
Commentationes Mathematicae Universitatis Carolinae

Ryszard Grzaślewicz; Witold Seredyński
Stability of positive part of unit ball in Orlicz spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 46 (2005), No. 3, 413--424

Persistent URL: http://dml.cz/dmlcz/119537

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119537
http://project.dml.cz


Comment.Math.Univ.Carolin. 46,3 (2005)413–424 413

Stability of positive part of unit ball in Orlicz spaces

Ryszard Grząślewicz, Witold Seredyński

Abstract. The aim of this paper is to investigate the stability of the positive part of the
unit ball in Orlicz spaces, endowed with the Luxemburg norm. The convex set Q in a
topological vector space is stable if the midpoint map Φ: Q×Q → Q, Φ(x, y) = (x+y)/2
is open with respect to the inherited topology in Q. The main theorem is established:
In the Orlicz space Lϕ(µ) the stability of the positive part of the unit ball is equivalent
to the stability of the unit ball.

Keywords: stable convex set

Classification: Primary 52Axx, 46Axx,46Cxx

1. Introduction

A convex set Q in a real Hausdorff topological vector space X is called stable
if the midpoint map Φ: Q × Q → Q, Φ(x, y) = (x + y)/2 is open with respect to
the inherited topology in Q ([2], [9], [16]). Stable compact sets have been studied
in [10], [14], [19]. Stability is a useful tool in investigating the extremal operators
between Banach spaces ([2]). Further, the set of extreme points of a stable set is
closed. Thus “stability” arguments can be employed for a description of extreme
points of the unit ball of C(K, X), K being a compact Hausdorff space and X a
Banach space, namely, applying the Michael selection theorem [12],

f ∈ ext B(C(K, X)) ⇐⇒ f(k) ∈ ext B(X) for every k ∈ K

provided that the unit ball B(X) of X is stable.
In [16] it has been proved that if dim X ≤ 2, then every convex set Q ⊂ X is

stable, and also that from the stability of a convex closed set Q it follows that the
set of extremal points ext Q is closed. The converse implication is not satisfied,
although for dim X ≤ 3 it is true. The strictly convex sets are stable, too. Finite
dimensional Banach spaces can have non-stable unit balls, for example let X = R3

and

B := conv
(
{ (x, y, 0) : x2 + y2 ≤ 1 } ∪ { (±1, 0,±1) }

)
, (see [16]).
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By Theorem from [7] the above Banach space is not Orlicz with the Luxemburg
norm. Moreover,

B+(X) = conv
(
{ (x, y, 0) : x ≥ 0, y ≥ 0, x2 + y2 ≤ 1 } ∪ { (1, 0, 1) }

)

is stable, which is easy to verify. Thus, the stability of B+(X) does not indicate
that B(X) is stable. However, it is known that in normed vector lattices, the
stability of B(X) implies the stability of B+(X), see [6].

In this work we give an answer to the question: does the stability of B(X) in
Orlicz spaces with the Luxemburg norm follow from the stability of B+(X)? The
main ideas of this result are contained in [22], hence some parts of the proof we
omit are available in the above-mentioned work.

2. Basic definition and auxiliary results

Let (Ω, Σ, µ) be a measure space with a nonnegative, σ-finite and complete
measure µ (µ(Ω) > 0), and let ϕ: R → [0, +∞] be a convex, even, non-identically
equal to 0, vanishing at 0 and left-continuous for t > 0 function such that c(ϕ) :=
sup{t > 0 : ϕ(t) < ∞} > 0. Such functions will be called Young functions .
This definition is somewhat stronger than for example that in [17], but it does
not really bound the class of spaces considered. We will often use the notation
a(ϕ) := sup{t : ϕ(t) = 0}. By an Orlicz space Lϕ(µ) ([13], [15], [17]), we mean
the set of all measurable functions x: Ω → R such that Iϕ(λx) < ∞ for some
λ > 0, where the modular Iϕ is defined by

Iϕ(x) :=

∫

Ω

ϕ (x(ω)) dµ.

Lϕ(µ) is equipped with the equality “almost everywhere” (a.e.) and the Luxem-
burg norm [11]

‖x‖ϕ := inf
{

λ > 0 : Iϕ (x/λ) ≤ 1
}

.

(Note that ‖x‖ϕ ≤ 1 iff Iϕ(x) ≤ 1; Iϕ(x) = 1 implies ‖x‖ϕ = 1; Iϕ(x) < 1 ⇒
(‖x‖ϕ = 1 iff Iϕ(λx) = +∞ for every λ > 1); ‖xn−x‖ϕ → 0 iff Iϕ(λ(xn−x)) → 0
for every λ > 0.) The subspace

Eϕ(µ) :=
{
x ∈ M : ∀λ > 0 Iϕ(λx) < +∞

}

is called the space of finite elements .
Let r > 1. The function ϕ is said to satisfy condition ∆r(µ) [20], [22] (ϕ ∈

∆r(µ) in short) if:

(a) there exists a constant c > 1 such that ϕ(rt) ≤ cϕ(t) for every t (respec-
tively, every t ≥ a0, ϕ(a0) < +∞) provided that µ is atomless and infinite
(respectively, finite);
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(b) there exist b > 0, c > 1 and a nonnegative sequence (dn) such that∑
n dn < +∞, and ϕ(rt)µ(en) ≤ cϕ(t)µ(en) + dn for every t with

ϕ(t)µ(en) ≤ b and every n ∈ N provided that µ is purely atomic and
{en : n ∈ N}, N ⊂ N, is the set of all atoms of Ω;

(c) a combination of (a) and (b) if Ω has both an atomless and purely atomic
part.

If c(ϕ) = ∞, then

ϕ ∈ ∆r(µ) for some r > 1 ⇐⇒ ϕ ∈ ∆r(µ) for every r > 1 ⇐⇒ ϕ ∈ ∆2(µ).

The above equivalences remain true if µ is atomless (then ϕ ∈ ∆r(µ) for some
r > 1 implies that c(ϕ) = ∞). If µ is purely atomic with

∑
n µ(en) = ∞ and

ϕ ∈ ∆r(µ) for some r > 1, then ϕ vanishes only at 0 (indeed, dn ≥ ϕ(ra(ϕ))µ(en)
for every n ∈ N). Thus the above equivalences are true also in the case of a
purely atomic measure µ with an infinite number of atoms provided that 0 <
infn µ(en) ≤ sup µ(en) < ∞ — no matter whether ϕ takes only finite values
or not (if ϕ ∈ ∆r0(µ), then evidently ϕ ∈ ∆r(µ) for every 1 < r ≤ r0; for
r > r0, consider br = ϕ(a′r0/r) · infn µ(en) > 0, where a′ = sup{ a > 0 : ϕ(a) ≤
br0/ supn µ(en) } > 0). If dim Lϕ(µ) < ∞ (i.e., Ω consists of a finite number of
atoms), then ϕ ∈ ∆r(µ) for some r > 1 if and only if Lϕ(µ) is not isometric
to L∞(µ) (take any a0 ∈ (a(ϕ), c(ϕ)), 1 < r < c(ϕ)/a0 and put b = ϕ(a0) ·
infn µ(en) > 0, dn = ϕ(ra0)·supn µ(en) < ∞). However, if 0 < a(ϕ) ≤ c(ϕ) < ∞,
then ϕ does not satisfy the condition ∆r(µ) for any r > c(ϕ)/a(ϕ).

Note that if c(ϕ) = ∞ and Lϕ(µ) is finite dimensional, then Lϕ(µ) = Eϕ(µ).
If c(ϕ) = ∞ and dim Lϕ(µ) = ∞, the equality Lϕ(µ) = Eϕ(µ) holds if and only if
ϕ ∈ ∆2(µ) (cf. [13, Theorem 8.13, p. 52]), thus, applying the Lebesgue dominated
convergence theorem, we obtain

(Iϕ(x) = 1 ⇐⇒ ‖x‖ϕ = 1) if and only if ϕ ∈ ∆2(µ).

In fact, we can replace condition ∆2(µ) by ∆r(µ) for some r > 1 in the last
equivalence. Then the assumption c(ϕ) = ∞ is used in the “if” part of the proof
only, so, in any case, we have that if ϕ /∈ ∆r(µ) for any r > 1, then there exists
x ∈ Lϕ(µ) such that ‖x‖ = 1 but Iϕ(x) < 1, and that is what we need to have.

Now we introduce another related notion.
Let {en : n ∈ N}, N ⊂ N, be a set of all atoms of Ω and let r > 1. We shall

say that a function ϕ satisfies the condition ∆0
r(µ) (on Ω) — ϕ ∈ ∆0

r(µ) in short
— if

– there exist a0 > 0 and c > 1 such that 0 < ϕ(a0) < ∞ and ϕ(rt) ≤ cϕ(t) for
every |t| ≤ a0, provided that the atomless part of Ω is of positive measure;

– there exist a0 > 0, b > 0, c > 1 and a nonnegative sequence (dn) such that∑
n dn < +∞, 0 < ϕ(a0) < ∞ and ϕ(rt)µ(en) ≤ cϕ(t)µ(en) + dn for every

|t| ≤ a0 with ϕ(t)µ(en) ≤ b and every n ∈ N provided that µ is purely atomic.
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If ϕ ∈ ∆0
r(µ) for some r > 1 on the atomless part of Ω, which is of positive

measure, then evidently, ϕ ∈ ∆0
r(µ) on the whole set Ω. Further, if the measure

of the atomless part of Ω is either infinite or equal to zero and ϕ ∈ ∆r(µ) for
some r > 1, then ϕ ∈ ∆0

r(µ). Thus ϕ ∈ ∆0
r(µ) for some r > 1 provided that

dim Lϕ(µ) < ∞ and Lϕ(µ) is not isometric to L∞(µ).
If ϕ ∈ ∆0

r(µ) for some r > 1, then, (see [22, p. 509]) if ϕ ∈ ∆0
r(µ) for some

r > 1 and ‖x‖∞ < c(ϕ), then

Iϕ(x) = 1 ⇐⇒ ‖x‖ϕ = 1.

Note that ϕ ∈ ∆0
r(µ) for some r > 1 iff ϕ ∈ ∆0

2(µ) provided that ϕ takes only
finite values.

The point z ∈ Q is called stable (or Q is said to be stable at z, (cf. [16,

p. 197])) if for every x, y ∈ Q, x 6= y with x+y
2 = z and every open neighborhoods

U , V of x and y respectively there exists an open set W such that W ∩ Q ⊂
1
2 ((U ∩ Q) + (V ∩ Q)).

If X is normed, then the last condition can be represented as

∀ ε > 0 ∀x, y ∈ Q, z =
x + y

2
∃ δ > 0∀w ∈ Q

(
‖w − z‖ < δ ⇒

⇒ ∃u, v ∈ Q ‖u − x‖ < ε, ‖v − y‖ < ε, w =
1

2
(u + v)

)
.

Of course if z ∈ int Q then Q is stable at z. Moreover, Q is stable iff it is stable
at each its point.

Proposition 1. In a normed vector lattice X the positive cone X+ is stable.

Proof: Let the sets U , V be open. It is necessary to prove that 1
2

(
(U∩X+)+(V ∩

X+)
)

is open in X+. Suppose not. Then there exist z ∈ 1
2

(
(U ∩X+)+(V ∩X+)

)

and a net (zα)α∈Γ, limα∈Γ zα = z such that for every α ∈ Γ it holds zα /∈
1
2

(
(U ∩ X+) + (V ∩ X+)

)
, zα ≥ 0. From the assumption it follows that there

exist x ≥ 0, y ≥ 0, x ∈ U , y ∈ V such that z = x+y
2 . Let xα := (2zα) ∧ x,

yα := 2zα − xα. Of course xα ≥ 0, and by xα ≤ 2zα we have yα ≥ 0. From the
continuity of “∧” it follows that limα∈Γ xα = x and limα∈Γ yα = 2z − x = y, too.
Thus for eventually α it holds xα ∈ U , yα ∈ V . Hence for eventually α it holds
zα = 1

2 (xα + yα) ∈ 1
2

(
(U ∩ X+) + (V ∩ X+)

)
against of (zα). �

We say that the normed vector lattice X has property PPP if for every x, y ∈
X+ there exists sup{x ∧ ny : n ∈ N}, cf. [18, Corollary 2, p. 64].

Of course, Orlicz spaces have property PPP.

Proposition 2. Let X be a normed vector lattice with property PPP. Then if
z ∈ B(X) is a point such that B(X) is stable at |z|, then B(X) is stable at z,
too.
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Proof: Fix z ∈ B(X) such that B(X) is stable at |z| and define a transformation
ϕ: X → X by the formula

ϕ(x) := sup
n∈N

(nz− ∧ x+) − sup
n∈N

(nz− ∧ x−).

It is known that ϕ is the lattice projection (i.e. the vector mapping preserving the
lattice operations and satisfying ϕ ◦ ϕ = ϕ). For z− > 0 it follows by Proposi-
tion 2.11 from [18, p. 63], where it is necessary to take A = {z−}, and for z− = 0
it is obvious.

At present we define a vector mapping ̂: X → X in the following way:

x̂ := x − 2ϕ(x).

We claim:
̂̂x = x, |x̂| = |x|.

The first equality is a consequence of simple algebraic operations. Since for x ≥ 0

0 ≤ ϕ(x) = sup
n∈N

(nz− ∧ x) ≤ x holds,

so −x = x − 2x ≤ x − 2ϕ(x) = x̂ ≤ x, thus |x̂| ≤ x for x ≥ 0. Hence for any
x ∈ X the inequality

|x̂| = |x − 2ϕ(x)| = |(x+ − 2ϕ(x+)) − (x− − 2ϕ(x−))|

≤ |x+ − 2ϕ(x+)| + |x− − 2ϕ(x−)| = |x̂+| + |x̂−| ≤ x+ + x− = |x|

holds, so |x̂| ≤ |x|. Thus |x| = |̂̂x| ≤ |x̂| ≤ |x|.
The claim is proved, so also ‖x̂‖ = ‖x‖.
Let x, y ∈ B(X) be such that z = (x + y)/2 and fix ε > 0. Because

ϕ(z) = sup
n∈N

(nz− ∧ z+) − sup
n∈N

(nz− ∧ z−) = −z−,

so ẑ = z − 2ϕ(z) = z+ − z− + 2z− = z+ + z− = |z|, thus |z| = ẑ = (x̂ + ŷ)/2. By
definition of stability at a point the following statement

(1)
∃ δ > 0∀ w̃ ∈ B(x)

(
‖w̃ − |z|‖ < δ ⇒ ∃ ũ, ṽ ∈ B(x)

‖ũ − x̂‖ < ε, ‖ṽ − ŷ‖ < ε, w̃ =
1

2
(ũ + ṽ)

)

is satisfied. Let w ∈ B(X) satisfy ‖w − z‖ < δ. Then ‖ŵ − |z| ‖ = ‖ŵ − z‖ =
‖w − z‖ < δ, so there exist ũ, ṽ satisfying (1) for w̃ := ŵ.

Let u := ̂̃u, v := ̂̃v. Then û = ũ, so ‖u−x‖ = ‖û − x‖ = ‖û− x̂‖ = ‖ũ− x̂‖ < ε

and analogously ‖v − y‖ < ε. Moreover u, v ∈ B(X) and w = ̂̂w = ̂(ũ + ṽ)/2 =

(̂̃u + ̂̃v)/2 = (u + v)/2. Because ε > 0 has been arbitrary, B(X) is stable at z. �

Now we present an elementary lemma (cf. [6]).
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Lemma 1. If X is a normed vector lattice and x, y ∈ X , the following inequalities
are satisfied:

1. ‖x+ − y+‖ ≤ ‖x − y‖ and ‖x− − y−‖ ≤ ‖x − y‖;
2. if x + y ≥ 0, then y+ − x− ≥ 0 and x+ − y− ≥ 0.

Proof: Note that if u, v, w ≥ 0, u ∧ v = 0 and w + u ≥ v then w ≥ v. Indeed,
from w + u ≥ v we get v = (w + u) ∧ v ≤ (w ∧ v) + (u ∧ v) = w ∧ v ≤ v. Hence
w ∧ v = v, i.e. w ≥ v. Put u = x+, v = x−, w = y+. Hence y+ ≥ x−. Similarly
we get x+ − y− ≥ 0.

Recall that if x, x′, y, y′ ∈ X then ‖(x ∧ x′) − (y ∧ y′)‖ ≤ ‖x − y‖ + ‖x′ − y′‖
and ‖(x∨x′)− (y∨y′)‖ ≤ ‖x− y‖+‖x′− y′‖. In particular, ‖x+− y+‖ ≤ ‖x− y‖
and ‖x− − y−‖ ≤ ‖x − y‖. �

The following proposition is a local variant of Theorem from [6].

Proposition 3. Let X be a normed vector lattice and z ∈ B+(X). If B(X) is
stable at z, then B+(X) is stable at z.

Proof: Assume that B(X) is stable at z ∈ B+(X). Let ε > 0 and let x, y ∈
B+(X) satisfy z = (x+y)/2. By definition of stability at a point there exists δ > 0
such that for every w ∈ B+(X) (and even B(X)) satisfying ‖z−w‖ < δ there exist
ũ, ṽ ∈ B(X) such that w = (ũ + ṽ)/2, and ‖x − ũ‖ < ε/5, ‖y − ṽ‖ < ε/5. Then

by point 1. of Lemma 1 the following inequalities ‖ũ+ − x‖ < 1
5ε, ‖ṽ+ − y‖ < 1

5ε
hold, and

‖ũ−‖ = ‖ũ+ − x + x − ũ‖ ≤ ‖ũ+ − x‖ + ‖x − ũ‖ <
2

5
ε,

and analogously ‖ṽ−‖ < 2
5ε. Put u := ũ+ − ṽ−, v := ṽ+ − ũ−. By point 2.

of Lemma 1, 0 ≤ u ≤ ũ+ and 0 ≤ v ≤ ṽ+ hold, so u, v ∈ B+(X). Of course
w = (u + v)/2 and

‖u− x‖ = ‖ũ− + (−ṽ−) + ũ− x‖ ≤ ‖ũ−‖ + ‖ṽ−‖ + ‖ũ− x‖ <
2

5
ε +

2

5
ε +

1

5
ε = ε,

and analogously ‖v − y‖ ≤ ‖ṽ−‖ + ‖ũ−‖ + ‖ṽ − y‖ < ε. Because ε > 0 has been
arbitrary, B+(X) is stable at the point z. �

It follows from the above proposition that Theorem proved in [6] is true. It
says that in normed lattices if B(X) is stable then B+(X) is stable. In the case
of Orlicz spaces with Luxemburg norm the converse implication is true, too.

The proof needs a lemma which differs from Proposition 1 from [22, p. 504]
only in B(Lϕ(µ)) being replaced by B+(Lϕ(µ)).
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Lemma 2. Assume that Lϕ(µ) is neither finite dimensional nor isometric to
L∞(µ). Let z ∈ B+(Lϕ(µ)) and define, for n ∈ N, n ≥ 2,

An :=

{
ω ∈ Ω : |x(ω)| <

(
1 −

1

n

)
c(ϕ)

}

if c(ϕ) < +∞ and ϕ(c(ϕ)) < +∞, and An = Ω otherwise. If
∥∥zχAn

∥∥
ϕ

= 1 for

some n ≥ 2, then the following conditions are equivalent:

(i) Iϕ(z) < 1;
(ii) there exist a subset E ⊂ An of positive measure and functions x, y ∈

B+(Lϕ(µ)) such that z = 1
2 (x + y),

∥∥zχE

∥∥
ϕ < 1 and 2ϕ

(
z(ω)

)
<

ϕ
(
x(ω)

)
+ ϕ

(
y(ω)

)
for every ω ∈ E.

Proof: We follow the proof of Wis la [22, p. 504]. As, clearly, (ii)⇒(i), we should
only prove the implication (i)⇒(ii). Let Ω = Ω1 ∪ Ω2, where Ω1, Ω2 denote
the purely atomic and atomless part of the measure space (Ω, Σ, µ), respectively.
Then either ‖zχΩ1∩An

‖ϕ = 1 or ‖zχΩ2∩An
‖ϕ = 1.

(1) Suppose ‖zχΩ2∩An
‖ϕ = 1.

Claim. There exists a number 1 < ρ < 2 such that, if F := {ω ∈ An ∩ Ω2 :
2ϕ(z(ω)) < ϕ(ρz(ω)) < ∞}, then µ(F ) > 0.

First suppose that either c(ϕ) = ∞ or c(ϕ) < ∞ and ϕ(c(ϕ)) < ∞. Then,
since, ∀λ > 1, Iϕ(λzχΩ2∩An

) = ∞, for every 1 < ρ < ∞ such that (1−1/n)ρ ≤ 1,
we obtain µ(Fρ) > 0, where Fρ := {ω ∈ An ∩ Ω2 : 2ϕ(z(ω)) < ϕ(ρz(ω))}, and,
moreover, ϕ(ρz(ω)) < ∞ for every ω ∈ Fρ. So, in this case we put F = Fρ for
some 1 < ρ < 2 such that (1 − 1/n)ρ ≤ 1.

Assume now that c(ϕ) < ∞ and ϕ(c(ϕ)) = ∞. Denote P := {ω ∈ Ω : |z(ω)| ≥
1
2c(ϕ)}. There are two possibilities, namely:

(a) Suppose that µ(P ∩ An ∩ Ω2) > 0. Denote Q0 = Q ∩ (1, 2) and:

∀ q ∈ Q0, Fq := {ω ∈ P ∩ An ∩ Ω2 : 2ϕ(z(ω)) < ϕ(qz(ω)) < ∞}.

Clearly, P ∩An∩Ω2 =
⋃

q∈Q0
Fq a.e. (= almost everywhere), whence we conclude

that there exists some q0 ∈ Q0 such that µ(Fq0) > 0. We put F = Fq0 in this
case.

(b) Suppose that µ(P ∩ An ∩ Ω2) = 0. Then for every 1 < ρ < 2, we have

|z(ω)| < 1
2c(ϕ) and ϕ(z(ω)) < ∞ a.e. on An ∩ Ω2. Denote

∀ 1 < ρ < 2, Fρ := {ω ∈ An ∩ Ω2 : 2ϕ(z(ω)) < ϕ(ρz(ω)) }.

We claim that µ(Fρ) > 0 for every 1 < ρ < 2. Indeed, otherwise there exists some
1 < ρ0 < 2 such that µ(Fρ0) = 0, that is, ϕ(ρ0z(ω)) ≤ 2ϕ(z(ω)) a.e. on An ∩ Ω2,
whence

+∞ = Iϕ(ρ0zχΩ2∩An
) ≤ 2Iϕ(zχΩ2∩An

) < 2,
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a contradiction. So, in this case we put F = Fρ for some 1 < ρ < 2.
Since µ is atomless on F , we can find a measurable set E ⊂ F such that

Iϕ(ρzχE) < 1. Thus ‖zχE‖ϕ ≤ 1/ρ < 1. Define

x = zχΩ\E + ρχE , y = zΩ\E + (2 − ρ)zχE .

Clearly, x, y ∈ B+(Lϕ(µ)). Further, for every ω ∈ E,

ϕ
(
x(ω)

)
+ ϕ

(
y(ω)

)
≥ ϕ(ρz(ω)) > 2ϕ

(
z(ω)

)
.

(2) Suppose that ‖zχΩ1∩An
‖ϕ = 1. Then, without loss of generality, we can

identify Ω1 ∩An with the set N of all natural numbers. Since Iϕ(zχN) < 1, there
exists p ∈ N such that

Iϕ(zχ{p,p+1,...}) < 2η,

where η = 1 − Iϕ(z) > 0.
Define [p, m] = {p, p + 1, . . . , m} if m ≥ p, [p, m] = ∅ otherwise. Let

h(m) = Iϕ(zχΩ\[p,m]) + Iϕ(ρzχ[p,m]), m ∈ N.

Let q := max{m ≥ p−1 : h(m) < 1 }. (In Wis la’s original paper by mistake there
is “min” instead of “max”.) We can find 1 < σ ≤ ρ < 2 such that Iϕ(x) = 1,
where

x = zχΩ\[p,q+1] + ρzχ[p,q] + σzχ{q+1}.

Using similar arguments, we infer the existence of numbers r ∈ N, r ≥ q + 1 and
1 < τ ≤ ρ < 2 such that Iϕ(y) = 1, where

y = zχΩ\[p,r+1] + (2 − ρ)zχ[p,q] + (2 − σ)zχ{q+1} + ρzχ[q+2,r] + τzχ{r+1}.

Put

x = zχΩ\[p,r+1] + ρzχ[p,q] + σzχ{q+1} + (2 − ρ)zχ[q+2,r] + (2 − τ)zχ{r+1}.

Obviously x, y ∈ B+(Lϕ(µ)), 1
2 (x + y) = z and Iϕ(x) ≤ Iϕ(x) = 1. Further

Iϕ(x) ≥ Iϕ(x) − Iϕ(zχ[q+2,r+1]) > 1 − 2η.

Taking E = {i}, where i ∈ [p, r + 1] is such an index for which ϕ is not affine on
the corresponding interval, all the requirements of (ii) are satisfied and the proof
is concluded. �
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3. Main results

Modifying Theorem 3, p. 506 from [22] we get the following lemma.

Lemma 3. B+(Lϕ(µ)) is stable at a point z ∈ B+(Lϕ(µ)) if and only if at least
one of the following conditions is satisfied:

(i) Lϕ(µ) is finite dimensional,
(ii) Lϕ(µ) is isometric to L∞(µ),
(iii) ‖z‖ϕ < 1,
(iv) Iϕ(z) = 1,
(v) c(ϕ) < +∞, ϕ(c(ϕ)) < +∞ and ‖zχAn

‖ϕ < 1 for every n = 2, 3, . . . ,
where

An :=

{
ω ∈ Ω : |z(ω)| <

(
1 −

1

n

)
c(ϕ)

}
.

Proof: (⇐) Let z ∈ B+(Lϕ(µ)) and let at least one of the conditions (i)–(v) be
satisfied. From Theorem 3 from [22] it follows that B(Lϕ(µ)) is stable at z, and
by our Proposition 3 it follows that B+(Lϕ(µ)) is stable at z.

(⇒) (Sketch according to [22]). Suppose that none of the conditions (i)–(v) is
satisfied. By Lemma 2 with its notation we can find ε > 0, x, y ∈ B+(Lϕ(µ))
with (x + y)/2 = z and a set E ⊂ An of positive measure such that ‖zχE‖ϕ < 1
and

2Iϕ(zχE) < Iϕ(uχE) + Iϕ(vχE)

for every u, v ∈ B+(Lϕ(µ)) with ‖u − x‖ϕ < ε and ‖v − y‖ϕ < ε.
Let 0 < δ < 2/n and fix k ∈ N with k > 2/δ > n. We have Iϕ(λzχAn\E) = ∞

for every λ > 1. Let us take, if c(ϕ) < ∞ and ϕ(c(ϕ)) < ∞, any countable
covering (Ei)

∞
i=1 of the set An \E consisting of pairwise disjoint sets Ei ⊂ An \E

of positive and finite measure and put ai = ϕ−1(i),

Ei = {ω ∈ Ω \ E : ai−1 ≤ |z(ω)| < ai }, i = 1, 2, . . . ,

in the other cases. Define

h(m) =

m∑

i=1

Iϕ

((
1 +

1

k

)
zχEi

)
+ Iϕ(zχΩ\

Sm
i=1 Ei

), m = 0, 1, 2, . . . .

Thus h(m) < ∞ for every m ∈ N, and moreover limm h(m) = ∞.
Let p = max{m ≥ 0 : h(m) < 1} and let 0 < s ≤ 1/k be such a number that

Iϕ(w) = 1, where

w(ω) =






(
1 + 1

k

)
z(ω) for ω ∈

⋃p
i=1 Ei,

(1 + s)z(ω) for ω ∈ Ep+1,

z(ω) otherwise.
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Suppose that there are u, v ∈ B+(Lϕ(µ)) such that ‖u − x‖ϕ < ε, ‖v − y‖ϕ < ε
and (u + v)/2 = w. Then, by the convexity of ϕ, we have

ϕ(α + η) ≥ ϕ′
+(α)η + ϕ(α)

for every η ∈ R and |α| < c(ϕ), where ϕ′
+ denotes the right hand side derivative

of ϕ. Because there is a minor spelling mistake in Wis la’s original paper, we at
present precisely give a sequence of inequalities which leads to a contradiction
and ends the proof. Namely

2 ≥ Iϕ(u) + Iϕ(v)

= Iϕ(uχE) + Iϕ(vχE) + Iϕ((w + u − w)χΩ\E) + Iϕ((w + v − w)χΩ\E)

> 2Iϕ(zχE) + 2Iϕ(wχΩ\E) +

∫

Ω\E

ϕ′
+(w(ω))(u(ω) + v(ω) − 2w(ω)) dµ

= 2Iϕ(w) = 2.
�

By Proposition 2 and the Wis la’s Theorem we have at once:

Corollary 1. In Orlicz spaces Lϕ(µ), for z ∈ B+(Lϕ(µ)) the following conditions
are equivalent:

(i) B(Lϕ(µ)) is stable at z;
(ii) B+(Lϕ(µ)) is stable at z. �

We connect the main theorem with Wis la’s Theorem:

Theorem 1. The following conditions are equivalent.

(a) B(Lϕ(µ)) is stable.
(b) B+(Lϕ(µ)) is stable.
(c) At least one of the following conditions is satisfied:

(i) dim Lϕ(µ) < +∞,
(ii) Lϕ(µ) ∼= L∞(µ),
(iii) ϕ ∈ ∆r(µ) for some r > 1,
(iv) ϕ ∈ ∆0

r(µ) for some r > 1 provided c(ϕ) < +∞ and ϕ(c(ϕ)) < ∞,
(v) ϕ ∈ ∆0

r(µ) for some r > 1 on the purely atomic part of Ω provided
c(ϕ) < +∞, ϕ(c(ϕ)) < +∞ and the measure of the atomless part of
Ω is finite,

(vi) c(ϕ) < +∞, ϕ(c(ϕ)) < +∞ and µ(Ω) < +∞.

Proof: The equivalence (a)⇔(c) is the content of Theorem 5 from [22].
(a)⇒(b) follows from Proposition 3 (or [6]).
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(b)⇒(a) Let B+(Lϕ(µ)) be stable. Let z ∈ B(Lϕ(µ)). Hence |z| ∈ B+(Lϕ(µ))
and, by assumption, B+(Lϕ(µ)) is stable at z, so B(Lϕ(µ)) is stable at z by
Corollary 1. By Proposition 2 it follows that B(Lϕ(µ)) is stable at z. Because z
has been arbitrary, B(Lϕ(µ)) is stable. �

A. Suarez Granero in [4] has proved that B(Eϕ(µ)) is stable (in general).
Therefore by Proposition 3 (or [6]) it is true:

Corollary 2. B+(Eϕ(µ)) is stable. �
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