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A class of Bol loops with a subgroup of index two

Petr Vojtěchovský

Abstract. Let G be a finite group and C2 the cyclic group of order 2. Consider the
8 multiplicative operations (x, y) 7→ (xiyj)k, where i, j, k ∈ {−1, 1}. Define a new
multiplication on G×C2 by assigning one of the above 8 multiplications to each quarter
(G × {i}) × (G × {j}), for i, j ∈ C2. We describe all situations in which the resulting
quasigroup is a Bol loop. This paper also corrects an error in P. Vojtěchovský: On the
uniqueness of loops M(G, 2).

Keywords: Moufang loops, loops M(G, 2), inverse property loops, Bol loops

Classification: 20N05

1. Introduction

Let G be a finite group. Consider the two maps θyx, θxy−1 : G×G → G×G defined

by θyx(a, b) = (b, a), θxy−1(a, b) = (a, b−1). The group Θ = (Θ, ◦) generated by
θyx and θxy−1 consists of eight maps, and is isomorphic to the quaternion group.
We will denote elements of Θ suggestively by θxy, θxy−1 , θx−1y , θx−1y−1 , θyx,

θyx−1 , θy−1x and θy−1x−1 . For instance, θy−1x is the map defined by θy−1x(a, b) =

(b−1, a).
Let us identify θuv ∈ Θ with ∆θuv, where ∆ : G×G → G is given by ∆(a, b) =

ab. Thanks to this double perspective, each θuv ∈ Θ determines a multiplication
on G, yet it is possible to compose the multiplications.
Let G = {g; g ∈ G} be a copy of G. Given four maps α, β, γ, δ ∈ Θ, define

multiplication ∗ on G ∪ G by

g ∗ h = α(g, h), g ∗ h = β(g, h), g ∗ h = γ(g, h), g ∗ h = δ(g, h),

or, more precisely,

g ∗ h = ∆α(g, h), g ∗ h = ∆β(g, h), g ∗ h = ∆γ(g, h), g ∗ h = ∆δ(g, h),

where g, h ∈ G. Note that G ∗ G = G = G ∗ G, G ∗ G = G = G ∗ G. Hence
G(α, β, γ, δ) = (G ∪ G, ∗) is a quasigroup with normal subgroup G.
Chein proved in [2] that

M(G, 2) = G(θxy , θyx, θxy−1 , θy−1x)
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is a Moufang loop for every group G, and that it is associative if and only if G
is abelian. Many small Moufang loops are of this kind, e.g. the smallest nonasso-
ciative Moufang loop M(S3, 2) (see [3], [7], [12]).
It is natural to ask if there are other constructions G(α, β, γ, δ) besidesM(G, 2)

that produce Moufang loops. I have obtained the following result in [11]:

Theorem 1.1. Let G be a nonabelian group, and let α, β, γ, δ ∈ Θ be as above.
Then G(α, β, γ, δ) is a Moufang loop if and only if it is among

G(θxy , θxy, θxy, θxy), G(θyx, θyx, θyx, θyx),

G(θxy , θyx−1 , θy−1x, θx−1y−1), G(θyx, θx−1y, θxy−1 , θy−1x−1),

G(θxy , θyx, θxy−1 , θy−1x), G(θyx, θyx−1 , θxy, θx−1y),

G(θxy , θx−1y , θyx, θyx−1), G(θyx, θxy, θy−1x, θxy−1).

The four loops in the first two rows are associative and isomorphic to the direct

product of G with the 2-element cyclic group. The remaining four loops are not
associative and are isomorphic to the loop M(G, 2).

2. The mistake

Hence Chein’s construction M(G, 2) is the “unique” construction G(α, β, γ, δ)
that produces nonassociative Moufang loops. I claim in [11] that M(G, 2) is the
“unique” construction G(α, β, γ, δ) that produces nonassociative Bol loops, too.
Unfortunately, this is not correct, as we shall see.
The mistake (pointed out to me by Michael Kinyon) is in Lemma 2 [11], where

I claim that any loop of the form G(α, β, γ, δ) is an inverse property loop. But
I only prove in Lemma 2 [11] that such a loop has two-sided inverses. Hence
the conclusion that any Bol loop G(α, β, γ, δ) is automatically Moufang was not
justified in [11], and is in fact not true.
This note can be considered an erratum for [11]. However, in dealing with

the Bol case, I had to develop additional techniques not found in [11]. Moreover,
several constructions obtained in this way appear to be new, and should be of
interest in the classification of small Bol loops.

3. Reductions and assumptions

Our goal is to describe all Bol loops of the form G(α, β, γ, δ).
Note that |∆Θ| = 1 when G is an elementary abelian 2-group or when |G| = 1.

In such a case, any G(α, β, γ, δ) is equal to G(θxy, θxy , θxy, θxy), and is therefore
isomorphic to G × C2. We thus lose nothing by making this assumption:

Assumption 1. |G| > 1 and G is not an elementary abelian 2-group.

Although G(α, β, γ, δ) does not have to be a loop, it is not hard to determine
when it is (cf. Lemma 1 [11]):
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Lemma 3.1. The quasigroup (M, ∗) = G(α, β, γ, δ) is a loop if and only if

(1) α ∈ {θxy, θyx}, β ∈ {θxy, θyx, θyx−1 , θx−1y}, γ ∈ {θxy, θyx, θy−1x, θxy−1}.

When (M, ∗) is a loop, its neutral element coincides with the neutral element
of G.

Proof: We first show that if (M, ∗) is a loop, its neutral element e coincides with
the neutral element 1 of G. We have 1 ∗ 1 = α(1, 1) = 1 = e ∗ 1, no matter what
α ∈ Θ is. Since (M, ∗) is a quasigroup, 1 = e follows.
The equation y = 1∗y holds for every y ∈ G if and only if y = α(1, y) holds for

every y ∈ G, which happens if and only if α does not invert its second argument.
(We will use this trick many times. Note how Assumption 1 is used.) Thus
y = 1 ∗ y holds for every y ∈ G if and only if α ∈ {θxy, θx−1y , θyx, θyx−1}.
Similarly, the equation y = y ∗ 1 holds for every y ∈ G if and only if α ∈

{θxy, θxy−1 , θyx, θy−1x}. Altogether, y = y ∗ 1 = 1 ∗ y holds for every y ∈ G if and

only if α ∈ {θxy, θyx}.
Following a similar strategy, y = 1 ∗ y holds for every y ∈ G if and only if

β ∈ {θxy, θyx, θyx−1 , θx−1y}, and y = y ∗ 1 holds for every y ∈ G if and only if

γ ∈ {θxy, θyx, θy−1x, θxy−1}. �

Since we are only interested in loops here, we assume:

Assumption 2. The maps α, β, γ are as in (1).

For a groupoid (A, ◦), let Aop = (A, ◦op) be the opposite of A, defined by
x ◦op y = y ◦ x. Then

G(α, β, γ, δ)op = G(θyxα, θyxγ, θyxβ, θyxδ),(2)

G(α, β, γ, δ) = Gop(θyxα, θyxβ, θyxγ, θyxδ).(3)

It is not necessarily true that G(α, β, γ, δ)op is isomorphic to G(α, β, γ, δ). How-
ever, by (3), any loop G(θyx, β, γ, δ) can also be obtained as Gop(θxy, β′, γ′, δ′),

for some β′, γ′, δ′. As G is isomorphic to Gop (via x 7→ x−1), we postulate:

Assumption 3. α = θxy.

Our last reduction concerns the maps β and γ.

Lemma 3.2. The loop G(α, β, γ, δ) is isomorphic to G(α, β′, γ′, θx−1y−1δ) if

(β, β′) ∈ {(θxy, θyx−1), (θyx, θx−1y), (θx−1y, θyx), (θyx−1 , θxy)},

(γ, γ′) ∈ {(θxy, θy−1x), (θyx, θxy−1), (θxy−1 , θyx), (θy−1x, θxy)}.

Proof: Let (M, ∗) = G(α, β, γ, δ), and (M, ◦) = G(α, β′, γ′, θx−1y−1δ). Consider

the permutation f : M = G ∪ G → M defined by f(x) = x, f(x) = x−1, for
x ∈ G.
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We show that f is an isomorphism of (M, ∗) onto (M, ◦) if (and only if)

(4) (∆β(x, y))−1 = ∆β′(x, y−1), (∆γ(x, y))−1 = ∆γ′(x−1, y).

Once we establish this fact, the proof is finished by checking that the pairs (β, β′),
(γ, γ′) in the statement of the Lemma satisfy (4).
In the following computation, we emphasize by ∆ the multiplication inM . Let

x, y ∈ G. Then

f(x ∗ y) = f(∆α(x, y)) = ∆α(x, y),

f(x ∗ y) = f(∆β(x, y)) = (∆β(x, y))−1,

f(x ∗ y) = f(∆γ(x, y)) = (∆γ(x, y))−1,

f(x ∗ y) = f(∆δ(x, y)) = ∆δ(x, y),

while

f(x) ◦ f(y) = x ◦ y = ∆α(x, y),

f(x) ◦ f(y) = x ◦ y−1 = ∆β′(x, y−1),

f(x) ◦ f(y) = x−1 ◦ y = ∆γ′(x−1, y),

f(x) ◦ f(y) = x−1 ◦ y−1 = ∆θx−1y−1δ(x−1, y−1).

We see that f(x ∗ y) = f(x) ◦ f(y), f(x ∗ y) = f(x) ◦ f(y) always hold, and that
f(x ∗ y) = f(x) ◦ f(y), f(x ∗ y) = f(x) ◦ f(y) hold if (β, β′), (γ, γ′) satisfy (4). �

Observe that for any admissible value of β, γ and δ, Lemma 3.2 provides an
isomorphism of G(α, β, γ, δ) that leaves α intact. Furthermore, if γ = θxy−1 , the

corresponding γ′ is equal to θyx, and if γ = θy−1x, we have γ′ = θxy. We can
therefore assume:

Assumption 4. γ ∈ {θxy, θyx}.

We could have reduced β instead of γ, but the choice we have made will be
more convenient later on.

4. The technique

Suppose we want to check if (M, ∗) = G(α, β, γ, δ) satisfies a given identity. Since
the product a ∗ b in M depends on whether the elements a, b belong to G or G,
it is natural to treat the cases separately. For instance, the left alternative law
a ∗ (a ∗ b) = (a ∗ a) ∗ b for M leads to four identities x ∗ (x ∗ y) = (x ∗ x) ∗ y,
x ∗ (x ∗ y) = (x ∗ x) ∗ y, x ∗ (x ∗ y) = (x ∗ x) ∗ y, and x ∗ (x ∗ y) = (x ∗ x) ∗ y, where
x, y ∈ G. In turn, each of these identities can be rewritten as an identity for G,
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using the maps α, β, γ, δ. Here are the four left alternative identities together
with their translations:

x ∗ (x ∗ y) = (x ∗ x) ∗ y α(x, α(x, y)) = α(α(x, x), y),(5)

x ∗ (x ∗ y) = (x ∗ x) ∗ y β(x, β(x, y)) = β(α(x, x), y),(6)

x ∗ (x ∗ y) = (x ∗ x) ∗ y δ(x, γ(x, y)) = α(δ(x, x), y),(7)

x ∗ (x ∗ y) = (x ∗ x) ∗ y γ(x, δ(x, y)) = β(δ(x, x), y).(8)

In case we need to prove that (M, ∗) does not satisfy a given identity, it suffices to
show that any of the translated identities does not hold for G. For such purposes,
it is often advantageous to look at an identity that does not involve many different
maps (i.e., (6) is preferable to (8), say).
More importantly, since we know nothing about G besides the fact that it

satisfies Assumption 1, how do we decide if a given identity is true or false in G?
Well, if we treat the identity as an identity in a free group, and if the identity
reduces to x = x−1, it must be false in G. More identities reduce to x = x−1 if
we assume that the free group is abelian. Instead of making this distinction for
each particular identity, we will treat the abelian and nonabelian cases separately
from the start.
When G is a group and m a positive integer, we let

Gm = {gm; g ∈ G}, Gm = {g ∈ G; gm = 1}.

Note that, in the literature, Gm often denotes the set of all elements whose order
is a power of m. In our case, Gm consists of all elements of exponent m.
Because of the nature of Bol identities (see below), we will often come across

group identities involving squares. Two conditions for G will then help us charac-
terize the groups in which such identities hold. Namely, G2 ⊆ Z(G), and G4 = 1.
The former assumption says that G/Z(G) is an elementary abelian 2-group. The
latter assumption is equivalent to G4 = G.
We are now ready to start the search for all Bol loops G(α, β, γ, δ). Recall that

a loop is left Bol if it satisfies the identity

(9) x(y(xz)) = (x(yx))z,

and it is right Bol if it satisfies the identity ((zx)y)x = z((xy)x). (See [9].) Hence
left Bol loops are opposites of right Bol loops, and thus all right Bol loops of the
form G(α, β, γ, δ) can be obtained from the left Bol ones via (2).
We therefore restrict our search to left Bol loops.

5. The abelian case

In this section we suppose that G is a finite abelian group. Then |∆Θ| = 4, and
it suffices to consider multiplications θxy, θx−1y , θxy−1 , θx−1y−1 .
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Assumptions 1–4 are now equivalent to: G is abelian, |G| > 1, G is not an
elementary abelian 2-group, and

α = θxy , β ∈ {θxy, θx−1y}, γ = θxy, δ ∈ {θxy, θx−1y, θxy−1 , θx−1y−1}.

Left Bol loops are left alternative, as is immediately obvious upon substituting
y = 1 into (9). Let us therefore first describe all left alternative loops G(α, β, γ, δ).

Lemma 5.1. Suppose that G is an abelian group and that Assumptions 1–4 are
satisfied. Then G(α, β, γ, δ) is a left alternative loop if and only if one of the
following conditions is satisfied:

(i) (β, δ) ∈ {(θxy, θxy), (θxy , θx−1y), (θx−1y , θx−1y)},

(ii) G4 = 1 and (β, δ) = (θx−1y , θxy).

Proof: Identity (5) holds since α = θxy. Identity (6) clearly holds when β = θxy.

When β = θx−1y, it becomes x−1x−1y = (xx)−1y; again true.

When β = θxy, identity (8) becomes xδ(x, y) = δ(x, x)y. Note that this identity

cannot hold if δ inverts its second argument. (Since then there is y−1 on the left,
y on the right, and with x = 1 the identity becomes y = y−1.) On the other
hand, the identity xδ(x, y) = δ(x, x)y holds for δ = θxy and δ = θx−1y .

When β = θx−1y, (8) becomes xδ(x, y) = δ(x, x)−1y. Again, this identity
cannot hold if δ inverts its second argument. When δ = θx−1y, it becomes y = y

(true). When δ = θxy , it becomes xxy = (xx)−1y, which holds if and only if

G4 = 1.
Finally, (7) holds for δ ∈ {θxy, θx−1y}. �

Theorem 5.2. Assume that G is an abelian group and that Assumptions 1–4
are satisfied. Then (M, ∗) = G(α, β, γ, δ) is a group if and only if it is among

G(θxy , θxy, θxy, θxy),(10)

G(θxy , θx−1y, θxy, θx−1y).(11)

The group (10) is the direct product G×C2, and the group (11) is isomorphic to
the Chein loop M(G, 2).
Furthermore, (M, ∗) is a nonassociative left Bol loop if and only if (M, ∗) is a

left Bol loop that is not Moufang if and only if G4 = 1 and (M, ∗) is among

G(θxy , θxy, θxy, θx−1y),(12)

G(θxy , θx−1y , θxy, θxy).(13)

For a given G, the two loops (12), (13) are not isomorphic.

Proof: There cannot be more than 4 left Bol loops G(α, β, γ, δ) satisfying As-
sumptions 1–4, since there are only 4 such left alternative loops, by Lemma 5.1.
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Clearly, (10) is the direct product G × C2. We claim that the loop (11) is
isomorphic to M(G, 2). To see that, write M(G, 2) as G(θxy , θxy, θxy−1 , θxy−1),

and apply a suitable isomorphism of Lemma 3.2 to it. Since G is abelian, (11) is
associative by [2].
Consider one of the flexible identities x ∗ (y ∗ x) = (x ∗ y) ∗ x. It translates

into γ(x, δ(y, x)) = β(δ(x, y), x). This becomes xy−1x = x−1yx for (12), and
xyx = y−1x−1x for (13); both false (let y = 1).
Thus neither of the loops (12), (13) is flexible, and hence neither is a Mo-

ufang loop. We must now check that (12), (13) are left Bol. This follows by
straightforward calculation:
The left Bol identity for (M, ∗) translates into 8 identities for G. Here they

are:

x∗(y∗(x∗z)) = (x∗(y∗x))∗z α(x,α(y,α(x,z))) = α(α(x,α(y,x)),z)(14)

x∗(y∗(x∗z)) = (x∗(y∗x))∗z β(x,β(y,β(x,z))) = β(α(x,α(y,x)),z)(15)

x∗(y∗(x∗z)) = (x∗(y∗x))∗z β(x,γ(y,α(x,z))) = γ(β(x,γ(y,x)),z)(16)

x∗(y∗(x∗z)) = (x∗(y∗x))∗z δ(x,β(y,γ(x,z))) = α(δ(x,β(y,x)),z)(17)

x∗(y∗(x∗z)) = (x∗(y∗x))∗z α(x,δ(y,β(x,z))) = δ(β(x,γ(y,x)),z)(18)

x∗(y∗(x∗z)) = (x∗(y∗x))∗z γ(x,α(y,δ(x,z))) = β(δ(x,β(y,x)),z)(19)

x∗(y∗(x∗z)) = (x∗(y∗x))∗z γ(x,δ(y,γ(x,z))) = γ(γ(x,δ(y,x)),z)(20)

x∗(y∗(x∗z)) = (x∗(y∗x))∗z δ(x,γ(y,δ(x,z))) = δ(γ(x,δ(y,x)),z)(21)

Since the only nontrivial multiplication in (12) is δ, it suffices to verify identities
(17)–(21) for (12). We obtain x−1yxz = x−1yxz (true), xy−1xz = (xyx)−1z
(true if and only if G4 = 1), xyx−1z = x−1yxz (true), xy−1xz = xy−1xz (true),
and x−1yx−1z = (xy−1x)−1z (true), respectively.
Since the only nontrivial multiplication in (13) is β, it suffices to verify identities

(15)–(19) for (13). We obtain x−1y−1x−1z = (xyx)−1z (true), x−1yxz = x−1yxz
(true), xy−1xz = xy−1xz (true), xyx−1z = x−1yxz (true), xyxz = (xy−1x)−1z
(true if and only if G4 = 1), respectively.
It remains to check that (12) is not isomorphic to (13). To see that, notice

that all elements x are of order 2 in (12) (since δ = θxy−1), while the order of x is

bigger or equal to the order of x in (13) (since the nth power of x in (M, ∗) can
be written as x ∗ (x ∗ (. . . )), and γ = δ = θxy). �

Remark 5.3. By the Fundamental theorem for finite abelian groups [10], the
groups required for (12), (13) are exactly the groups of the form (C4)

m × (C2)
n,

where m > 0 and n ≥ 0.

Remark 5.4. The smallest left Bol loops that are not Moufang are of order 8.
In fact, there are 6 such loops, up to isomorphism [1]. Five of them contain
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a subgroup isomorphic to C4. (See [1], or use the LOOPS package [8] for GAP,
where the six Bol loops can be obtained via BolLoop(8,i), with 1 ≤i≤ 6.) Our
constructions (12) and (13) yield two of these five loops. We can of course write
down their multiplication tables easily:

1 2 3 4 5 6 7 8
2 3 4 1 6 7 8 5
3 4 1 2 7 8 5 6
4 1 2 3 8 5 6 7
5 6 7 8 1 2 3 4
6 7 8 5 4 1 2 3
7 8 5 6 3 4 1 2
8 5 6 7 2 3 4 1

1 2 3 4 5 6 7 8
2 3 4 1 8 5 6 7
3 4 1 2 7 8 5 6
4 1 2 3 6 7 8 5
5 6 7 8 1 2 3 4
6 7 8 5 2 3 4 1
7 8 5 6 3 4 1 2
8 5 6 7 4 1 2 3

Remark 5.5. Drápal showed in [4] that proximity of group multiplication tables
implies proximity of algebraic properties. More precisely, he defined the distance
d(∗, ◦) of two groups (G, ∗), (G, ◦) with the same underlying set G as the cardi-
nality of {(g, h) ∈ G × G; g ∗ h 6= g ◦ h}, and showed that if d(∗, ◦) < |G|2/9
then (G, ∗) is isomorphic to (G, ◦). If (G, ∗) (and thus (G, ◦)) is a 2-group, the
isomorphism follows already from d(∗, ◦) < |G|2/4 (cf. [5]). Drápal and the author
conjecture in [6] that the same is true for Moufang 2-loops, i.e., (G, ∗) ∼= (G, ◦) if
(G, ∗), (G, ◦) are Moufang 2-loops satisfying d(∗, ◦) < |G|2/4.
Note that the distance of any of the two nonassociative left Bol loops in Re-

mark 5.4 from the canonical multiplication table of the direct product C4 ×C2 is
8, i.e., only 1/8 · 82. Hence the conjecture cannot be generalized from Moufang
to Bol loops.

6. The nonabelian case

In this section we suppose that G is a finite nonabelian group. This assumption
has some consequences on the validity of identities. For instance, while xy−1 =
y−1x holds in the abelian case, it is always false in this section, no matter what
G is.
We stick to the same strategy as in the abelian case.

Lemma 6.1. Assume that G is a nonabelian group, and that Assumptions 1–4
are satisfied. Then G(α, β, γ, δ) is a left alternative loop if and only if one of the
following conditions is satisfied:

(i) (γ, δ) ∈ {(θxy, θx−1y), (θyx, θyx−1)},

(ii) (β, γ, δ) = (θxy , θxy, θxy),

(iii) G2 ⊆ Z(G) and (β, γ, δ) ∈ {(θyx, θxy, θxy), (θxy, θyx, θyx), (θyx, θyx, θyx)},

(iv) G4 = 1 and (β, γ, δ) = (θx−1y, θxy, θxy),

(v) G2 ⊆ Z(G), G4 = 1 and (β, γ, δ) ∈ {(θyx−1 , θxy, θxy), (θyx−1 , θyx, θyx),

(θx−1y, θyx, θyx)}.
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Proof: We must check for which admissible values of α, β, γ and δ the identities
(5)–(8) hold.
The identities (5), (6) always hold.
Denote by I(δ) the identity (7), i.e., δ(x, γ(x, y)) = δ(x, x)y. First observe that

if δ inverts its second argument then I(δ) does not have a solution; otherwise
γ would have to invert its second argument, too, and that is not allowed by
Assumption 4. Now, I(θxy) is xγ(x, y) = xxy, which has a unique solution γ =

θxy; I(θx−1y) is x−1γ(x, y) = y with solution γ = θxy; I(θyx) is γ(x, y)x = x2y

with solution γ = θyx, but only if G2 ⊆ Z(G); and I(θyx−1) is γ(x, y)x−1 = y
with solution γ = θyx.
We now consider the pairs (γ, δ) = (θxy , θxy), (θxy, θx−1y), (θyx, θyx),

(θyx, θyx−1), and test for which values of β they satisfy (8). It turns out that

every such triple (β, γ, δ) satisfies (8), but additional assumptions on G are some-
times needed. Here is the calculation:
Assume (γ, δ) = (θxy , θxy), and denote by J(β) the identity (8), i.e., xxy =

β(xx, y). Then J(θxy) holds, J(θyx) holds if G
2 ⊆ Z(G), J(θyx−1) is x2y = yx−2,

which holds if and only if G4 = 1 and G2 ⊆ Z(G), and J(θx−1y) holds when

G4 = 1.
Assume (γ, δ) = (θxy, θx−1y) and denote by J(β) the identity (8), i.e., y =

β(1, y). Since β never inverts its second argument, J(β) always holds.
Assume (γ, δ) = (θyx, θyx), G

2 ⊆ Z(G), and denote by J(β) the identity (8),

i.e., yx2 = β(x2, y). Then J(θxy) holds, J(θyx) holds, J(θyx−1) holds if G4 = 1,

and J(θx−1y) holds if G
4 = 1.

Assume (γ, δ) = (θyx, θyx−1) and denote by J(β) the identity (8), i.e., y =

β(1, y). Using our usual trick with the second argument, we see that J(β) always
holds. �

Theorem 6.2. Suppose that G is a nonabelian group and that Assumptions 1–4
are satisfied. Then (M, ∗) = G(α, β, γ, δ) is a group if and only if (M, ∗) is equal
to

(22) G(θxy, θxy, θxy, θxy).

The loop (M, ∗) is a nonassociative Moufang loop if and only if it is equal to

(23) G(θxy , θx−1y, θyx, θyx−1),

and then it is isomorphic to the Chein loop M(G, 2).
The loop (M, ∗) is a left Bol loop that is not Moufang if and only if: either

G2 ⊆ Z(G) and (M, ∗) is among

G(θxy , θx−1y, θxy, θx−1y),(24)

G(θxy , θxy, θyx, θyx);(25)
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or G2 ⊆ Z(G), G4 = 1 and (M, ∗) is among

G(θxy , θxy, θxy, θx−1y),(26)

G(θxy , θxy, θyx, θyx−1),(27)

G(θxy , θx−1y , θxy, θxy),(28)

G(θxy , θx−1y , θyx, θyx).(29)

Proof: According to Lemma 6.1, there are 16 left alternative loops in the non-
abelian case. We now use the left Bol identity (16) to eliminate 8 of them.
When γ = θxy, (16) becomes β(x, yxz) = β(x, yx)z, and it is not satisfied when

β = θyx, β = θyx−1 . When γ = θyx, (16) becomes β(x, xzy) = zβ(x, xy), and it
is not satisfied when β = θyx, β = θyx−1 .

We claim that the remaining 8 loops G(α, β, γ, δ) are all left Bol. It is clear
for (22). The loop (23) is isomorphic to M(G, 2) via Lemma 3.2. Since G is
nonabelian, (23) is nonassociative [2].
A straightforward verification of identities (14)–(21) shows that the loops (24)–

(29) are left Bol, however, additional assumptions on G are needed. We will
indicate when the assumptions are needed, and leave the verification of (14)–(21)
to the reader.
First of all, G2 ⊆ Z(G) is needed for (25) already in Lemma 6.1, and G2 ⊆

Z(G), G4 = 1 is needed for (29) by the same lemma. The condition G2 ⊆ Z(G)
is required for (24) in (18). The conditions G2 ⊆ Z(G), G4 = 1 are required for
(26) and (27) in (18), and for (28) in (19).
The loops (24)–(29) are not Moufang, by Theorem 1.1. �

Remark 6.3. There are nonabelian groups satisfying G2 ⊆ Z(G) and G4 = 1. For
instance the 8-element dihedral group D8 and the 8-element quaternion group Q8
have this property. So do the groups (D8)

a×(Q8)
b×(C4)

c×(C2)
d with a+b > 0.

7. Questions

Our methods certainly do not yield all Bol loops with a subgroup of index 2. This
is apparent already from Remark 5.4. Is there some way of determining all such
Bol loops?
Is it true that the 6 constructions (24)–(29) of Theorem 6.2 produce 6 pairwise

nonisomorphic loops when G is fixed? Note that x ∈ G is of order 2 if and only if
δ(x, x) = 1. Hence there are |G2|+ |G| elements of exponent 2 in (24), (26), (27),
and 2|G2| < |G|+ |G2| elements of exponent 2 in the remaining three loops. The
following lemma allows us to distinguish more loops:

Lemma 7.1. Let (25), (28), (29) be as in Theorem 6.2. Then (28) 6∼= (25) 6∼= (29).

Proof: Let (M, ∗) = G(α, β, γ, δ). Let us count the cardinality of Z(M) = {x ∈
M ; x ∗ y = y ∗ x for every y ∈ M} for the three loops in question.
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Assume x ∈ G. When y ∈ G, we have x ∗ y = y ∗ x if and only if x ∈ Z(G).
When y ∈ G, we have x ∗ y = y ∗ x if and only if β(x, y) = γ(y, x). This is always
true for (25).
Assume x ∈ G. When y ∈ G, we have x∗y = y∗x if and only if δ(x, y) = δ(y, x).

This is true (in all three cases) if and only if x ∈ Z(G). When x ∈ Z(G) and
y ∈ G, we have x ∗ y = y ∗ x if and only if γ(x, y) = β(y, x). This reduced to
yx = yx (always true) for (25), to xy = y−1x (always false, because xy = xy−1

holds for every y if and only if G2 = G) for (28), and to yx = y−1x (always false)
for (29).
Altogether, |Z(M)| = 2|Z(G)| for (25), while |Z(M)| ≤ |Z(G)| for the other

two loops. �

Even if the 6 loops are pairwise nonisomorphic for a given G, it is possible
that G(α, β, γ, δ) ∼= H(α′, β′, γ′, δ′) holds for some nonisomorphic groups G, H
to which Theorem 6.2 is applied. Can you determine these “exceptional” isomor-
phisms? Are they exceptional or common?
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