f(x)di(x) =0, the statement is evident in respecting f(x) = 0
T-1(y)
and

P(AnT '(B) = ,J;(An [ f)dAx)dy

T-y)

Corollary 1. If the assumptions of Theorem 1 are satisfied, the conditional probability
P(A[y) of the event A under the condition of T(x) = y has the condzttonal density
Sunction with respect to the measure Hy ' stated below
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S(x)
< g(y) | grad T(x)| ’
0, if x¢ T"'(y) or g(») =0

which immediately follows from (6).

Remark 2. The functions of the type T(x) = T(x;, ..., x,) = X;, (i = 1,2, ..., n),
mentioned in the introduction, satisfy the conditions of Theorem 1 and the expression
of P(A/y) in (2) represents a special case of (6).

if xe T '(y) and g(y) > 0 as well
p(x/y) =

Theorem 2. Let (E,, B,, P) be a probability space, and (E,, %) be a measurable
space (k < n). Next let T : E, - E, be a Lipschitzian mapping of class C, such that
JT(x) # O everywhere in E,. Let P have a density function f(x) and let

B0) = ] S0

where
MC) = | Tf(-j— dH" %(x),  for every Ce ,.
Then
1 f(x) n—k .
dH, "(x),  if g(») >0
Plafy) = §0an T 7T i gx) = ®

Proof: In analogy with the proof of Lemma 3 we will show that foi any H ,-integr-.
able function 4 : E, —» E; we can write

[h(x)dx=[( [ h(x)di(x))dy.
En Ex T-1(y)
Thus for any 4 € 4,
P(4) = J f(x)dx =Ef xa(x) f(x) dx =Ef( | fx)dA(x))dy (10)

k ANT-1(y)

and consequently for 4 € 4,, B € %, we obtain

P(An T_I(B)) = j f(x) dx = | ( [} f(x)di(x))dy =

Ex ADT-1(B)NT-1(p)

— — f(x) n—k
~1( ) swaeyar= (|5 Samm)a.

The introducing of measure H"* in the last integral is justified since A is completely
o-finite measure and H"* < 1. Following (10) we can write for any B € %,

PT(B) =T-J: f(x)dx = j( J f(x)dA(x))dy =

~1(B)NT-1(y)

= g - )f(X) dzl(x)) dy = lj; g(y)dy.

(11)
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Let us assume now that g(y) > 0. Introducing the new measure PT ' into the last

integral of (11) (conditions satisfied, see [3], page 133), results in

- F1CO MU W T
PANT(B) = | (M )\ 700 S (x))—@.dPT O,

which finally proves our statement due to definition of P(Afy). If g(y) =

= [ f(x)dA(x) = 0, the statement is evident since f(x) = 0 and we know from (11),
T-1(

that P(An T '(B)) =[( [ f(x)dA(x))dy. Similarly to Theorem 1, we obtain
B ANT-'(3)
from Theorem 2

Corollary 2. If the conditions of Theorem 2 are satisfied, the conditional probability
P(A[y) under the condition of T(x) = y has the following conditional density function
(with respect to the measure H"™%)

_ S
_ e IT(x)’
p(x/y) =< 0. if x¢ T"'(y) or g(y) =0.

if xe T~ '(y) along with g(y) > 0

Remark 3. The usually considered vector functions T'(x) (see i.e. [2], page 72)
T(x) = [T\(x), ..., T(x)], with Tj(xy,...,x)) = x;;, G =1, ..., k; 1 £ i; £ n,
i; being an integer) are special cases of the mapping T(x) of Theorem 2 and the usually
presented conditional density function

M, if xe T"'(y) and g(y) > 0 as well
Y= No, if x¢ T7'(y) or g(y) = 0

wherein g(y) represents the marginal density function of the probability distribution
of the mapping T'(x), is a special case of the density function p(x/y) from Corollary 2.
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SOUHRN

POZNAMKA K EXISTENCI PODMINENYCH
HUSTOT

PAVLA KUNDEROVA

V €lanku se fesi problém vypoétu podminéné hustoty pravdépodobnosti nékterého
jevu pi podminujicim zobrazeni T: E, — E; (resp. E, = E,, k < n). Je-li T projekce
do nékteré soufadnice, existuje klasicka formule (2). V&ty 1, 2 uvadgji postadujici
podminky pro existenci podmin&nych hustot za slabsich pfedpokladi o zobrazeni 7-
V dakazech jsou uZity vysledky teorie kfivkového integralu podle Hausdorffovy miry

PE3IOME

3AMEYAHHWE K CYIIECTBOBAHHWIO YCJIIOBHBIX
IMJIOTHOCTEM

ITABJIA KYHIOEPOBA

B paGote peiaercst npoGiieMa BBIYHCICHUS YCIIOBHOW MJIOTHOCTH BEPOSITHOCTH
HekoToporo cobeitust npu ycaosuud I(y) = x, T: E, - E;, (wmu E, - E,, k < n).
Ecmn T nmpoekuus Ha HEKOTOPYIO KOODIMHATY, CyILIECTBYeT KIaccuyeckas GpopMyna
(2). B teopemax 1, 2 gaHbl HOCTATOYHBIE YCIOBHUS AJISl CYLIECTBOBAHHUS YCIOBHBIX
IJIOTHOCTER B Citydae GoJiee CiraGbIX mpeamnoioxkeHuit o m3obpaxenun 7. B moka-
3aTENILCTBAX UCMOJIL3YIOTCS YTBEPXKICHUSI TeOpHs KPHBOJIHMHEHHOIO MHTerpajia mHo
Mepe Xaycaopoda.
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