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Subgroups and products of R-factorizable P -groups

Constancio Hernández, Michael Tkachenko

Abstract. We show that every subgroup of an R-factorizable abelian P -group is topo-
logically isomorphic to a closed subgroup of another R-factorizable abelian P -group.
This implies that closed subgroups of R-factorizable P -groups are not necessarily R-
factorizable. We also prove that if a Hausdorff space Y of countable pseudocharacter is
a continuous image of a product X =

Q
i∈I Xi of P -spaces and the space X is pseudo-

ω1-compact, then nw(Y ) ≤ ℵ0. In particular, direct products of R-factorizable P -groups
are R-factorizable and ω-stable.
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pseudocharacter, cellularity, ℵ0-box topology, σ-product

Classification: Primary 54H11, 22A05, 54G10; Secondary 54A25, 54C10, 54C25

1. Introduction

The main subject of this article are P -groups , that is, topological groups in
which all Gδ-sets are open. It is known that P -groups are peculiar in many re-
spects. For example, every P -group G has a local base at the identity of open
subgroups and if G is ℵ0-bounded, it has a local base at the identity of open
normal subgroups [15, Lemma 2.1]. Weak compactness type conditions substan-
tially improve the properties of P -groups. The following result proved in [15]
demonstrates this phenomenon and will be frequently used in the article.

Theorem 1.1 ([15, Theorem 4.16 and Corollary 4.14]). For a P -group G, the
following conditions are equivalent:

(1) G is R-factorizable;

(2) G is pseudo-ω1-compact;
(3) G is ω-stable;
(4) G is ℵ0-bounded and every continuous homomorphic image H of G with

ψ(H) ≤ ℵ1 is Lindelöf.

In addition, every R-factorizable P -group G satisfies c(G) ≤ ℵ1.

All terms that appear in Theorem 1.1 are explained in the next subsection.
Subgroups of R-factorizable P -groups need not be R-factorizable (see [13, Ex-

ample 2.1] or [15, Example 3.28]). It is an open problem whether every ℵ0-
bounded P -group is topologically isomorphic to a subgroup of an R-factorizable
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P -group (see Problem 4.1). We show, however, that every subgroup of an R-
factorizable abelian P -group can be embedded as a closed subgroup into another
R-factorizable abelian P -group (see Theorem 2.5). Hence closed subgroups of
R-factorizable P -groups can fail to be R-factorizable. This is the main result of
Section 2.
By [15, Theorem 5.5], direct products of R-factorizable P -groups are R-factor-

izable. In Theorem 3.7, we present a purely topological result about a special
representation of continuous maps of products of P -spaces which generalizes The-
orem 5.5 of [15]. It implies, in particular, that for any product of P -spaces, the
properties of being ω-stable and pseudo-ω1-compact are equivalent.

1.1 Notation and terminology. All spaces and topological groups are assumed
to be Hausdorff unless a different axiom of separation is specified explicitly.
Let {Xi : i ∈ I} be a family of topological spaces. A subset B of the product

X =
∏

i∈I Xi is called a box in X if it has the form B =
∏

i∈I Bi, where Bi ⊆ Xi

for each i ∈ I. Given a box B ⊆ X , we define the set coordB ⊆ I by

coordB = {i ∈ I : Bi 6= Xi}.

The ℵ0-box topology of the product X is the topology generated by all boxes
of the form U =

∏

i∈I Ui, where | coordU | ≤ ℵ0 and each Ui is open in Xi.
Clearly, the Tychonoff topology of the space X is generated by open boxes U
with | coordU | < ℵ0.
For every nonempty set J ⊆ I, we put XJ =

∏

i∈I Xi and denote by πJ the
projection of X onto XJ . Given a map f :X → Y , we say that f depends only on
a set J ⊆ I if f(x) = f(y) for all x, y ∈ X satisfying πJ (x) = πJ (y).
Pick a point a ∈ X and, for every x ∈ X , put

supp(x) = {i ∈ I : xi 6= ai}.

Then the subset
σ(a) = {x ∈ X : supp(x) is finite }

of X is called the σ-product of the family {Xi : i ∈ I} with center at a.
Let G =

∏

i∈I Gi be a direct product of groups. For every x ∈ G, we set
suppx = {i ∈ I : xi 6= ei}, where ei is the identity of Gi. Then the σ-product
σ(e) ⊆ G is a subgroup of G, where e is the identity of G.
Suppose that Y is a space. We say that Y is a P -space if every countable

intersection of open sets is open in Y . Let τ be an infinite cardinal. A subset
Z ⊆ Y is said to be Gτ -dense in Y if Z intersects every nonempty Gτ -set in Y .
A space Y is called ω-stable if every continuous image Z of Y which admits

a coarser second countable Tychonoff topology satisfies nw(Z) ≤ ℵ0. In general,
let τ ≥ ℵ0. A space Y is called τ-stable if every continuous image Z of Y which
admits a coarser Tychonoff topology of weight≤ τ satisfies nw(Z) ≤ ℵ0. If Y
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is τ -stable for τ ≥ ℵ0, then Y is said to be stable. It is known that arbitrary
products and σ-products of second countable spaces are ω-stable [1, Corollary 13].

A space Y is said to be pseudo-ω1-compact if every locally finite (equivalently,
discrete) family of open sets in Y is countable. Lindelöf spaces as well as spaces
of countable cellularity are pseudo-ω1-compact.

A topological group G is called ℵ0-bounded if it can be covered by countably
many translates of any neighborhood of the identity. We also say that G is R-

factorizable if every continuous real-valued function f on G can be represented
in the form f = h ◦ ϕ, where ϕ:G → H is a continuous homomorphism onto a
second countable topological group H and h is a continuous real-valued function
on H . Every R-factorizable group is ℵ0-bounded, but not vice versa [13], [14].

The kernel of a homomorphism p:G→ H is kerp. The minimal subgroup of a
group G containing a set A ⊆ G is denoted by 〈A〉.
As usual, w(Y ), nw(Y ), ψ(Y ), L(Y ), and c(Y ) are the weight, network weight,

pseudocharacter, Lindelöf number and cellularity of a space Y , respectively.

The set of all positive integers is denoted by N, while Z is the additive group
of integers.

2. Subgroups of R-factorizable P -groups

Here we show that an arbitrary subgroup of an R-factorizable abelian P -group
is topologically isomorphic to a closed subgroup of another R-factorizable abelian
P -group. This result enables us to conclude that closed subgroups of R-factor-
izable P -groups are not necessarily R-factorizable. Since, by Theorem 1.1, R-
factorizability and pseudo-ω1-compactness coincide for P -groups, this makes R-
factorizable P -groups look like pseudocompact groups: every subgroup of a pseu-
docompact group is topologically isomorphic to a closed subgroup of another
pseudocompact group [4]. This analogy between R-factorizable P -groups and
pseudocompact groups will be extended in Section 3.

We start with several auxiliary facts.

Lemma 2.1. Suppose that G is an R-factorizable P -group, and let H be a Gω1 -

dense subgroup of G. Then H is R-factorizable.

Proof: By Theorem 1.1, G satisfies c(G) ≤ ℵ1. Therefore, the dense subgroup
H of G also satisfies c(H) ≤ ℵ1. Let f :H → R be a continuous function. By
Schepin’s theorem in [12], one can find a quotient homomorphism π:H → K onto
a topological group K with ψ(K) ≤ ℵ1 and a continuous function g:K → R

such that f = g ◦ π. Observe that H ⊆ G ⊆ ̺G = ̺H , where ̺G and ̺H
denote the Răıkov completions of G and H , respectively. Now, consider the
continuous homomorphic extension π̂: ̺H → ̺K of π, and take the restriction
π̃ = π̂↾G:G→ ̺K of π̂ to G. Since H is Gω1-dense in G, the image K = π̃(H) is
Gω1 -dense in π̃(G). We claim that π̃(G) = K.
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Indeed, ψ(K) ≤ ℵ1 implies that there exists a family {Uα : α < ω1} of open
sets in π̃(G) such that {e} = K ∩

⋂

α∈ω1
Uα, where e is the identity of ̺K. If

P =
⋂

α∈ω1
Uα \ {e} 6= ∅, then P is a nonempty Gω1 -set in π̃(G) that does

not intersect K, which is a contradiction. Thus, ψ(π̃(G)) ≤ ℵ1. Since every
fiber of π̃ is a Gω1-set in G, the group H intersects all fibers of π̃. Hence we have

π̃(G) = π̃(H) = K. So, f̃ = g◦ π̃ is a continuous extension of f to G. This implies
that H is C-embedded in G and, hence, H is R-factorizable by [7, Theorem 2.4].

�

Pseudo-ω1-compactness is not a productive property, not even in the class of P -
spaces (one can modify Novak’s construction in [11] to produce a counterexample).
The following lemma shows the difference between P -spaces and P -groups.

Lemma 2.2. A finite product of R-factorizable P -groups is pseudo-ω1-compact
(equivalently, R-factorizable).

Proof: Let G = G1 × · · · × Gn, where each Gi is an R-factorizable P -group.
Then G is also a P -group. Hence we can assume that n = 2. Note that the
factors G1 and G2 are ℵ0-bounded, and so is the product group G. So, by
Theorem 1.1, it suffices to verify that every continuous homomorphic image H of
G with ψ(H) ≤ ℵ1 is Lindelöf. Let p:G→ H be a corresponding homomorphism.
Then one can apply [14, Lemma 3.7] to find, for every i = 1, 2, a continuous
homomorphism fi:Gi → Ki onto a topological group Ki with ψ(Ki) ≤ ℵ1 such
that ker f1 × ker f2 ⊆ ker p. Refining topologies of the groups Ki, we can assume
that the homomorphisms f1 and f2 are open. Then K1 and K2 are P -groups
by [15, Lemma 2.1] and the product homomorphism f = f1 × f2 of G onto
K = K1 × K2 is open. From our choice of the homomorphisms f1 and f2 it
follows that there exists a homomorphism ϕ:K → H such that p = ϕ◦ f . Since f
is open, the homomorphism ϕ is continuous. By Theorem 1.1, the P -groups K1
and K2 are Lindelöf, and so is the product group K by Noble’s theorem in [10].
Hence the group H = ϕ(K) is Lindelöf as well. This finishes the proof. �

The next result has several applications in this section and in Section 3.

Lemma 2.3. The following conditions are equivalent for a product space X =
∏

i∈I Xi:

(a) X is pseudo-ω1-compact;
(b) the productXJ =

∏

i∈J Xi is pseudo-ω1-compact for each finite set J ⊆ I;
(c) every σ-product σ(a) ⊆ X is pseudo-ω1-compact;
(d) every σ-product σ(a) ⊆ X endowed with the relative ℵ0-box topology is
pseudo-ω1-compact.

Proof: It clear that (a)⇒(b). Since, for each a ∈ X , σ(a) is dense in X when
X carries the usual product topology and the ℵ0-box topology is finer than the
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product topology of X , we have that (c)⇒(a) and (d)⇒(c)⇒(b). Therefore, it
suffices to show that (b)⇒(d).
Let {Uα : α < ω1} be a collection of nonempty open sets in σ(a). We shall show

that this family cannot be discrete. Without loss of generality, we may assume
that Uα = σ ∩ Vα for each α < ω1, where Vα has the form

∏

i∈I Vα,i, the sets
Vα,i are open in Xi and coordVα ≤ ℵ0. Take a point xα ∈ Uα. Since xα ∈ σ(a),
the point a(i) ∈ Xi is an element of Vα,i for all i ∈ I \ Jα, where Jα = supp(xα)
is a finite subset of I. Now we apply the ∆-lemma in order to find a subset A
of ω1 of cardinality ℵ1 and a finite set J ⊆ I such that Jα ∩ Jβ = J whenever
α, β ∈ A and Jα 6= Jβ . Since the space XJ =

∏

i∈J Xi is pseudo-ω1-compact,
there exists a point y ∈ XJ such that every neighborhood of y intersects infinitely
many elements of the family {

∏

i∈J Vα,i : α ∈ A}. Define a point x ∈ σ(a) by

x(i) =

{

y(i) if i ∈ J ;

a(i) if i ∈ I \ J.

It is easy to see that πJ (x) = y and every neighborhood of x intersects an infinite
number of elements of {Uα : α ∈ A}. Hence the space σ(a) is pseudo-ω1-compact.

�

The equivalence of (a) and (b) in the above lemma should be a known result,
but the authors have not found a corresponding reference in the literature.

Corollary 2.4. Let Π =
∏

i∈I Gi be a direct product of R-factorizable P -groups.
Then σ(e) ⊆ Π, endowed with the relative ℵ0-box topology, is an R-factorizable

P -group.

Proof: It is clear that σ(e) is a P -group. Therefore, σ(e) is R-factorizable by
Theorem 1.1, Lemma 2.2 and Lemma 2.3. �

We now have all necessary tools to deduce the main result of this section about
closed embeddings into R-factorizable P -groups.

Theorem 2.5. Suppose that G is an R-factorizable abelian P -group. If H is
an arbitrary subgroup of G, then H can be embedded as a closed subgroup into
another R-factorizable abelian P -group.

Proof: Let Z be the discrete group of integers. Clearly, G × Z is an R-factor-
izable abelian P -group that contains an isomorphic copy of G. Replacing G by
G×Z, if necessary, we may assume that G contains an element g of infinite order,
g 6= 0G.
Let λ = |G| · ℵ2 and put κ = λ if λ is a regular cardinal or κ = λ

+, otherwise.
Consider the group

σ = {x ∈ Gκ : | suppx| < ℵ0}

endowed with the relative ℵ0-box topology inherited from Gκ. Then σ is an R-
factorizable abelian P -group by Corollary 2.4 and, clearly, |σ| = κ. Let σ\{0σ} =
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{xα : α < κ}. To every element xα, we assign an element x̃α ∈ σ recursively as
follows. Choose δ0 > max suppx0 and define x̃0 ∈ σ by

x̃0(ν) =

{

x0(ν) if ν 6= δ0;

g if ν = δ0.

Suppose that we have already defined x̃β for each β < α, where α < κ. Choose
δα > sup(supp xα ∪

⋃

β<α supp x̃β) and define a point x̃α ∈ σ by

x̃α(ν) =

{

xα(ν) if ν 6= δα;

g if ν = δα.

It is clear that δα = max supp x̃α. This finishes our construction.
Observe that the sequence {δα : α < κ} is strictly increasing (hence it is

cofinal in κ) and x̃β(δα) = 0G whenever β < α < κ. Consider the subgroup
G0 = 〈H0 ∪B〉 of σ, where

H0 = {x ∈ σ : x(0) ∈ H and x(ν) = 0G for each ν 6= 0}

and B = {x̃α : α < κ}. We claim that the group G0 is R-factorizable and contains
H0 ≃ H as a closed subgroup. It is easy to see that H0 is closed in G0 because
it can be expressed as the intersection of the coordinate 0 axes with G0. Indeed,
suppose that x ∈ G0 and x(ν) = 0G for all ν > 0. By the definition of G0, x has
the form x = h+k1x̃α1+ · · ·+knx̃αn , where h ∈ H0, α1 < α2 < · · · < αn < κ and
ki ∈ Z for i = 1, . . . , n. Then x̃αi(δαn) = 0G for each i < n and x̃αn(δαn) = g.
Hence kn = 0. If we proceed in the same way for i = n − 1, . . . , 1, we obtain
kn = · · · = k1 = 0, whence x = h, with h ∈ H0.
By Lemma 2.1, to prove that G0 is R-factorizable, it suffices to verify that G0

is Gω1-dense in σ. To this end, it is enough to show that if x ∈ σ, C ⊆ κ and
|C| ≤ ℵ1, then there exists α < κ such that x̃α(ν) = x(ν) for each ν ∈ C. Suppose
that x ∈ σ and choose β < κ such that δβ > supC. Then choose α < κ such that
β ≤ α and xα(ν) = x(ν) for each ν < δβ . Then x̃α(ν) = x(ν) for each ν ∈ C.
This implies that the group G0 is Gω1 -dense in σ and, therefore, R-factorizable.

�

Corollary 2.6. Closed subgroups of R-factorizable P -groups need not be R-

factorizable.

Proof: According to [13, Example 3.1], there exist an R-factorizable abelian
P -group G and a dense subgroup H of G such that H is not R-factorizable. By
Theorem 2.5, H is topologically isomorphic to a closed subgroup of another R-
factorizable P -group, so that closed subgroups of R-factorizable P -groups are not
necessarily R-factorizable. �

It is known that all subgroups of compact groups as well as all subgroups of
σ-compact groups are R-factorizable [13], [14]. In the following definition, we
introduce the class of groups with this property.
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Definition 2.7. A topological group G is called hereditarily R-factorizable if all
subgroups of G are R-factorizable.

Theorem 2.8. Every hereditarilyR-factorizable P -group is countable and, there-
fore, discrete.

Proof: Suppose to the contrary that G is an uncountable hereditarily R-factor-
izable P -group and take a subset A of G of cardinality ℵ1. It is clear that the
P -group H = 〈A〉 has cardinality ℵ1. Since H is R-factorizable and L(H) ≤
ℵ1, from [15, Corollary 3.34] it follows that H is a Lindelöf group. In its turn,
this implies that w(H) ≤ ℵ1 (see [15, Corollary 4.11]). If w(H) = ℵ1, then
by [7, Theorem 3.1], H has a subgroup which fails to be R-factorizable, thus
contradicting the hereditary R-factorizability ofG. Hence, w(H) = ℵ0. Since H is
a P -space, it is discrete and, consequently, |H | = w(H) = ℵ0. This contradiction
completes the proof. �

One can reformulate Theorem 2.8 by saying that every uncountable P -group
G contains a subgroup of size ℵ1 which fails to be R-factorizable. Indeed, if G
is R-factorizable, this immediately follows from the above argument. Otherwise,
by Theorem 1.1, G contains a discrete family {Uα : α < ω1} of nonempty open
sets. Choose a subgroup H of G of size ℵ1 such that Vα = H ∩ Uα 6= ∅ for each
α < ω1. Then the family {Vα : α < ω1} of nonempty open sets is discrete in H ,
so that the group H is not R-factorizable by Theorem 1.1.

3. Continuous images

By [15, Theorem 5.5], an arbitrary direct product G of R-factorizable P -groups
is R-factorizable. Here we strengthen this result and show that every continuous
map f :G→ X to a Hausdorff space X of countable pseudocharacter can be fac-
tored via a quotient homomorphism π:G→ K onto a second countable topological
group K. In fact, this follows from an even stronger result (see Theorem 3.7): if a
Hausdorff space Y of countable pseudocharacter is a continuous image of a prod-
uct X of P -spaces and X is pseudo-ω1-compact, then nw(Y ) ≤ ℵ0. In particular,
the space X is ω-stable. We precede this result by a series of lemmas. The first
of them is an analogue of Noble’s theorem on z-closed projections [9], [10].

Lemma 3.1. The Cartesian product X × Y of regular P -spaces X and Y is
pseudo-ω1-compact if and only if X and Y are pseudo-ω1-compact and the pro-
jection p:X × Y → X transforms clopen subsets of X × Y to clopen subsets
of X .

Proof: Suppose that X × Y is pseudo-ω1-compact and let W ⊆ X × Y be a

clopen set. If there exists a point x0 ∈ p(W ) \ p(W ), take any point y0 ∈ Y and a
neighborhoodW ′

0 = U
′
0×V0 of (x0, y0), where U

′
0 and V0 are clopen sets, such that

W ′
0∩W = ∅. Pick a point (x1, y1) ∈ W with x1 ∈ U ′

0. Now we take neighborhoods
W1 = U1 × V1 and W

′
1 = U

′
1 × V1 of (x1, y1) and (x0, y1), respectively, where U1,
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U ′
1 and V1 are clopen sets such that W

′
1 ∩W = ∅, W1 ⊆ W and U1 ∪ U

′
1 ⊆ U ′

0.
Suppose that for some α < ω1, we have already chosen points (xβ , yβ) ∈ W as

well as clopen sets Wβ and W
′
β for each β < α, such that Wβ = Uβ × Vβ is a

neighborhood of (xβ , yβ) satisfyingWβ ⊆W andW ′
β = U

′
β×Vβ is a neighborhood

of (x0, yβ) with W
′
β ∩W = ∅, and where Uβ ∪ U ′

β ⊆ U ′
γ if γ < β < α. Choose

(xα, yα) ∈W in such a way that xα ∈
⋂

β<α U
′
β . Then we can take neighborhoods

Wα = Uα × Vα and W
′
α = U ′

α × Vα of (xα, yα) and (x0, yα), respectively, such
that W ′

α ∩W = ∅ and Wα ⊆ W , and where Uα ∪ U ′
α ⊆

⋂

β<α U
′
β . This finishes

our recursive construction.
Since X × Y is pseudo-ω1-compact, the family F = {Wα : α < ω1} has an

accumulation point (x, y) ∈ W . We claim that (x, y) is an accumulation point
of the family F ′ = {W ′

α : α < ω1}. Indeed, let α0 < ω1 be arbitrary. Since
Uα ∪ U ′

α ⊆ Uβ if β < α < ω1 and each U
′
α is clopen, we have x ∈

⋂

α<ω1
U ′

α. Let

U × V be a neighborhood of (x, y) in X × Y . Since y is an accumulation point
of the family {Vα : α < ω1}, there exists α > α0 such that V ∩ Vα 6= ∅. Clearly,
x ∈ U ∩ U ′

α, so that (U × V ) ∩ (U ′
α × Vα) 6= ∅. Our claim is proved.

Thus, (x, y) ∈
⋃

F ∩
⋃

F ′ 6= ∅. However,
⋃

F ⊆W and
⋃

F ′ ⊆ (X×Y )\W =

W ′, whence
⋃

F ∩
⋃

F ′ ⊆ W ∩W ′ = ∅. This contradiction shows that the set
p(W ) is clopen in X .

Conversely, suppose that both spaces X and Y are pseudo-ω1-compact and
p:X × Y → X transforms clopen subsets of X × Y to clopen subsets of X .
Suppose to the contrary that X × Y contains a discrete family {Oα : α < ω1} of
nonempty clopen sets. For every α < ω1, put Wα =

⋃

β≥αOβ . Then we have a

decreasing sequence W0 ⊇ W1 ⊇ · · · ⊇ Wα ⊇ . . . , α < ω1, of nonempty clopen
subsets of X × Y with empty intersection. Each set Uα = p(Wα) is clopen in
X and, since X is pseudo-ω1-compact, the set

⋂

α<ω1
Uα is nonempty. Let x0

be an element of
⋂

α<ω1
Uα. The sets Vα = ({x0} × Y ) ∩Wα are clopen in the

pseudo-ω1-compact space {x0}×Y . Hence
⋂

α<ω1
Vα ⊆

⋂

α<ω1
Wα is nonempty.

This contradiction proves the lemma. �

Lemma 3.2. Suppose that the product X × Y of P -spaces X and Y is pseudo-
ω1-compact. If W is a clopen set in X × Y , then for every x0 ∈ p(W ), there
exists a clopen neighborhood U of x0 in X such that U × Vx0 ⊆ W , where
Vx0 = {y ∈ Y : (x0, y) ∈ W}.

Proof: Set O = (X × Vx0) \W . Since Vx0 is clopen in Y , the set O is clopen
in X × Y . From Lemma 3.1 it follows that p(O) and U = X \ p(O) are clopen
sets in X , where p:X × Y → X is the projection. Note that x0 ∈ U and if
(x, y) ∈ U × Vx0 , then x /∈ p(O). So, (x, y) ∈ W and, hence, U × Vx0 ⊆W . �

The next result can be obtained by combining [8, Theorem 1.6] and the char-
acterization of the so-called approximation property for products of two spaces
given in [2]. We prefer, however, to supply the reader with a direct proof.
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Lemma 3.3. Suppose that the product X =
∏k

i=1Xi of P -spaces is pseudo-ω1-

compact. If W is a clopen set in X , then W =
⋃

n∈ω

∏k
i=1 Un,i, where the sets

Un,i are clopen in Xi for all n ∈ ω and i ≤ k.

Proof: By Lemma 3.1, it suffices to consider the case n = 2. Let W be a clopen
subset of X1 ×X2. Then W

′ = X \W is clopen as well. For every x ∈ X1, put

Vx = {y ∈ X2 : (x, y) ∈W} and V ′
x = {y ∈ X2 : (x, y) ∈W ′}.

Then both sets Vx and V
′
x are clopen in X2 and V

′
x = X2 \ Vx. Consider the

equivalence relation ∼ on X1 defined by x ∼ y if and only if Vx = Vy . We claim
that for every x ∈ X1, the equivalence class [x] of x is open in X1. Indeed, if
y ∈ [x], then Vy = Vx = V . Apply Lemma 3.2 to choose a clopen neighborhood
U of y in X1 such that U × V ⊆W and U × V ′ ⊆W ′, where V ′ = X2 \ V . Then
Vz = V for each z ∈ U , so that y ∈ U ⊆ [x]. This proves that the set [x] is open.
Since the space X1 is pseudo-ω1-compact and the equivalence classes [x] with

x ∈ X1 form a disjoint open cover of X1, there exists a countable set {xn : n ∈
ω} ⊆ X1 such that X1 =

⋃

n∈ω[xn]. It is clear that every set Un,1 = [xn] is
clopen in X1. Therefore, W =

⋃

n∈ω Un,1×Un,2 is the required representation of
W , where Un,2 = Vxn for each n ∈ ω. �

It is well known (see [6]) that if a product space X =
∏

i∈I Xi has countable
cellularity, then every regular closed set in X depends on at most countably many
coordinates. In a sense, our next result is an analogue of this fact in the case when
the product space X is pseudo-ω1-compact and the factors Xi are P -spaces.

Lemma 3.4. Suppose that a product X =
∏

i∈I Xi of P -spaces is pseudo-ω1-
compact. Let σ(a) ⊆ X be a σ-product endowed with the relative ℵ0-box topo-
logy (finer than the usual subspace topology). Then every clopen subset of σ(a)
depends on at most countably many coordinates.

Proof: It is clear that the space σ(a) with the ℵ0-box topology is a P -space. Let
U be a clopen subset of σ(a). Then V = σ(a) \U is also clopen in σ(a). Suppose
that πJ (U)∩ πJ (V ) 6= ∅ for every countable set J ⊆ I. Let us call a set A ⊆ σ(a)
canonical if A has the form σ(a)∩P , where P is an ℵ0-box in X . First, we prove
the following auxiliary fact.

Claim. Let A ⊆ U and B ⊆ V be canonical open sets in σ(a) such that U ′ =
U \A 6= ∅ and V ′ = V \B 6= ∅. Then πJ (U

′)∩ πJ (V
′) 6= ∅ for each countable set

J ⊆ I.

Indeed, there exists a nonempty countable set C ⊆ I such that A = σ(a) ∩

π−1C πC(A) and B = σ(a) ∩ π
−1
C πC(B). Let J be a countable subset of I. We can

assume that C ⊆ J . Since A ∩ V = ∅ = B ∩ U , we infer that

(1) πJ (A) ∩ πJ (V ) = ∅ and πJ (B) ∩ πJ (U) = ∅.
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Note that the set U ′ ∪ A is dense in U and V ′ ∪ B is dense in V . Since the
restriction of πJ to σ(a) is an open map, from πJ (U) ∩ πJ (V ) 6= ∅ it follows that

(2) πJ (U
′ ∪A) ∩ πJ (V

′ ∪B) 6= ∅.

Note that U ′ ⊆ U and V ′ ⊆ V , so (1) implies that πJ (U
′)∩ πJ (B) = ∅, πJ (V

′)∩
πJ (A) = ∅ and πJ (A) ∩ πJ (B) = ∅. Therefore, from (2) it follows that πJ (U

′) ∩
πJ (V

′) 6= ∅. This proves our claim.
We will construct by recursion three sequences {Iα : α < ω1}, {Uα : α < ω1}

and {Vα : α < ω1} satisfying the following conditions for all β, γ < ω1:

(i) Iβ ⊆ I, |Iβ | ≤ ℵ0;
(ii) Iγ ⊆ Iβ if γ < β;
(iii) Uβ and Vβ are nonempty canonical clopen sets in σ(a);
(iv) Uβ ⊆ U , Vβ ⊆ V and πIβ

(Uβ) = πIβ
(Vβ);

(v) Uγ = σ(a) ∩ π
−1
Iβ
πIβ
(Uγ) and Vγ = σ(a) ∩ π

−1
Iβ
πIβ
(Vγ) if γ < β;

(vi) Uγ ∩ Uβ = ∅ and Vγ ∩ Vβ = ∅ if γ < β.

To start, take a nonempty countable set I0 ⊆ I and choose canonical clopen
sets U0 and V0 in σ(a) such that U0 ⊆ U , V0 ⊆ V and πI0(U0) ∩ πI0(V0) 6= ∅.
Taking smaller clopen sets, one can assume that πI0(U0) = πI0(V0).
Suppose that at some stage α < ω1, we have defined sequences {Iβ : β < α},

{Uβ : β < α} and {Vβ : β < α} satisfying conditions (i)–(vi). Since each Iβ
is countable and the sets Uβ , Vβ depend on countably many coordinates, there

exists a countable set Iα ⊆ I such that Iβ ⊆ Iα, Uβ = σ(a) ∩ π−1Iα
πIα
(Uβ) and

Vβ = σ(a)∩π
−1
Iα
πIα
(Vβ) for each β < α. Let U ′

α = U \Gα and V
′
α = V \Hα, where

Gα =
⋃

β<α Uβ and Hα =
⋃

β<α Vβ . Apply the above Claim to choose nonempty

canonical clopen sets Uα ⊆ U ′
α and Vα ⊆ V ′

α such that πIα
(Uα) = πIα

(Vα).
An easy verification shows that the sequences {Iβ : β ≤ α}, {Uβ : β ≤ α} and
{Vβ : β ≤ α} satisfy conditions (i)–(vi) for all β, γ ≤ α, thus finishing our recursive
construction.
Let K =

⋃

α<ω1
Iα. By (iv), the set G =

⋃

α<ω1
Uα is contained in U and

H =
⋃

α<ω1
Vα is contained in V , so that G∩H = ∅. To obtain a contradiction, it

suffices to show that the sets G and H have a common cluster point in σ(a). From

(v), (ii) and our definition of the setsG andH it follows thatG = σ(a)∩π−1
K
πK(G)

and H = σ(a) ∩ π−1K πK(H), so we can assume without loss of generality that
K = I.
By Lemma 2.3, the P -space σ(a) is pseudo-ω1-compact. Hence the family

γ = {Uα : α < ω1} has an accumulation point x ∈ σ(a) and every neighborhood
of x in σ(a) intersects uncountably many elements of γ. Let O be a canonical
open neighborhood of x in X and let C = coordO. Since |C| ≤ ℵ0, (ii) implies
that there exists β < ω1 such that C ⊆ Iβ . There are uncountably many ordinals
α < ω1 such that β ≤ α and O ∩ Uα 6= ∅. For every such an α < ω1, let zα
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be an arbitrary point of the set πIα
(O ∩ Uα) ⊆ πIα

(O) ∩ πIα
(Uα). From (iv)

it follows that πIα
(Uα) = πIα

(Vα), so zα ∈ πIα
(O) ∩ πIα

(Vα). Choose a point
z ∈ Vα such that πIα

(z) = zα. Since coordO = C ⊆ Iβ ⊆ Iα, we conclude that
z ∈ O ∩ Vα 6= ∅. This immediately implies that x is an accumulation point of
the family {Vα : α < ω1} and, hence, x ∈ H . Thus, x ∈ G ∩ H 6= ∅, which is
a contradiction.
We have thus proved that πJ (U) ∩ πJ (V ) = ∅ for some nonempty countable

subset J of I, whence it follows that U = σ(a) ∩ π−1J πJ (U). In other words, U
depends only on the set J . �

A simple modification of the argument in the proof of Lemma 3.4 (combined
with the ∆-lemma) implies the following corollary.

Corollary 3.5. Let {Xi : i ∈ I} be a family of P -spaces such that the product
X =

∏

i∈I Xi is pseudo-ω1-compact. If U and V are open sets inX and U∩V = ∅,
then there exists a nonempty countable set J ⊆ I such that πJ (U) ∩ πJ (V ) = ∅.

It is not clear whether one can find a countable set J ⊆ I in Corollary 3.5
satisfying πJ (U) ∩ πJ (V ) = ∅.

Lemma 3.6. Let X =
∏

i∈I be a product space and σ(a) ⊆ X be the σ-product
with center at a ∈ X . Suppose that ∅ 6= J ⊆ I and that a continuous map
f :X → Y to a Hausdorff space Y satisfies f(x) = f(y) whenever x, y ∈ σ(a) and
πJ (x) = πJ (y). Then f depends only on J .

Proof: Let x, y ∈ X satisfy πJ (x) = πJ (y). Suppose to the contrary that
f(x) 6= f(y) and choose in X disjoint open neighborhoods U and V of x and y,
respectively, such that f(U)∩f(V ) = ∅. We can assume without loss of generality
that the sets U and V are canonical and coordU = C = coordV . Let us define
two points x∗, y∗ ∈ X by

x∗(i) =

{

x(i) if i ∈ C;

x∗(i) = a(i) if i ∈ I \ C

and, similarly,

y∗(i) =

{

y(i) if i ∈ C;

y∗(i) = a(i) if i ∈ I \ C.

Then x∗, y∗ ∈ σ(a) and πJ (x
∗) = πJ (y

∗), so that f(x∗) = f(y∗). On the other
hand, we have x∗ ∈ U and y∗ ∈ V , whence f(x∗) ∈ f(U) and f(y∗) ∈ f(V ).
Since f(U)∩ f(V ) = ∅, this implies that f(x∗) 6= f(y∗), which is a contradiction.

�

Let f :X → Y and g:X → Z be continuous maps, where Y = f(X). We say
that f is finer than g or, in symbols, f ≺ g if there exists a continuous map
ϕ:Y → Z such that g = ϕ ◦ f . The theorem below is the main result of this
section.
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Theorem 3.7. Let X =
∏

i∈I Xi be a product of P -spaces and f :X → Y be a
continuous map onto a space Y of countable pseudocharacter. If X is pseudo-ω1-
compact, then f depends on at most countably many coordinates. In addition, one
can find a countable set C ⊆ I and, for each i ∈ C, a continuous map hi:Xi → N

to the discrete space N such that (
∏

i∈C hi) ◦ πC ≺ f . Hence nw(Y ) ≤ ℵ0.

Proof: First, we show that f depends on countably many coordinates. Choose
any point a ∈ X and denote by σ(a) the σ-product of the spaces Xi with center at
a. Let σ(a) carry the relative ℵ0-box topology (which is finer than the subspace
topology of σ(a) inherited from X). By Lemma 2.3, the P -space σ(a) is pseudo-
ω1-compact. Since ψ(Y ) ≤ ℵ0, the set Fy = f−1(y) ∩ σ(a) is clopen in σ(a)
for each y ∈ Y . Clearly, {Fy : y ∈ f(σ(a))} is a partition of σ(a) into disjoint
clopen sets. Hence, the pseudo-ω1-compactness of σ(a) implies that the image
Z = f(σ(a)) is countable.
Given a nonempty set J ⊆ I, we denote by πJ the projection of X onto

XJ =
∏

i∈J Xi. By Lemma 3.4, every set Fy depends only on a countable number
coordinates, that is, there exists a countable set C(y) ⊆ I such that Fy = σ(a) ∩

π−1
C(y)

πC(y)(Fy). Put C =
⋃

y∈Z C(y). Then C is a countable subset of I and

Fy = σ(a) ∩ π−1C πC (Fy) for each y ∈ Z. Therefore, if x, y ∈ σ(a) and πC(x) =
πC (y), then f(x) = f(y). Apply Lemma 3.6 to conclude that f depends only on
the set C. In other words, there exists a map fC :XC → Y such f = fC ◦ πC .
The map fC is continuous because the projection πC is open. We can assume,
therefore, that C = I (and fC = f). In addition, we can assume that I = ω, i.e.,
X =

∏

n∈ω Xn and that each factor Xn is infinite.
For every n ∈ ω, consider the subspace Kn of X defined by

Kn = {x ∈ X : x(i) = a(i) for each i > n}.

Then Kn
∼=

∏

i≤nXi, so that Kn is a pseudo-ω1-compact P -space. As above,

it is easy to see that the image f(Kn) is countable for each n ∈ ω and the set
Fn,y = Kn ∩ f−1(y) is clopen in Kn for each y ∈ f(Kn). By Lemma 3.3, every
set Fn,y can be represented as a countable union of basic open sets of the form
U0 × · · · × Un, where Ui is a clopen subset of Xi for each i ≤ n (we identify Kn

and X0 × . . . × Xn). Since these representations of the sets Fn,y involve only
countably many clopen sets in each of the factors X0, . . . , Xn, one can find, for
every i ≤ n, a continuous map gn,i:Xi → N to the discrete space N such that the
direct product pn =

∏

i≤n gn,i satisfies pn ≺ fn, where fn = f ↾Kn
. For every

i ∈ ω, let gi be the diagonal product of the family {gn,i : n ≥ i}. Then the map

gi:Xi → N
ω\i is continuous and, clearly, the product map qn =

∏

i≤n gi satisfies

qn ≺ pn ≺ fn for each n ∈ ω. Again, the image gi(Xi) is countable and the fibers

g−1i (y), with y ∈ gi(Xi), form a partition of Xi into clopen sets. Hence, for every
i ∈ ω, there exists a continuous onto map hi:Xi → N satisfying hi ≺ gi. Let
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h =
∏

i∈ω hi:X → N
ω be the direct product of the family {hi : i ∈ ω}. Note that

each map hi is open and onto, and so is the map h.
Let us verify that h ≺ f . Indeed, since hi ≺ gi for each i ∈ ω, we have

∏

i≤n hi ≺
∏

i≤n gi = qn ≺ fn and, hence,

(3) φn = h↾Kn
=

∏

i≤n

hi ≺ fn

for all n ∈ ω. First, we claim that h−1h(x) ⊆ f−1f(x) for every x ∈ X . Suppose
to the contrary that there exist points x, y ∈ X such that h(x) = h(y) but
f(x) 6= f(y). Choose in Y disjoint neighborhoods Ux and Uy of f(x) and f(y),
respectively. By the continuity of f , there are canonical open sets Vx ∋ x and
Vy ∋ y in the product space X such that f(Vx) ⊆ Ux and f(Vy) ⊆ Uy. We
can assume without loss of generality that Vx = V x

0 × · · · × V x
n × Pn and Vy =

V y
0 × · · · ×V y

n ×Pn, where n ∈ ω, the sets V x
i , V

y
i are open in Xi for i = 0, . . . , n

and Pn =
∏

i>nXi. For every n ∈ ω, denote by rn the retraction of X onto

Kn defined by rn(x)(i) = x(i) if i ≤ n and rn(x) = a(i) if i > n. Then x′ =
rn(x) ∈ Vx ∩Kn and y

′ = rn(y) ∈ Vy ∩Kn. Therefore, from f(x′) ∈ f(Vx) ⊆ Ux,
f(y′) ⊆ f(Vy) ⊆ Uy and Ux ∩ Uy = ∅ it follows that f(x′) 6= f(y′). By (3),
however, we have h ≺ φn ◦ rn ≺ fn ◦ rn = f ◦ rn and, hence, the equality
h(x) = h(y) implies that f(rn(x)) = f(rn(y)) or, equivalently, f(x

′) = f(y′).
This contradiction proves the claim. So, there exists a map i:Nω → Y satisfying
f = i ◦ h. Since the map h is open, i is continuous. Therefore, h ≺ f .
Finally, the space N

ω is second countable, so that the image Y = f(X) = i(Nω)
has a countable network. �

It is shown in [15, Lemma 3.29] that every ω-stable space is pseudo-ω1-compact.
For P -spaces, ω-stability and pseudo-ω1-compactness are equivalent by [15, Propo-
sition 3.30]. It turns out that this equivalence holds for arbitrary products of
P -spaces.

Corollary 3.8. Suppose that the product X =
∏

i∈I Xi of P -spaces is pseudo-
ω1-compact. Then the space X is ω-stable.

Proof: Let f :X → Y be a continuous map onto a space Y which admits a coarser
second countable Tychonoff topology. Then Y is Hausdorff and ψ(Y ) ≤ ℵ0, so
that nw(Y ) ≤ ℵ0 by Theorem 3.7. �

By [1, Theorem 10], every σ-product of Lindelöf P -spaces is ω-stable. The next
corollary extends this result to products of Lindelöf P -spaces.

Corollary 3.9. Every product of Lindelöf P -spaces is ω-stable.

Proof: By Noble’s theorem in [10], finite products of Lindelöf P -spaces are Lin-
delöf (hence, pseudo-ω1-compact). Therefore, an arbitrary product X =

∏

i∈I Xi
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of Lindelöf P -spaces is pseudo-ω1-compact by Lemma 2.3, and the required con-
clusion follows from Corollary 3.8. �

In general, the product of two pseudo-ω1-compact P -spaces can fail to be
pseudo-ω1-compact. In the class of P -groups, however, pseudo-ω1-compactness
becomes productive by Lemmas 2.2 and 2.3. This explains, in part, the strong
factorization property of products of R-factorizable P -groups given in the next
theorem.

Theorem 3.10. Let G =
∏

i∈I Gi be a direct product of R-factorizable P -
groups. If f :G → Y is a continuous map onto a space Y with ψ(Y ) ≤ ℵ0,
then there exists a quotient homomorphism π:G → H onto a second countable
topological group H such that π ≺ f . In particular, nw(Y ) ≤ ℵ0.

Proof: By Lemmas 2.2 and 2.3, the group G is pseudo-ω1-compact. Apply
Theorem 3.7 to find a countable set C ⊆ I and, for each i ∈ C, a continuous map
hi:Gi → N such that (

∏

i∈C hi) ◦ πC ≺ f . Since the groups Gi are R-factoriz-
able, for each i ∈ C there exists a continuous homomorphism pi:Gi → Ki onto
a second countable group Ki such that pi ≺ hi. Note that the fibers p

−1
i (y) are

Gδ-sets in Gi, so they are open in Gi. Clearly, the homomorphism pi remains
continuous if we endow the group Ki with the discrete topology. The group Gi is
pseudo-ω1-compact by Theorem 1.1, so the cover of Gi by the fibers p

−1
i (y), with

y ∈ Ki, is countable. Hence the discrete group Ki = pi(Gi) is countable and the
homomorphism pi is open.
Let p be the direct product of the homomorphisms pi, i ∈ C. Then the

homomorphism p:
∏

i∈C Gi →
∏

i∈C Ki is continuous, open and the group H =
∏

i∈C Ki is second countable. It is clear that the homomorphism ϕ = p ◦πC of G
to H is continuous, open and satisfies ϕ ≺ (

∏

i∈C hi) ◦ πC ≺ f . Therefore, there
exists a continuous map i:H → Y such that f = i◦ϕ and, hence, Y = i(H). This
implies that Y has a countable network. �

The following corollary to Theorem 3.10 is immediate. It was proved (by a
different method) in [15].

Corollary 3.11. Let G be a direct product of R-factorizable P -groups. Then
the group G is R-factorizable and τ -stable for τ ∈ {ω, ω1}.

Proof: The R-factorizability of G follows directly from Theorem 3.10. In addi-
tion, G is ω1-stable by [15, Theorem 3.9]. To conclude that G is ω-stable, apply
Corollary 3.8 and Lemmas 2.2 and 2.3. �

By a theorem of Comfort and Ross [5], the class of pseudocompact groups is
productive. Therefore, Corollary 3.11 extends a certain similarity in the perma-
nence properties of R-factorizable P -groups and pseudocompact groups mentioned
in Section 2. In addition, the groups of both classes are ω-stable. In fact, one
can apply Lemma 5.9 of [14] to prove the following analogue of Theorem 3.10 for
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pseudocompact groups: if a regular space Y of countable pseudocharacter is a
continuous image of (a Gδ-subset of) a pseudocompact group, then nw(Y ) ≤ ℵ0.

4. Open problems

Here we formulate two open problems concerning Theorem 2.5.

Problem 4.1. Is every ℵ0-bounded P -group topologically isomorphic to a sub-
group of an R-factorizable P -group?

Problem 4.2. Does Theorem 2.5 remain valid in the non-abelian case?
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