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Positive solutions for systems of generalized

three-point nonlinear boundary value problems

J. Henderson, S.K. Ntouyas, I.K. Purnaras

Abstract. Values of λ are determined for which there exist positive solutions of the
system of three-point boundary value problems, u′′+λa(t)f(v) = 0, v′′+λb(t)g(u) = 0,
for 0 < t < 1, and satisfying, u(0) = βu(η), u(1) = αu(η), v(0) = βv(η), v(1) = αv(η).
A Guo-Krasnosel’skii fixed point theorem is applied.

Keywords: generalized three-point boundary value problem, system of differential equa-
tions, eigenvalue problem

Classification: 34B18, 34A34

1. Introduction

We are concerned with determining values of λ (eigenvalues) for which there
exist positive solutions for the system of three-point boundary value problems,

(1)

{
u′′(t) + λa(t)f(v(t)) = 0, 0 < t < 1,

v′′(t) + λb(t)g(u(t)) = 0, 0 < t < 1,

(2)

{
u(0) = βu(η), u(1) = αu(η),

v(0) = βv(η), v(1) = αv(η),

where 0 < η < 1, 0 < α < 1/η, 0 < β < 1−αη
1−η and

(A) f, g ∈ C([0,∞), [0,∞)),
(B) a, b ∈ C([0, 1], [0,∞)), and each does not vanish identically on any subin-
terval,

(C) all of

f0 := lim
x→0+

f(x)

x
, g0 := lim

x→0+

g(x)

x
,

f∞ := lim
x→∞

f(x)

x
and g∞ := lim

x→∞

g(x)

x

exist as positive real numbers.
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For several years now, there has been a great deal of activity in studying positive
solutions of boundary value problems for ordinary differential equations. Interest
in such solutions is high from both a theoretical sense [3], [5], [8], [11], [18] and
as applications for which only positive solutions are meaningful [1], [4], [12], [13].
These considerations are caste primarily for scalar problems, but good attention
has been given to boundary value problems for systems of differential equations [9],
[10], [15], [17], [19]. The existence of positive solutions for three-point boundary
value problems has been studied extensively in recent years. For some appropriate
references we refer the reader to [15], [16]. Recently in [14], the existence of
positive solutions was studied for the following generalized second order three-
point boundary value problem

y′′(t) + a(t)f(y(t)) = 0, 0 < t < T,(3)

y(0) = βy(η), y(T ) = αy(η).(4)

When β = 0, the conditions (4) reduce to the usual three-point boundary condi-
tions

(5) y(0) = 0, y(T ) = αy(η).

Recently Benchohra et al. [2] and Henderson and Ntouyas [6] studied the existence
of positive solutions for systems of nonlinear eigenvalue problems. Also Henderson
and Ntouyas [7] studied the existence of positive solutions for systems of nonlinear
eigenvalue problems for three-point boundary conditions of the form (5) with
T = 1. Here we extend these results to eigenvalue problems for the systems of
generalized three-point boundary value problems (1), (2). The main tool in this
paper is an application of the Guo-Krasnosel’skii fixed point theorem for operators
leaving a Banach space cone invariant [5]. A Green’s function plays a fundamental
role in defining an appropriate operator on a suitable cone.

2. Some preliminaries

In this section, we state some preliminary lemmas and the well-known Guo-
Krasnosel’skii fixed point theorem.

Lemma 2.1 ([14]). Let β 6= 1−αη
1−η ; then for any y ∈ C[0, 1], the boundary value

problem

u′′(t) + y(t) = 0, 0 < t < 1(6)

u(0) = βu(η), u(1) = αu(η),(7)

has the unique solution

u(t) =

∫ 1

0
k(t, s)y(s) ds



Positive solutions for generalized three-point BVPs 81

where k(t, s) : [0, 1]× [0, 1]→ R
+ is defined by

(8) k(t, s) =





[(1−β)t+βη](1−s)
1−αη−β(1−η)

+
[(β−α)t−β](η−s)
1−αη−β(1−η)

− (t − s), 0 ≤ s ≤ t ≤ 1 and s ≤ η,

[(1−β)t+βη](1−s)
1−αη−β(1−η)

+
[(β−α)t−β](η−s)
1−αη−β(1−η)

, 0 ≤ t ≤ s ≤ η,

[(1−β)t+βη](1−s)
1−αη−β(1−η)

, 0 ≤ t ≤ s ≤ 1 and s ≥ η,

[(1−β)t+βη](1−s)
1−αη−β(1−η)

− (t − s), η ≤ s ≤ t ≤ 1.

Notice that by Lemma 2.1 it follows that

(9)

u(t) =
(1− β)t+ βη

1− αη − β(1 − η)

∫ 1

0
(1− s)y(s) ds

+
(β − α)t − β

1− αη − β(1 − η)

∫ η

0
(η − s)y(s) ds −

∫ t

0
(t − s)y(s) ds.

If y ≥ 0 and 0 < β < 1−αη
1−η , from (9) we have that

(10) u(t) ≤
(1− β)t+ βη

1− αη − β(1 − η)

∫ 1

0
(1− s)y(s) ds,

and

(11) u(η) ≥
η

1− αη − β(1 − η)

∫ 1

η
(1− s)y(s) ds.

Lemma 2.2 ([14]). Let 0 < α < 1/η, 0 < β < 1−αη
1−η and assume that (A) and

(B) hold. Then, the unique solution of (1)–(2) satisfies

inf
t∈[0,1]

u(t) ≥ γ‖u‖,

where γ = min
{
αη,

α(1−η)
1−αη , βη, β(1 − η)

}
.

We note that a pair (u(t), v(t)) is a solution of the eigenvalue problem (1), (2)
if, and only if,

u(t) = λ

∫ 1

0
k(t, s)a(s)f

(
λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr

)
ds, 0 ≤ t ≤ 1,

and

v(t) = λ

∫ 1

0
k(t, s)b(s)g(u(s)) ds, 0 ≤ t ≤ 1.
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Values of λ for which there are positive solutions (positive with respect to a cone)
of (1), (2) will be determined via applications of the following fixed point theorem,
which is now commonly called the Guo-Krasnosel’skii fixed point theorem.

Theorem 1. Let B be a Banach space, and let P ⊂ B be a cone in B. Assume
that Ω1 and Ω2 are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2 \ Ω1)→ P

be a completely continuous operator such that, either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

3. Positive solutions in a cone

In this section, we apply Theorem 1 to obtain positive solution pairs of (1),
(2). For our construction, let B = C[0, 1] be equipped with the usual supremum
norm, ‖ · ‖, and define a cone P ⊂ B by

P =

{
x ∈ B | x(t) ≥ 0 on [0, 1], and min

t∈[η, 1]
x(t) ≥ γ‖x‖

}
.

For our first result, we define the positive numbers L1 and L2 by

L1 := max

{[
γη

1− αη − β(1− η)

∫ 1

η
(1− r)a(r)f∞ dr

]−1
,

[
γη

1− αη − β(1− η)

∫ 1

η
(1− r)b(r)g∞ dr

]−1}
,

and

L2 := min

{[
1− β + βη

1− αη − β(1 − η)

∫ 1

0
(1− r)a(r)f0 dr

]−1
,

[
1− β + βη

1− αη − β(1 − η)

∫ 1

0
(1− r)b(r)g0 dr

]−1}
.

Theorem 2. Assume that conditions (A), (B) and (C) hold. Then, for each λ
satisfying

(12) L1 < λ < L2,

there exists a pair (u, v) satisfying (1), (2) such that u(x) > 0 and v(x) > 0 on
(0, 1).
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Proof: Let λ be as in (12), and let ǫ > 0 be chosen such that

max

{[
γη

1− αη − β(1− η)

∫ 1

η
(1− r)a(r)(f∞ − ǫ) dr

]−1
,

[
γη

1− αη − β(1− η)

∫ 1

η
(1− r)b(r)(g∞ − ǫ) dr

]−1}
≤ λ

and

λ ≤ min

{[
1− β + βη

1− αη − β(1− η)

∫ 1

0
(1− r)a(r)(f0 + ǫ) dr

]−1
,

[
1− β + βη

1− αη − β(1− η)

∫ 1

0
(1− r)b(r)(g0 + ǫ) dr

]−1}
.

Define an integral operator T : P → B by

(13) Tu(t) := λ

∫ 1

0
k(t, s)a(s)f

(
λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr

)
ds, u ∈ P .

We seek suitable fixed points of T in the cone P . By Lemma 2.2, TP ⊂ P . In
addition, standard arguments show that T is completely continuous. Now, from
the definitions of f0 and g0, there exists an H1 > 0 such that

f(x) ≤ (f0 + ǫ)x and g(x) ≤ (g0 + ǫ)x, 0 < x ≤ H1.

Let u ∈ P with ‖u‖ = H1. First, from (10) and the choice of ǫ, we have

λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr ≤ λ

(1− β)t+ βη

1− αη − β(1 − η)

∫ 1

0
(1− r)b(r)g(u(r)) dr

≤ λ
(1− β)t+ βη

1− αη − β(1 − η)

∫ 1

0
(1− r)b(r)(g0 + ǫ)u(r) dr

≤ λ
1− β + βη

1− αη − β(1 − η)

∫ 1

0
(1− r)b(r) dr(g0 + ǫ)‖u‖

≤ ‖u‖

= H1.
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As a consequence, in view of (10), and the choice of ǫ, we obtain

Tu(t) = λ

∫ 1

0
k(t, s)a(s)f

(
λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr

)
ds

≤ λ
(1− β)t+ βη

1 − αη − β(1− η)

∫ 1

0
(1− s)a(s)f

(
λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr

)
ds

≤ λ
(1− β)t+ βη

1 − αη − β(1− η)

∫ 1

0
(1− s)a(s)(f0 + ǫ)λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr ds

≤ λ
1− β + βη

1 − αη − β(1− η)

∫ 1

0
(1− s)a(s)(f0 + ǫ)H1 ds

≤ H1

= ‖u‖.

So, ‖Tu‖ ≤ ‖u‖ for every u ∈ P with ‖u‖ = H1. Hence if we set

Ω1 = {x ∈ B | ‖x‖ < H1},

then

(14) ‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω1.

Next, by the definitions of f∞ and g∞, there exists an H2 > 0 such that

f(x) ≥ (f∞ − ǫ)x and g(x) ≥ (g∞ − ǫ)x, x ≥ H2.

Let

H2 = max

{
2H1,

H2
γ

}
.

Then, for u ∈ P and ‖u‖ = H2,

min
t∈[η,1]

u(t) ≥ γ‖u‖ ≥ H2.

Consequently, from (11) and the choice of ǫ, we find

λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr ≥ λ

η

1 − αη − β(1− η)

∫ 1

η
(1− r)b(r)g(u(r)) dr

≥ λ
η

1 − αη − β(1− η)

∫ 1

η
(1− r)b(r)g(u(r)) dr

≥ λ
η

1 − αη − β(1− η)

∫ 1

η
(1− r)b(r)(g∞ − ǫ)u(r) dr

≥ λ
η

1 − αη − β(1− η)

∫ 1

η
(1− r)b(r)(g∞ − ǫ) drγ‖u‖

≥ ‖u‖

= H2.
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And so, we have from (11) and the choice of ǫ,

Tu(η) ≥ λ
η

1− αη − β(1 − η)

∫ 1

η
(1− s)a(s)f

(
λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr

)
ds

≥ λ
η

1− αη − β(1 − η)

∫ 1

η
(1− s)a(s)(f∞ − ǫ)λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr ds

≥ λ
η

1− αη − β(1 − η)

∫ 1

η
(1− s)a(s)(f∞ − ǫ)H2 ds

≥ λ
γη

1− αη − β(1 − η)

∫ 1

η
(1− s)a(s)(f∞ − ǫ)H2 ds

≥ H2

= ‖u‖.

Hence, ‖Tu‖ ≥ ‖u‖. So, if we set

Ω2 = {x ∈ B | ‖x‖ < H2},

then

(15) ‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω2.

In view of (14) and (15), applying Theorem 1 we obtain that T has a fixed point
u ∈ P ∩ (Ω2 \ Ω1). As such, and with v defined by

v(t) = λ

∫ 1

0
k(t, s)b(s)g(u(s)) ds,

the pair (u, v) is a desired solution of (1), (2) for the given λ. The proof is
complete. �

Prior to our next result, we define positive numbers L3 and L4 by

L3 := max

{[
γη

1− αη − β(1 − η)

∫ 1

η
(1− r)a(r)f0 dr

]−1
,

[
γη

1− αη − β(1 − η)

∫ 1

η
(1− r)b(r)g0 dr

]−1}
,

and

L4 := min

{[
1− β + βη

1− αη − β(1− η)

∫ 1

0
(1− r)a(r)f∞ dr

]−1
,

[
1− β + βη

1− αη − β(1− η)

∫ 1

0
(1− r)b(r)g∞ dr

]−1}
.
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Theorem 3. Assume that conditions (A)–(C) hold. Then, for each λ satisfying

(16) L3 < λ < L4,

there exists a pair (u, v) satisfying (1), (2) such that u(x) > 0 and v(x) > 0 on
(0, 1).

Proof: Let λ be as in (16) and ǫ > 0 be chosen such that

max

{[
γη

1− αη − β(1− η)

∫ 1

η
(1− r)a(r)(f0 − ǫ) dr

]−1
,

[
γη

1− αη − β(1 − η)

∫ 1

η
(1− r)b(r)(g0 − ǫ) dr

]−1}
≤ λ

and

λ ≤ min

{[
1− β + βη

1− αη − β(1 − η)

∫ 1

0
(1− r)a(r)(f∞ + ǫ) dr

]−1
,

[
1− β + βη

1− αη − β(1− η)

∫ 1

0
(1− r)b(r)(g∞ + ǫ) dr

]−1}
.

Let T be the cone preserving, completely continuous operator defined by (13). By
the definitions of f0 and g0, there exists an H3 > 0 such that

f(x) ≥ (f0 − ǫ)x and g(x) ≥ (g0 − ǫ)x, 0 < x ≤ H3.

Also, from the definition of g0 it follows that g(0) = 0 and so there exists 0 <
H3 < H3 such that

λg(x) ≤
H3

1−β+βη
1−αη−β(1−η)

∫ 1
0 (1− r)b(r) dr

, 0 ≤ x ≤ H3.

Let u ∈ P with ‖u‖ = H3. Then

λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr ≤ λ

(1− β)t+ βη

1− αη − β(1 − η)

∫ 1

0
(1− r)b(r)g(u(r)) dr

≤ λ
1− β + βη

1− αη − β(1 − η)

∫ 1

0
(1− r)b(r)g(u(r)) dr

≤

1−β+βη
1−αη−β(1−η)

∫ 1
0 (1 − r)b(r)H3 dr

1−β+βη
1−αη−β(1−η)

∫ 1
0 (1− s)b(s) ds

≤ H3.
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Then, by (11)

Tu(η) ≥ λ
η

1 − αη − β(1− η)

∫ 1

η
(1− s)a(s)×

× f

(
λ

η

1− αη − β(1 − η)

∫ 1

η
(1− r)b(r)g(u(r)) dr

)
ds

≥ λ
η

1 − αη − β(1− η)

∫ 1

η
(1− s)a(s)×

× (f0 − ǫ)λ
η

1− αη − β(1 − η)

∫ 1

η
(1− r)b(r)g(u(r)) dr ds

≥ λ
η

1 − αη − β(1− η)

∫ 1

η
(1− s)a(s)×

× (f0 − ǫ)λ
γη

1− αη − β(1 − η)

∫ 1

η
(1− r)b(r)(g0 − ǫ)‖u‖ dr ds

≥ λ
η

1 − αη − β(1− η)

∫ 1

η
(1− s)a(s)(f0 − ǫ)‖u‖ ds

≥ λ
γη

1 − αη − β(1− η)

∫ 1

η
(1− s)a(s)(f0 − ǫ)‖u‖ ds

≥ ‖u‖.

So, ‖Tu‖ ≥ ‖u‖. If we put

Ω1 = {x ∈ B | ‖x‖ < H3},

then

(17) ‖Tu‖ ≥ ‖u‖, for u ∈ P ∩ ∂Ω3.

Next, by the definitions of f∞ and g∞, there exists an H4 such that

f(x) ≤ (f∞ + ǫ)x and g(x) ≤ (g∞ + ǫ)x, x ≥ H4.

Clearly, since g∞ is assumed to be a positive real number, it follows that g is

unbounded at ∞, and so, there exists an H̃4 > max{2H3, H4} such that g(x) ≤

g(H̃4), for 0 < x ≤ H̃4.
Set

f∗(t) = sup
0≤s≤t

f(s), g∗(t) = sup
0≤s≤t

g(s), for t ≥ 0.
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Clearly f∗ and g∗ are nondecreasing real valued function for which it holds

lim
x→∞

f∗(x)

x
= f∞, lim

x→∞

g∗(x)

x
= g∞.

Hence, there exists an H4 such that f∗(x) ≤ f∗(H4), g
∗(x) ≤ g∗(H4) for 0 < x ≤

H4. For u ∈ P with ‖u‖ = H4, we have

Tu(t) = λ

∫ 1

0
k(t, s)a(s)f

(
λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr

)
ds

≤ λ

∫ 1

0
k(t, s)a(s)f∗

(
λ

∫ 1

0
k(s, r)b(r)g(u(r)) dr

)
ds

≤ λ

∫ 1

0
k(t, s)a(s)f∗

(
λ

∫ 1

0
k(s, r)b(r)g∗(u(r)) dr

)
ds

≤ λ
1− β + βη

1− αη − β(1− η)

∫ 1

0
(1− s)a(s)×

× f∗

(
λ

1− β + βη

1− αη − β(1 − η)

∫ 1

0
(1− r)b(r)g∗(H4) dr

)
ds

≤ λ
1− β + βη

1− αη − β(1− η)

∫ 1

0
(1− s)a(s)×

× f∗

(
λ

1− β + βη

1− αη − β(1 − η)

∫ 1

0
(1− r)b(r)(g∞ + ǫ)H4 dr

)
ds

≤ λ
1− β + βη

1− αη − β(1− η)

∫ 1

0
(1− s)a(s)f∗(H4) ds

≤ λ
1− β + βη

1− αη − β(1− η)

∫ 1

0
(1− s)a(s) ds(f∞ + ǫ)H4

≤ H4

= ‖u‖,

and so ‖Tu‖ ≤ ‖u‖. For this case, if we set

Ω2 = {x ∈ B | ‖x‖ < H4},

then

(18) ‖Tu‖ ≤ ‖u‖, for u ∈ P ∩ ∂Ω4.
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Application of part (ii) of Theorem 1 yields a fixed point u of T belonging to
P ∩ (Ω4 \ Ω3), which in turn yields a pair (u, v) satisfying (1), (2) for the chosen
value of λ. The proof is complete. �

4. Examples

In this section we give some examples illustrating our results. For the sake of
simplicity we take a(t) = b(t) and f(t) = g(t).

Example 1. Consider the three-point boundary value problem

u′′(t) +
1

10
λt

kve2v

c+ ev + e2v
= 0, 0 < t < 1,

v′′(t) +
1

10
λt

kue2u

c+ eu + e2u
= 0, 0 < t < 1,

u(0) =
1

4
u

(
1

3

)
, u(1) = 2u

(
1

3

)
,

v(0) =
1

4
v

(
1

3

)
, v(1) = 2v

(
1

3

)
.

Here: a(t) = b(t) = 1
10 t, k = 500, c = 1000, α = 2, β = 1

4 , η = 1
3 , f(v) =

kve2v

c+ev+e2v
, f(u) = kue2u

c+eu+e2u
. By simple calculations we find: γ = 1

12 , f0 = g0 =
k

c+2 =
500
1002 , f∞ = g∞ = k = 500, L1 =

486
500 ≃ 0.972, L2 =

12024
500 = 24.048. By

Theorem 2 it follows that for every λ such that 0.972 < λ < 24.048 the three-point
boundary value problem has at least one positive solution.

Example 2. Consider the system of three-point boundary value problem

u′′(t) + λtv

(
1 +

c

1 + v2

)
= 0, 0 < t < 1,

v′′(t) + λtu

(
1 +

c

1 + u2

)
= 0, 0 < t < 1,

u(0) =
1

2
u

(
1

4

)
, u(1) = 2u

(
1

4

)
,

v(0) =
1

2
v

(
1

4

)
, v(1) = 2v

(
1

4

)
.

Here: a(t) = b(t) = t, c = 100, α = 2, β = 1
2 , η = 1

4 , f(v) = v
(
1 + c

1+v2

)
,

f(u) = u
(
1 + c

1+u2

)
. We find: γ = 1

8 , f0 = g0 = 1 + c, f∞ = g∞ = 1,

L3 =
768
2727 ≃ 0.28, L4 =

6
5 = 1.2. Therefore Theorem 3 holds for every λ such

that 0.28 < λ < 1.2.
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