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Regularity of weak solutions
to certain degenerate elliptic equations

ALBO CARLOS CAVALHEIRO

Abstract. In this article we establish the existence of higher order weak derivatives of
weak solutions of Dirichlet problem for a class of degenerate elliptic equations.
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1. Introduction

In this paper we study the existence of higher order weak derivatives (see
Theorem 3.8) of weak solutions of degenerate elliptic equations Lu = g — div f,
where L is an elliptic operator

n

(L.1) Lu=— Y Dj(a(z)Diu)(x) = »_ bi(x) Diu(x)

i,j=1 i=1

whose coefficients a;; and b; are measurable, real-valued functions, and whose
coefficient matrix A = (a;;) is symmetric and satisfies the degenerate ellipticity
condition

n

(1.2) Mo@)EP < Y a(2)685 < Aw(@)lEf

,j=1
for all £ € R™ and almost all x € QCR" on a bounded open set 2, w is a weight
function, A and A are positive constants.
2. Definitions and basic results

By a weight we shall mean a locally integrable function w on R"™ such that
0 < w(z) < oo for a.e. z € R™. Every weight w gives rise to a measure on the
measurable subsets of R™ through integration. This measure will also be denoted
by w. Thus w(E) = [ w dx for measurable sets ECR™.
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682 A.C. Cavalheiro

Definition 2.1. Let QCR"™ be open and let w be a weight. For 1 < p < oo, we
define LP(Q,w), the Banach space of all measurable functions f defined on Q for
which

1/p
e = ([ @Petds) <.

Definition 2.2. Let 1 < p < co. A weight w belongs to the Muckenhoupt class
Ap if there is a constant C = Cp , such that

! L [ 104\ <o g
Bl dem Bl Bw dx <C (if 1<p< )
(ﬁ/ wdw) (esssupé) <C (if p=1),
B B

for every ball BCR"™, where | B] is the n-dimensional Lebesgue measure of B. The
infimum over all constants C is called “ Aj,-constant of w”.

Example 2.3. The function w(z) = |z|*, € R", is a weight A, if and only if
—n < a <n(p—1) (see [6, Chapter 15]).

Remark 2.4. If w € A4y, 1 < p < 00, then since w™1/®~1) is locally integrable
when p > 1, and 1/w is locally bounded, when p = 1, we have LP((Q, w)CLlloc(Q)
for every open set Q. If Q is bounded, one obtains in the same way that LP(Q, w) C

LY(Q). Tt thus makes sense to talk about weak derivatives of functions in LP(Q,w).
O

Definition 2.5. Let QCR"™ be a bounded open set, 1 < p < oo and k be a
nonnegative integer. Suppose that the weight w € A,. We define the weighted
Sobolev space W*P(Q,w) as the set of functions u € LP(Q,w) with weak deriva-
tives D% € LP(Q,w) for |a| < k. The norm of u in W¥P(Q,w) is given by

1/p
Z / |D%ulPw dx) :
Q

lullwrr@w) = (
0<|al<k

We also define Wég’p(Q, w) as the closure of C5°(Q) in WhP(Q,w).

If Q C R"isopen, £ > 1,1 < p < oo and w € A, then C®(Q) is dense

in WkP(Q,w) (see Corollary 2.1.6 in [8]). The spaces W*P(Q,w) are Banach
spaces.

In this paper we use frequently the following two theorems.
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Theorem 2.6 (Muckenhoupt Theorem). Let w be a weight in R™ and
M) = s [ 15wl
2 Q|

be the Hardy-Littlewood maximal functmn. Then for p > 1, M : LP(R"®, w) —
LP(R™,w) is continuous (that is, |\Mf||Lp(Rn7w) < C’M||f||Lp(Rn7w)) if and only if
w € Ap. The constant Cy; is called Muckenhoupt constant and C'yy depends only
on n, p and the Ap-constant of w.

PROOF: See [7] or [4, Corollary 4.3]. O

Theorem 2.7 (Weighted Sobolev inequality). Let Q be a bounded open set in
R", 1 <p<ooandw € Ay. Then there exist constants Cq and 6 positive such
that for all p € C5°(Q) and k satisfying 1 < k < 25 +0,

ol i < Call Vel oo
where Cq may be taken to depend only on n, the Ay constant of w, p and the
diameter of €.

PROOF: See Theorem 1.3 of [2]. O
Definition 2.8. We say that u € WH2(Q, w) is a weak solution of the equation

n
Lu:g—ZDif,', with %,%6L2(Q,w)
i=1

n
=Y [ fiDie+ [ gpds, YoewyA@w)
=179 Q

if

where

n n
B(u, ¢) = /Q[Z ai;DiuDjp — ZbitpDiu} dz.

ij=1 i=1

Theorem 2.9. Let L be the operator (1.1) satisfying (1.2) and |b;(z)| < Crw(x)
in Q. Assume that ¢y € WH2(Q,w), g/w € L?(Q,w), fi/w € L?(Q,w) and w € As.
Then the Dirichlet problem

n
Lu=g- Z D f;
i=1
u— € Wyt (Q,w)
has a unique solution u € W12(Q,w) and
[ullwiz@w) <C (Hg/WHLZ(Q,w) +1f5/wl 20 + ||1/)||W1,2(Q,w)) :

PROOF: It is consequence of the Lax-Milgram Theorem and the proof follows the
lines of Theorem 2.2. of [2]. O



684

A.C. Cavalheiro

3. Differentiability of weak solutions

In this section we prove that weak solutions u € W12(Q,w) of the equa-
tion Lu = g are twice weakly differentiable and D;ju € L%*(Q,w) (that is,
ue W22 w), VO'cc).

Definition 3.1. Let u be a function on a bounded open set QCR"™ and denote by
e; the unit coordinate vector in the x; direction. We define the difference quotient
of u at = in the direction e; by

u(z + hey) —u
h

(3.1) Alu(z) = @) (0 < |n| < dist(z, ).

Lemma 3.2. Let Q'CCQ and 0 < |h| < dist(Q,09). If u,v € L} (Q,w),
supp(v)C€ and g is a measurable function with |g(z)| < Cw(z), then

( ) Ah(uv)(x) = u(a: + heg) Alv(2) + v(z)Alu(z), with 1 < k <n;
(b) Jo9(=) ( )dm—_fg Ah(gu)( ) da;
(c) AX(D; v)( ) " p, j(Afw) ().
PrOOF: The proof of this lemma follows trivially from Definition 3.1. (|

Definition 3.3. Let w be a weight in R". We say that w is uniformly A, in each
coordinate if

(a) w € Ap(R™);

(b) wi(t) =w(@1,...,xi—1,t,Tiy1,...,2pn) isin Ap(R), for z1,..., 21, Ti41,
., Tpn a.e., 1 <i < n, with A, constant of w; bounded independently of
Llyewey Ti—1, Li41y -+ Tn-

Example 3.4. Let w(z,y) = w1 (2)wa(y), with wy(z) = |gc|1/2 and wa(y) = |y|1/2.
We have that w is uniformly As in each coordinate.

Lemma 3.5. Let u € WP(Q,w), p > 1, and let w be a weight uniformly Ap in
each coordinate. Then for any Q'CCQ and 0 < |h| < dist(£Y', 0), we have

(3.2) ARl Lo (9 w) < ClIDkull Lo(@w)

where C = 2C'y;, and C); is the Muckenhoupt constant.
PRrROOF: Case 1. Let us suppose initially that u € C°°(2). We have,

h
Apu(r) = o HheR) Zela) _ 1 /0 D(a + Cex) d

1 rh
_E/O Dku(fﬂl,...,J/'k_l,fﬂk+C,.’I;k+1,...,$n)d<.
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For 1 < k < n, we define the functions

Diu(z), if z€Q
Gr(z) = :
0, if «¢Q.
We have for z € Q'CCQ and h satisfying 0 < |h| < dist(Q/, 99),
1 h
|Afu(z)| < Tl /0 |Dgu(wr, ... @1, T + G Tpp1s - - - 7$n)|dC‘

1 Z‘k-i-h
:m / |Dku(:101,...,xk_l,t,xk+1,...,xn)|dt}
xX

k

=1 / |Gk($1,...,:'Ek_l,t,xk_i_l,...,.’L'n)ldt’
x

k

IN

1 Z‘k-i-h
— / , |Gk(a:1,...,xk_l,t,xk_,_l,...,xnﬂdt‘
Tp—

Z‘k-i-h
< sup . ‘/ |Gr(x1, .. .xk_l,t,xk_,_l,...,:z:nﬂdt‘
h#0 | | T
<2M( Ily 3Lk —1:Tk+15-+9T )(xk)v
where G177V T () = Gl

the notation cfﬁ =dxy...dxg_1dzgq ... dry (where the hat indicates the term
that must be omitted in the product) and by Theorem 2.6, we obtain

, Xk, ---,Tn). Consequently, using

N |Afu(a)Pw(@) da
< 2p//[M(Gil""’rk*lmk“""’x")]p(xk)w(acl, @) da
< 2P /n [M(Gy 7ot B PP (g Yw (21, - Ty -5 T) da . dg . dg
=2P /an (/R[M(Gil’""xk1:0'““""’96")]p(xk)w(acl, e Xy e xn)d:vk> dzy,
< 2P /an (Cﬂ /]R |Gh R TR LT e Y Pw(1, . X, - Tn) dxk> dzy,
=2rCh, /Rn |G (z)[Pw(z) dz

:2‘”05\)4/ |Dyu(z)Pw(z) dz,
Q

where C) is independent of x1,...,2x_1, Tk+1,- - -, Tn because w is uniformly A,
in each coordinate. Therefore

| ARl Lo w) < ClIDRull o), Where € =2Cy.
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Case 2. If u € WHP(Q,w) then there exists a sequence {um}, um € C®(),
Cauchy sequence in the norm ||.|[y1,5(q ). By Definition 2.5, we have that

Um — u and Dguy, — Dpu in LP(Q,w).
Consequently, since w € A, there exists a subsequence {umj} such that um; —u
a.e. This implies, for 0 < |h| < dist(€’, 9€2), that

Aﬁumj — AZU a.e.

We have that {Agumj} is a Cauchy sequence in LP(Q),w), for any 'CcQ. In
fact, using the first case, we have
h h h
Ak tm, — Agum, || Lrr w) = 1A% (Wm, — um)ll Lr (@7 w)
< Ol Dk (um, — um )l Lr(,0)
= C||Dgum, — Dgum, | 1r(0,0)

— 0, as my,,mg — 00.

Therefore, there exists g € LP(€',w) such that Alup,—g in LP(Q',w). Con-
sequently, there exists a subsequence Aﬁumjr —g a.e. We can conclude that
AZU = g a.e. Hence

AZumj — APy in LP(Q,w).

This implies that
Al w) = Jim 1A, o o
<Ol 1Dkt |2 @.w)
= O DyullLr(qw)-

that is, HAZUIIL;:(QI,W) < Ol Drull pr(@w)- -

Lemma 3.6. Let u € LP(Q,w), 1 < p < 0o, w € Ap and suppose there exists a
constant C' such that

(3.3) ARl o) < Cr k=1,2,...,m

for any Q'CCQ and 0 < |h| < dist(€', 9Q) (with C independent of h). Then there
exists v € LP(Q,w) such that Dju = v in the weak sense, that is, u € WhP(Q,w)
and || Dyul| pp(0uw) < C-

PRrROOF: The proof of this lemma follows the lines of Lemma 7.24 in [5]. O
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Remark 3.7. We use the notation

DCV
Dk(Q,w)—{géwk(Q) : —geLz(Q,w), O§|a|§k}, for k=0,1,2...,
w

where W¥(£2) denotes the linear space of k times weakly derivative functions. For
k =0, we have g € DY(Q,w) if g/w € L?(Q,w). O

We are able now to prove the main result of this paper.

Theorem 3.8. Let u € W12(Q,w) be a weak solution of the equation Lu = g
in Q, and assume that

(a) g € DO(Q,w);

(b) w is a weight uniformly Ag in each coordinate;

(c) |Afa;j(z)] < Crw(z), © € Q'CCQ ae, 0 < |h| < dist(?Y,09), with a
constant C independent of ) and h;

(d) |b(z)| < Cw(z) a.e. in Q, where b = (by,...,by).

Then for any subdomain Q'CCQ we have u € W22(Q,w) and

(3.4) lullweaerw) < € (lulwrz.w) + 19/9] 2@ )

for C = C(n,Cps, \ A, Ch,d'), and d = dist(€/, 09).

PROOF: Since u € W12(Q,w) is a weak solution of the equation Lu = g, we have
by

:/Qg(:v)v(:v) dx

for all v € Wol’2 (Q,w) (in particular for v € C5°(2)). Hence

/Q Z aij(x) Diu(z)Djv(z) dv

i,j=1

In (3.5) let us replace v by A;hv (1 <k <n), with v € C§°(Q2), supp vCC and

687



688 A.C. Cavalheiro
let [2h] < dist(supp v, 92). We then obtain
- < /Q [9() + b; () Dyu(z)] A "v(z) dz)
_ /Q ai; (@) Diu() Dj (A7 Mo(x)) do
_ /Q ai;(@) Diu(2) A" Dyo(x),dr  (by Lemma 3.2(b))
- /Q Alai; Diu)(2)Dyo(z)dz  (by Lemma 3.2(a))
= /Q <a,~j(x + hep) AP Diu(x) + Diu(x)Akaaij(x)) Djv(x) dzx

/Q <[hAkaU( )+ aij(:v)]AZDiu(:C) + Diu(I)AZaij(:C)> Djv(x)dx.

Consequently,
(3.6)

/Qaij(x)Djv(:v)AZDiu(:v) dr = — (/Q[g(x) + bi(:v)Diu(x)]A;hv(:v) dx
/ Akau x)Dju(z)Djv(x) dx +/ hAka,]( )AZDZ'U(,T)D]"U(,T) d:v)
< [ 190 + b Dia)|AT o) do + [ 1A o) Do) [Dyo(e)] d
+1h] [ 160y @I ALDa(@)1Dyo@) do

_1+11+01|h|/ ()| A} Dyu(a)||Djv(x)| da.

Let us estimate the integrals I and II. Considering f = g+ b; D;u, by (a) and (d),
we have

I :/ |FI1A; 0] da
Q

:/ (m>w1/2|AI;hv|wl/2dx
(¢} w
2 1/2 1/2
< (/ (i> wdx) (/ |A;hv|2wdx)
Q\w supp(v)

1/2
< CMHf/w||L2(Q7w) (/Q |Dkv|2w d:v) (by Lemma 3.5)

:CMOWMBmm+CﬂMWW®m)DWUmmy
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II :/ |AZaij||Diu||Djv|d:1:§/Clw|D,~u||Djv|d:1:
Q Q

:C’l/ |Diu|w1/2|Djv|w1/2 dz
Q

1/2 1/2
<y (/ | Djul?w dm) (/ |Djv|2wdx)
Q Q

< Cillullwr2u) 1Pl L2 (0,0)-
Replacing the estimates of I and II in (3.6), we get the estimate

/ aij(x)AﬁDiu(:r)Djv(a:) dx

Q

(3.7) < C (lullwr 2@y + 19/#1 200 ) 1DV 22010
+Cl|h|/ ()| A} Diu(a)||Djv(x)| da.

We denote by a = [[ully1.2(0,0) T 119/@ L2(0,0)-

Let Q'ccQ. To proceed further let us take a function ¢ € C§°(R), satisfying
0<v¢ <1, =1inQ and with |Dv|jcc < 2/d’, where d’ = dist(€’,99Q), and
set v = @[J2AZU (with |2h] < dist(supp ¢, 9)). We have

Djv = (29 D) Alu + 2D (Aw).

Then we obtain
/Q (aij(x)¢2Dj(AZu)Di(AZu) + 2aij(w)¢Djz/1AZuAZDiu> dz
< Cal|2¢ Dy A+ 2D (Ahu)| 2000
+Culhl / (2)| A} Dyu(@)|[20D ;A + 2D (Al)| do
< Ca (0D ull 20,0 + W2 D3 (ALl 120 )
+ C4|h| / )AL D;u(x)]|2¢ D Afu + 2 Dj (Afw)| da.
Then
| ass@ oD (ApwloD, (AL da
< Ca (WDl 200 + 102 D5 (A0 | r2(0) )

2 / lai; (@) D; ALl Dy Al de

+Culh] [ w(@)|Afu(a)]20D;0 M u + 02D (M) de.
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By (1.2) we have |a;j(x)| < Cw(z), and we can estimate the integral on the right
hand side by

/Q lai ()| [4:D; (Al w) | Dy AL d

<C /Q YD (Al)|| Dy Alu|w da

1/2 1/2
< C(/ [ D (ARu) 2w d:v) (/ |Dj¢AZu|2w d:v)
Q Q

= C|[YDi(Af) | p2(0,00) | Dy AR 1200 0)-

Hence, we obtain

/Q a1 (0) [ D; (Al [ Dy Alu)] da

< Callp D ALl 20,0
(3.8) + Cal| 2 Dj(Afu) || 12(00)
+ 20 Di(Afu) || 2 (00 1D AUl L2 (0 )

+ C1|h) / )| AR Dyu()| 29D Al + 2Dy (Afw) | da.
Finally, the integral on the right hand side in (3.8) can be estimated
/Q w(@)| Al Dyu() 26D Al + 2 Dy (Alw)| de
< /Q 20 ()| AR Dy ()| | Dy Afu) + /Q w(z)|AF Diul[¢? Dj(Alu)| dx

=2 [ w@ALDuD A do+ [ w@WALDulvD; () ds
< 2||¢A2Diu”L2(Q,w) ”DijZu”Lz(supp P,w)
+ [ AED il p2(0,0) IV ARDjull £2( )-

Applying this result in (3.8), we obtain

/Q a;j(x)[D; Agu] [@[JDiAzu] dx

< CallY D ARul| 12 (supp )
+ Cally? DA 120 )
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+ QC”wDiAkau”LZ(Q,w) HDﬂ/}AguHL%supp Y,w)
+20, |h| ”’@[]AZ‘DZuHLz(Q,w) HDijZu”Lz(supp Y,w)
+ C1 b AR D]l 200 AR Dju] £2(00)-

Consequently, by condition (1.2), we then have

/ aij (x) [ D; (Afw)] [ Di(Afw)] dz > A / [ D(ARw) [P0 dz.
Q Q

Denoting b = ||¢D(AZ“)||L2(Q,¢U)7 we have

Ab? < Cal| Dy Aful 12 ) + Cab + 2CB|| D Aful 12 )

+ 2cl|h|b||Dj1/)AZu”L2(supp Y,w) + Ol|h|b2'

Using the Young’s inequality

AB = (71A)(eB) < Z[(e7'A)2 + (eB)?], Ve >0

N =

to estimate ab and b||Dj1/)AZu||L2(Q’w), we obtain

C C
A? < Ca || DjvAful 200 + 55—%2 + 55%2

-2

e
+20e%0? + CTHDWAQUH%%Q,W)
+ 2C1[hIb|| Dy ARull 20 + Cilh[b

Ce™2 Ce?
< Ca”Dijkau”LZ(suppw,w) + 2 a® + sz

-2
2_2:2 € h, 12

—2
3
+ C1e2n20? + clTHDnguniz(Suppw) + C1|h|b2.

Choose € > 0 and h such that

562 +2Ce? < \/4 and |h| < A/8CY.
Then

(%52 +2Ce% + Cy|n? + Cl|h|) <

| >

691
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and we can use Lemma 3.5 to get

b2 < OaHDﬂ/JAZLUHH(supp Y,w)

C —2 92 A 2 -2 ha|2
+ e 2 + 50 + O 2ID 0 Al Lo pupp o)

C _
< CU“HD]"‘/JHOOHAZUHLZ(suppv,w) + 55 %a
Ao -2 2 AR 112
+ §b +Ce HDj"/JHooHAku”LZ(supva)
C _ A
< Cal| Dj¥lloo| Dyull 20 ) + & 20 + 507
+05_2IIDWIIEOIIDWH%%Q,W)-

2

Since || Dgullr2(w) < a, we have
Ao , 2,C 29 2 2 2
2b < C||Djy| o0a” + 7€ @ + Ce || D] 50
C _ _
< (CIDvl + So72 4 C=2ID I )
= Cd?.

Consequently, we obtain

Using ¢ = 1 in ', we conclude that

AR (D)l z2(r ) < Ca, Yk, 1<k <n,¥Q'CCO

with 0 < |h| < dist(Q/,09) and h < A\/8C;. By Lemma 3.6 we obtain Du €

WH2(Q w). Therefore we have that u € W22(Q/,w) and

lullw22(q ) < Ca=C (HUJHWL?(Q,LU) + Hg/WHL2(Q,w)) :

By a straightforward induction argument, we can then conclude the following

extension of Theorem 3.8.

Theorem 3.9. Let u € W12(Q,w) be a weak solution of the equation Lu = g

in Q, and assume that

(a) w is a weight uniformly As in each coordinate;
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(b) g e DF(Qw), keN, k>1;

(c) there exist D%a;; a.e. and |A2Daaij(:v)| < Cw(z), z € V'cc, 0 <
la| <k, 1<p<mn,0<|h|<dist(,09Q), with constant C; independent
of ' and h;

(d) there exist D*b; a.e., 0 < |a| < k — 1, and |Db;(z)] < Cow(x), x €
Ycca.

Then for any subdomain Q' CcQ, we have u € W*+22(/ | w) and

||u||Wk+z,z@,w>sc(nunwm(wﬁ 3 ||Dag/w||L2(w))
0<|a|<k

for C = C(n,\, A, Cyy, Ch,Ca,d'), and d' = dist(€Y, 09).
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