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1. Introduction

In article [I] has been given a construction of a semicanonical moving frame of
variety for a case n = 3. A special interest of the present article is to follow this
procedure and to show a possibility of its generalization for a case n > 2. The case
n = 1 is trivial. This way, however, cannot be used for the case n = 2 as described
further in text.

Since the fundamental concepts and assumptions which occur here have been
expressed in [1] we shall proceed without repeating them to the own construction
using the notation introduced in [1].

2. Construction of a semicanonical moving frame

We begin with a given differentiable variety @, in A"*? with an anholonomial
subvarieties system S. The application of the system S necessitates the application of
n independent subvarieties y;, which can be thought of as being coordinate. The
system of differential equations determinating them is then

o= =" = =" =0, . (H

where o;,, ..., a; _, o are all permutations of indexes 1, 2, ..., n. These equations

are supposed not to be completely integrable.

Convention: From now on let the indexes i, j, k, ... be running through values
I, ...,n,n + I, n + 2, and the indexes a, f3, y, ... running through values 1, ..., n
and u, v, A running through values n + 1, n + 2.
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Then the derivate formulas of the moving frame are:

dm = (J)i €;, dei : (Ui‘ €, (2)

i i Kk % i
do' = o’ A 0}, dw; = 0} A ], w; =0,

and the forms wg(o # B) are the prominent forms of a moving frame. Identifying
a top of a moving frame M with a point of variety ¢, then the forms o*, w" become
the principal ones and so far at this point the vectors of a moving frame e,, ..., ¢,
belong to the tangent n-plane of variety @, at this point and then

o' = 0. A3)
By exterior differentiation of (3) and using the Cartan’s lemma we come to
oy = Raﬂw R = R}, @)

yielding for variation relative to the secondary parameters

ORzp = Rypmz + Roymy — Rogmy. ®)
Let us look for a focal hyperplane I' of a tangent n-plane of variety @,. Let
Y =M + X,
be an arbitrary point of a tangent n-plane (M, ey, ..., e,). Thus from the condition

inaform Yel.dY el we obtain

dY = X%, + X""'e,, where e, =e,, —1e€,,.
We can rewrite this condition in a form

o n+2 + txﬂwn+1 —0. - (6)
Substituting (4) into (6) we get

R} 20" + xR} 0™ = 0.

This equation must be satisfied for an arbitrary point of the tangent n-plane. Hence
we get for w* a system of n homogeneous equations of a type

(R} + tR; 1) = 0.
For a nontrivial solution of this system it is necessary and sufficient that

det | R} % + R}, ' | =0,

which leads to an equation

(g)Rn+1,....n+1tn + ('ll)Rn+1,...,n+1,n+2tn—1 + .
o+ (n 1)Rn+2 s 2md Ly (Z)Rn+2,...,n+2 =0,
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where
(11 H2 tn)
REwzetn _ PL NO2 N AOT

1
s " = det | RYsR%; ... RiP || ™)
A ANO A...ANQ

The round brackets at superscripts express the symmetrization according to these
indexes.
From (5) we obtain for dR"' "~

—ORMtHn — —2R’“"'""7[: + valz...ﬂnnlvll o+ Rl‘lu-ﬂn—lvn[‘-:n.

On the assumption that

R = (n _ 1)2 Rn+l,...,n+1,n+2,n+2 CRMHLeent2ntLnkl

_ RitLesntl pat2ine2 +0, *)
following specialization may be perforrhed ‘

R*-HY =, RitLoontl _ put2,nt2 +0, v, (8)
A geometric characterization of specialization (8).

From (7) we get for roots ¢, ..., t, following relations

Rn+1,A..,n+1,n+2

tl +‘tz + ...+ ’,, = —n*lz;ﬁﬁr =0,

n Rn+1,...,n+1,n+2,n+2
Lty + ity + oo+ 1t = ( >

Rn+ 1,...,n+1

o = GO

Rn+2,..‘,n+2,n+1

i+ L+ = —n =0.

Rn+1,‘..,n;T——
We denote with I, the hyperplane I', = (M, e,, ..., e,, e,). w, is the double ratio
we=DV([,y1, T2y Ty, Tgyy), s=1,...,n—1.

From the given relations between the roots of equation (7) we can find that the
coordinate hyperplanes I',.;, I',+, are chosen so that the corresponding double
ratios hold

Wit oo+ w,o  +1=0, wi'+ .. +w ! +1=0.

Excluding the case where a coordinate hyperplane is focal, then it results from these

*) In case n = 2 there is always R = 0 and the specialization of this type is thus impracticable.
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relations that the hyperplane I'* = (M, e, ..., e,, ,;1 + €,,,) is chosen by spe-
cialization (8) so that

% *k
Wi.Wa.oow, =1,

where
W:F = DV(Fn+1’ Ihio,s r#, Fa)'
Let us come back to specialization (8). Thereby
m, =0, v+pu and it} =attl,
The forms w,, are the principal ones and we may write
o, =R,o", v+ ©)

In a similar way as before specialization (8) and no the assumption that det
| Ryl = R™" % 0 we can set

Riyp=0, p*w : (10)
(10) leads to the annihilation of forms 7, and thus to

o} = Riy0”. (11)
A geometric singificance of specialization (10).

A hyperplane I', be given and let us look for a characteristic element of variety
which represents the envelope of this hyperplane in the motion of the point M along
the variety @,. An arbitrary point of a characteristic element is given by

X =M + x%, + x’e,.
As a point of this envelope it must satisfy the following two equations
X-M,e,;,... ,e,,e)=0,
dX -M,e,...,e,,e) =0
These two equations yield conditions
x* =0, x*wk + x'wl =0, ITERA
After substitution (4) and (9) we obtain
o’ (x*Rly + x"R%) = 0.

This system of equations must be satisfied in an arbitrary motion w* : @*: .....: @" and
we get for x%, x” a system of n linear homogeneous equations

x“Rfﬂ + XVR’:ﬁ =0.
Since det | Ry | # 0 and (10) holds we get x* = 0.
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The characteristic of the system of a hyperplane I', looked for is the line

X =M + x’e, (do not add with respect to v!)

Thus a geometric characterization of vectors e, , ,,, can be determined. Let us
have the line determined by points E,,; =M + e,.; and E,,, = M + e,,. This
line is intersecting the hyperplane I'* in a point E = (0, ..., 0, 1/2, 1/2) determining
the mutual norms of vectors e,,1, €,+5-

Let us come back to the specialization of a moving frame. By exterlor differentiation
of (11) we get for a variation R}, following relations

SR}, — R%mb + RS nj — Rmy, = 0.

Let us seek a focus of a line (Me,) (v is fixed). If

X =M + x’e,
is a focus of a line (Me,), in an arbitrary motion w': w?: ...: ®" then there must hold
dX | e,,
yielding a system of equations
o'(1 + R};x") + 0’R),x + o+ "R =0,
o'R%x’ + o*(1 + szx“) + ... + @"RZx’ =0,
'R} + 0?R},x" + .. + "1 +RX) =
Then we get for the foci
1+ Ryx" Ryx” ... R.x
R%x"1 + RLx" . RZx 0.

R} x" R,x"...1 + R} X"
We come now to an equation
A + AL (X" + L+ A+ AL =0,
where
A, = det | R\RS, ... RS, |5

A} =R}, + R, + ... + R}, = R%,,
A} =1.

Thus for the variations of these coefficients we get
oA, = nAm,,

SA} = Aln). (do not add with respect to v!)
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Now the following specialization may be performed

A"l ANt g (13)
By this we attain to |

Mhii =i =0 (14)

The expression (—1)". 1/A} is a product of coordinates of the foci on a line (Me,).
In our specialization the norm of vectors e, ., €, is chosen such that the product
of coordinates of the foci be equal to 1 on both lines.

At this stage the moving frame is dependent on n-l secondary not prominent
parameters. Now, we shall fix these parameters as well.

Let us have a hyperplane determined by a point E; where E; = M + e, and the
vectors e, , e, ,...,e,  _.e e, d(e, + e,), where f8,v,, ..., y,_,, v, u are mutually
different indexes.

Let us look for the point of intersection of this hyperplane with a line (Me,) in the
motion

a B

o*=w Y1 Yn-3

=w'=..=w =0,

where o is different from all the given indexes.
If X =M + te, is the point of intersection looked for, then t can be evaluated
from the equation

t(Re'yn—Z + Rlﬁﬂ’n-z) + (R:Yn—z + szn—z) = 0.

Now we set
Re?n—z + Rﬁ'Yn—Z = R:}’n—z + RZ)’n~2’

for the following series of values
a B 71 V2 Yn-2
n 1 2 3 n—1
n—1 n 2 n—2
n—2 n—1 n I n—3
3 4 5 6 ... 2
2 3 4 S n 1

Then the point of intersection is
X=M-—e, a=23,..,n

By specialization (15) it may be shown that the forms #}, ..., n" may be expressed
as a linear combination of forms 7z, @ # B having coefficients R}z. Our specialization
is thus completed. ’
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The semicanonical moving frame of variety @, in A"*?2 is given by the following
system of differential equations

dm = w"e,, de; = wle;,
" =0, wl = R;‘ﬁwﬁ, ol = RL,o%

where
R:ﬂ _ R;v RM#-1Y — (), RHLeon+ 1 Rn+2,.‘.,n+2,
R, =0, RyR;, — Ry,Ri; =0 for vpu, £y
Al AT — |

and
RS, _+RL =R ,+R.,

for series values in (15).
The solution of this system is dependent on n?> — n + 2 function of n arguments.

REFERENCES:

[1] Markova Libuse: Reporaz systému anholonomnich subvariet trojrozmérné variety v pétiroz-
mérném ekviafinnim prostoru. Matematicky ¢asopis 22 (1972), No. 1.

[2] Heaes E. T., Tyuunun A. A.: O penepasxe MOBEPXHOCTH P, B Pr+2 (n = 2), U3BeCcTHA BBICIIMX
y4eOHbIX 3aBeneHuii, Mat. Ne 9 64, 1967.

[3] Ilepbakos P. H.: Kypc abduHo# u npoexTiBHOM muddeperunanboii reomerpun, Tomck 1960.

[4] KolaF I: Uziti Cartanovych metod ke studiu obecné sité kfivek na plose v trojrozmérném pro-
jektivnim prostoru. Rozpravy CSAYV, 77, 1967.

[5] Svoboda K., Havel V., Koldr I.: La métode du repérage des systémes de sous-variétés, Comm.
Math. Univ. Carolinae 5 (1964) str. 183—201.

SOUHRN

REPERAZ SYSTEMU ANHOLONOMNICH
SUBVARIET N-ROZMERNE VARIETY .
V N+42-ROZMERNEM EKVIAFINNIM PROSTORU

LIBUSE MARKOVA

V ¢lanku se uvadi konstrukce polokanonického reperu soustavy subvariet dané
variety @, v ekviafinnim prostoru A"*2, Konstrukce se provadi Cartanovou metodou.
Geometricky je reper charakterizovan takto. Vektory ey, ..., e, patfi do zaméfeni
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teCné n-roviny v bodé M variety @,. Soufadné nadroviny I', = (M, ey, ..., e,,€,),
u=mn+1,n 4+ 2 jsou zvoleny tak, aby byly splnény rovnice

Wit ot w,_ +1=0, wil4+ . +wl+1=0,
kde w, je dvojpomér nadrovin I',,(, I',45, I'y, 'y, v daném pofadi a I',, ¢ =
= 1, ..., n je fokalni nadrovina. Vektor e, , resp. e, , uruje smér charakteristiky
obalky nadroviny I',,, , resp. I',, , pfi libovolném pohybu po varieté.

PE3IOME

O PEIIEPARE CUCTEM HET'OJIOHOMH bl X
[MOAMHOTI'OOBPA3UN n-MEPHON TTOBEPXHOCTH
B n+2-MEPHOM 9RBUAODOUHHOM ITPOCTPAHCTBE

JIUBYIIE MAPKOBA

B crarbe mpUBOAMTCA KOHCTPYKLMS IOJLyKAHOHHYECKOTO IIerepa CHCTEMH IOA-
MHoroo6pasuii aHHOro mMHoroo6pasus @, B sksuadduHHOM mpocTpancTse A"* 2,
Koucrpyknus moctpoena Metomom Kaprana. I'eoMeTpHYeckH 3TOT perep Xapak-
TepHU3yeTCs CIEAYIOIUM cIoco60M. BekTOpE! e, ..., e, HaNpaBJIeHbI IO KacaTeIbHOU
n — IUIOCKOCTH B AaHHOM Touke M MHOroob6pasus @,. KoopauHaTHbIe FHNEpILIOC-
xoctu I', = (M, ey, ..., e,, €,), n = n + 1, n 4 2 BEIOpanbI TakuM 06pazoM, 4TOOBI
MMeJIM MECTO ypaBHEHHS -

-1 -1
Wi+ .. +w,_+1=0, w4+ ..+ w,y +1=0,
rae wy, — IOBOWHOE OTHOILICHHE rUnepriiockocted Iy, L2, Iy, I'y1q B NAHHOM
mopsaake U I, o = 1, ..., n sBisercs (okajbpbHOM THIEPIUIOCKOCTBIO. BekTOphI
€415 €442 OTIPENIEIISIIOT HANPABJICHHE XapaKTEPUCTUK OrMOaroUX TUIMEPIIOCKOCTEH

Tyi1s T2 IpE 11060M IBUKEHUM IO MHOTOOGpA3HHU.

54



		webmaster@dml.cz
	2012-05-03T17:41:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




