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Lattices and semilattices having

an antitone involution in every upper interval

Ivan Chajda

Abstract. We study ∨-semilattices and lattices with the greatest element 1 where every
interval [p,1] is a lattice with an antitone involution. We characterize these semilattices
by means of an induced binary operation, the so called sectionally antitone involution.
This characterization is done by means of identities, thus the classes of these semilattices
or lattices form varieties. The congruence properties of these varieties are investigated.

Keywords: semilattice, lattice, antitone involution, congruence permutability, weak reg-
ularity

Classification: 06A12, 06C15, 06F35, 08B05, 08B10

Join-semilattices whose principal filters are Boolean algebras were used by
J.C. Abbott [1] for a characterization of the logic connective implication in the
classical proposition logic.
A similar approach was used in [4] for a characterization of the connective impli-

cation in the logic of quantum mechanics where the principal filters are considered
to be orthomodular lattices. This method was generalized in [3] to introduce and
characterize lattices whose principal ideals are pseudocomplemented lattices; it
enables us to extend the concept of relative pseudocomplementation also to the
case of non-distributive lattices.
The aim of our paper is to generalize the mentioned approach as much as

possible to obtain algebraic structures with “nice” properties (a characterization
by identities, nice congruence properties, a tractable description of congruences).
Let A be a set. A mapping x 7→ x′ of A into itself is called an involution

whenever x′′ = x. Let (A;≤) be an ordered set. A mapping x 7→ x′ of A into
itself is called antitone whenever a ≤ b implies b′ ≤ a′ for all a, b ∈ A.
At first, we can list several elementary properties of antitone involutions.

Lemma 1. Let (A;≤) be an ordered set. A unary mapping x 7→ x′ of A is an

antitone involution on (A;≤) if and only if satisfies

a ≤ a′′ and a′ ≤ b′ ⇒ b ≤ a

for every a, b ∈ A.

Proof: a ≤ a′′ for a = c′ gets c′ ≤ c′′′ thus, by the second rule, c′′ ≤ c. Together
with the first rule, we obtain c′′ = c for each c ∈ A and hence this mapping is an
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involution on A. Suppose a, b ∈ A with a ≤ b. Then a′′ = a ≤ b = b′′ and, by the
second rule, b′ ≤ a′, i.e. the mapping is antitone. �

Lemma 2. Let L = (L;∨,∧, 0, 1) be a bounded lattice and x 7→ x′ be an antitone

involution on L. Then

(i) 0’=1 and 1’=0;
(ii) L satisfies the so called DeMorgan laws:

(x ∨ y)′ = x′ ∧ y′ and (x ∧ y)′ = x′ ∨ y′.

Proof: (i) Since x ≤ 1 for each x ∈ L, we have 1′ ≤ x′ and, due to x′′ = x, 1′ is
the least element of L, i.e. 1′ = 0. Dually we can show 0′ = 1.

(ii) x, y ≤ x ∨ y implies (x ∨ y)′ ≤ x′, y′ thus (x ∨ y)′ ≤ x′ ∧ y′. Further,
x′ ∧ y′ ≤ x′, y′ yields x = x′′ ≤ (x′ ∧ y′)′ and y = y′′ ≤ (x′ ∧ y′)′ showing
x ∨ y ≤ (x′ ∧ y′)′, i.e. x′ ∧ y′ ≤ (x ∨ y)′. Together we have (x ∨ y)′ = x′ ∧ y′. The
second law can be proved dually. �

Lemma 3. Let S = (S;∨) be a join-semilattice. A mapping x 7→ x′ of S into

itself is an antitone involution whenever the following identity is satisfied:

((x ∨ y)′ ∨ y′)′ = y.

Proof: By putting x = y, the identity yields y′′ = y thus the mapping is an
involution. Moreover, y ≤ x implies (x′ ∨ y′)′ = y and hence x′ ∨ y′ = y′ proving
x′ ≤ y′, i.e. it is also antitone.
Conversely, we have y ≤ x ∨ y for each x, y ∈ S thus (x ∨ y)′ ≤ y′ for an antitone
mapping, i.e. (x ∨ y)′ ∨ y′ = y′. Since it is an involution, we obtain the identity
directly. �

Let S = (S;∨, 1) be a join-semilattice with the greatest element 1 and p ∈ S.
A mapping x 7→ xp of the interval [p, 1] will be called a section antitone involution
(on the interval [p, 1]) whenever it is an antitone involution on the ordered set
[p, 1] with respect to the induced order.
We can study semilattices or lattices with the greatest element 1 where every

interval [p, 1] has a section antitone involution x 7→ xp. Unfortunately, this unary
operation xp is defined only for x ∈ [p, 1]. To avoid this discrepancy, we introduce
a binary operation x ◦ y on S as follows

x ◦ y = (x ∨ y)y.

Of course, x∨ y ∈ [y, 1], thus x ◦ y is everywhere defined provided the semilattice
S = (S;∨; 1) has section antitone involutions on every interval [y, 1] for y ∈ S. If it
is the case, we will call the structure S = (S;∨, ◦, 1) a semilattice with sectionally
antitone involutions . If L = (L;∨,∧, 1) is a lattice with the greatest element 1
such that (L;∨, ◦, 1) is a semilattice with sectionally antitone involutions then
L = (L;∨,∧, ◦, 1) will be called a lattice with sectionally antitone involutions .
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Example. Consider the (semi)lattice S depicted in Figure 1:
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Figure 1

00 = 1, 10 = 0, a0 = d, b0 = c, c0 = b, d0 = a in [0, 1]Define

aa = 1, ba = b, 1a = a in [a, 1]

cc = 1, dc = d, 1c = c in [c, 1]

bb = 1, 1b = b in [b, 1]

dd = 1, 1d = d in [d, 1].

Then S is a (semi)lattice with sectionally antitone involutions and the operation ◦
is determined by the table:

◦ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 1 c d 1

b c b 1 c d 1

c b a c 1 1 1

d a a b d 1 1

1 0 a b c d 1

Semilattices with sectionally antitone involutions can be characterized by iden-
tities in the signature {∨, ◦} as follows:
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Theorem 1. Let S = (S;∨, ◦, 1) be an algebra of type (2, 2, 0) such that (S;∨, 1)
is a ∨-semilattice with the greatest element 1. Then S is a semilattice with
sectionally antitone involutions if and only if it satisfies the identities

(1) (x ◦ y) ◦ y = x ∨ y,

(2) ((x ∨ y ∨ z) ◦ z) ∨ ((x ∨ z) ◦ z) = (x ∨ z) ◦ z.

Proof: Let S = (S;∨, ◦, 1) be a semilattice with sectionally antitone involutions
where x◦y = (x∨y)y. Then ((x◦y)◦y) = ((x∨y)y ∨y)y = (x∨y)yy = x∨y since
(x∨y)y ∈ [y, 1] yields y ≤ (x∨y)y . Further, x∨z ≤ x∨y∨z and x∨z, x∨y∨z ∈
[z, 1], thus (x ∨ z)z ≥ (x ∨ y ∨ z)z and hence (x ∨ y ∨ z)z ∨ (x ∨ z)z = (x ∨ z)z

proving the identity (2).
Conversely, let S = (S;∨, ◦, 1) be an algebra satisfying (1) and (2) such that

(S;∨, 1) is a join-semilattice with the greatest element 1.
For p ∈ S we define a mapping a 7→ ap on the interval [p, 1] by the setting

ap = a ◦ p. For a ∈ [p, 1] we have p ≤ a and hence app = (a ◦ p) ◦ p = a ∨ p = a

by (1). Further, for a, b ∈ [p, 1] with a ≤ b we have by (2)

(b ◦ p) ∨ (a ◦ p) = ((a ∨ b ∨ p) ◦ p) ∨ ((a ∨ p) ◦ p) = (a ∨ p) ◦ p = a ◦ p

proving bp ∨ ap = ap, i.e. bp ≤ ap. Altogether, a 7→ ap is an antitone involution
on every interval [p, 1] of S. �

Since semilattices or lattices with the greatest element 1 are defined by a finite
set of semilattice or lattice identities respectively, we can state an immediate
consequence of Theorem 1:

Corollary. The class of all semilattices (lattices) with sectionally antitone invo-
lutions considered in the signature {∨, ◦, 1} ({∨,∧, ◦, 1}, respectively) is a finitely
presented variety.

Remark. Due to the identity (1), the class of all semilattices with sectionally
antitone involutions is in fact a variety in the signature {◦, 1}.

By using of the definition x ◦ y = (x ∨ y)y , one can easily prove the following

Lemma 4. Let S = (S;∨, ◦, 1) be a semilattice with sectionally antitone involu-
tions. Then S satisfies the identities x ◦ x = 1, x ◦ 1 = 1 and 1 ◦ x = x.

Now, we will study certain congruence properties of these varieties. Recall
that a variety V is congruence permutable (3-permutable) if Θ ◦ Φ = Φ ◦ Θ (or
Θ ◦ Φ ◦ Θ = Φ ◦ Θ ◦ Φ) for each A ∈ V and every Θ,Φ ∈ ConA. If V is
congruence permutable (3-permutable) then Θ∨Φ = Φ◦Θ (or Θ∨Φ = Θ◦Φ◦Θ,
respectively) holds in ConV . A variety V is congruence distributive if the lattice
ConA is distributive for every A ∈ V .
It is well-known that a variety V is congruence permutable if and only if there

exist a Mal’cev term, i.e. a 3-ary term p of V such that V satisfies the identities

p(x, z, z) = x and p(x, x, z) = z;
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V is 3-permutable if and only if there exist 3-ary terms t1, t2 of V such that V
satisfies the identities

x = t1(x, z, z), t1(x, x, z) = t2(x, z, z), t2(x, x, z) = z

(see e.g. [2] for some details). A variety V is arithmetical if it is both congruence
permutable and congruence distributive.

Theorem 2. The variety of lattices with sectionally antitone involutions is arith-

metical (i.e. congruence permutable and distributive). Its Mal’cev term is

p(x, y, z) = ((x ◦ y) ◦ z) ∧ ((z ◦ y) ◦ x).

Proof: Since it has a majority term

m(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z),

it is congruence distributive. To prove arithmeticity, we need to show that it is
congruence permutable. For this, it is enough to find a Mal’cev term. By using
the identity (1) and the identities of Lemma 4, we compute

p(x, x, z) = ((x ◦ x) ◦ z) ∧ ((z ◦ x) ◦ x) = z ∧ (z ∨ x) = z

and
p(x, z, z) = ((x ◦ z) ◦ z) ∧ ((z ◦ z) ◦ x) = (x ∧ z) ∨ x = x

whence p(x, y, z) is a Mal’cev term. �

Remark. We are able to get the Pixley term ensuring arithmeticity directly. For
this, we should firstly compute:

(x ◦ y) ◦ x = ((x ∨ y)y ∨ x)x.

Since (x ∨ y)y ∨ x ∈ [x, 1], also ((x ∨ y)y ∨ x)x ∈ [x, 1] and hence x ≤ (x ◦ y) ◦ x.
Now, we can set

t(x, y, z) = ((x ◦ y) ◦ z) ∧ ((z ◦ y) ◦ x) ∧ (x ∨ z).

Similarly as in the proof of Theorem 2, one can see immediately that t(x, y, z) is
a Mal’cev term. Moreover,

t(x, y, x) = ((x ◦ y) ◦ x) ∧ ((x ◦ y) ◦ x) ∧ x = x

due to the previous computation. Hence, t(x, y, z) is a Pixley term of the variety
of lattices with sectionally antitone involutions.

Let S = (S;∨, ◦, 1). A subset ∅ 6= K ⊆ S is called a congruence kernel of S if
K = [1]Θ = {x ∈ S; 〈x, 1〉 ∈ Θ} for some congruence Θ ∈ ConS.
Recall (from [5]) that an algebra A with a constant 1 is weakly regular if every

congruence Θ ∈ ConA is determined by its kernel, i.e. if [1]Θ = [1]Φ implies
Θ = Φ for every Θ,Φ ∈ ConA. A variety V is weakly regular if every A ∈ V
has this property. The following characterization of weakly regular varieties was
given by B. Csakany [5]:
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Proposition. A variety V with 1 is weakly regular if and only if there exist n ∈ N

and binary terms b1(x, y), . . . , bn(x, y) such that

b1(x, y) = · · · = bn(x, y) = 1 if and only if x = y

is satisfied for every A ∈ V .

Now, we can prove

Theorem 3. The variety V of semilattices (lattices) with sectionally antitone
involutions is weakly regular.

Proof: We can take n = 2 and b1(x, y) = x ◦ y, b2(x, y) = y ◦ x. By Lemma 4,
we have b1(x, x) = x ◦ x = 1, b2(x, x) = x ◦ x = 1. Conversely, suppose b1(x, y) =
b2(x, y) = 1 for S ∈ V and x, y ∈ S. Then (x ∨ y)y = 1 and (y ∨ x)x = 1. Due to
Lemma 2, we have

x ∨ y = y and y ∨ x = x

whence x = y. By the Proposition, the variety V is weakly regular. �

Theorem 4. The variety of semilattices with sectionally antitone involutions is

congruence 3-permutable and congruence distributive.

Proof: Consider the ternary terms t1(x, y, z) = (z ◦ y) ◦ x and t2(x, y, z) =
(x◦y)◦z. Then by using of the identity (1) and Lemma 4, we can compute easily

t1(x, z, z) = (z ◦ z) ◦ x = 1 ◦ x = x,

t1(x, x, z) = (z ◦ x) ◦ x = x ∨ z = z ∨ x = (x ◦ z) ◦ z = t2(x, z, z),

t2(x, x, z) = (x ◦ x) ◦ z = 1 ◦ z = z.

Hence, the variety is congruence 3-permutable. Suppose Θ,Φ,Ψ ∈ ConS for S of
our variety. Of course, (Ψ ∩ Θ) ∨ (Ψ ∩ Φ) ⊆ Ψ ∩ (Θ ∨ Φ), thus we need to prove
the converse inclusion.
Suppose a ∈ [1]Ψ∩(Θ∨Φ). Thus 〈1, a〉 ∈ Ψ ∩ (Θ ∨ Φ), i.e. 〈1, a〉 ∈ Ψ and there

exist b, c ∈ S with 〈1, b〉 ∈ Θ, 〈b, c〉 ∈ Φ and 〈c, a〉 ∈ Θ since in the 3-permutable
variety we have Θ ∨ Φ = Θ ◦ Φ ◦Θ. Then

1 = (b ◦ 1)Ψ(b ◦ a) and 1 = (c ◦ 1)Ψ(c ◦ a).

Due to transitivity, (b ◦ a)Ψ(c ◦ a) and, hence, aΨ1Ψ(b ◦ a)Ψ(c ◦ a)Ψ(c ◦ 1) = 1,
i.e. aΨ(b ◦ a)Ψ(c ◦ a)Ψ1. However,

〈1, b〉 ∈ Θ implies 〈a, b ◦ a〉 = 〈1 ◦ a, b ◦ a〉 ∈ Θ,

〈b, c〉 ∈ Φ implies 〈b ◦ a, c ◦ a〉Φ and

〈c, a〉 ∈ Θ implies 〈c ◦ a, 1〉 = 〈c ◦ a, a ◦ a〉 ∈ Θ,
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thus
a(Ψ ∩Θ)(b ◦ a)(Ψ ∩ Φ)(c ◦ a)(Ψ ∩Θ)1

and hence 〈a, 1〉 ∈ (Ψ∩Θ)∨ (Ψ∩Φ), i.e. a ∈ [1](Ψ∩Θ)∨(Ψ∩Φ). Since the converse
inclusion is trivial, we have shown

[1]Ψ∩(Θ∨Φ) = [1](Ψ∩Θ)∨(Ψ∩Φ).

By Theorem 3, the variety is weakly regular, thus

Ψ ∩ (Θ ∨ Φ) = (Ψ ∩Θ) ∨ (Ψ ∩ Φ),

proving the congruence distributivity. �

Since every congruence on a lattice with sectionally antitone involutions is
determined by its kernel, it is natural to ask about a description of the congruence
kernel and about a procedure how to involve a congruence having a forgiven kernel.
In the remaining part of the paper, we will solve these problems.
At first, we define the following terms of the variety of lattices with sectionally

antitone involutions:

q(x1, x2, y1, y2) = (y1 ◦ x2) ∧ ((y2 ◦ (x2 ◦ x1)) ◦ x1),

t1(x1, x2, x3, x4, y1, y2, y3, y4) = (q(x1, x2, y1, y2) ◦ q(x3, x4, y3, y4)) ◦ (x2 ◦ x4),

t2(x1, x2, x3, x4, y1, y2, y3, y4) = (x2 ◦ x4) ◦ (q(x1, x2, y1, y2) ◦ q(x3, x4, y3, y4)),

t3(x1, x2, x3, x4, y1, y2, y3, y4) = (q(x1, x2, y1, y2) ∧ q(x3, x4, y3, y4)) ◦ (x2 ∧ x4),

t4(x1, x2, x3, x4, y1, y2, y3, y4) = (x2 ∧ x4) ◦ (q(x1, x2, y1, y2) ∧ q(x3, x4, y3, y4)),

t5(x1, x2, x3, x4, y1, y2, y3, y4) = (q(x1, x2, y1, y2) ∨ q(x3, x4, y3, y4)) ◦ (x2 ∨ x4),

t6(x1, x2, x3, x4, y1, y2, y3, y4) = (x2 ∨ x4) ◦ (q(x1, x2, y1, y2) ∨ q(x3, x4, y3, y4)).

One can easily compute

q(x1, x2, 1, 1) = x2,

q(x1, x2, x1 ◦ x2, x2 ◦ x1) = x1.

Hence,
ti(x1, x2, x3, x4, 1, 1, 1, 1) = 1 for i = 1, . . . , 6.

Suppose now that L = (L;∨,∧, ◦, 1) is a lattice with sectionally antitone in-
volutions and Θ ∈ ConL. Set I = [1]Θ. Then b ∈ [1]Θ if and only if 〈b, 1〉 ∈ Θ.
Hence, for every a1, a2, a3, a4 ∈ L and b1, b2, b3, b4 ∈ I we have

〈ti(a1, a2, a3, a4, b1, b2, b3, b4), 1〉 ∈ Θ,

thus ti(a1, a2, a3, a4, b1, b2, b3, b4) ∈ I. Define ∅ 6= I ⊆ L to be an ideal
of L whenever for every a1, a2, a3, a4 ∈ L and every b1, b2, b3, b4 ∈ I we have
ti(a1, a2, a3, a4, b1, b2, b3, b4) ∈ I for i = 1, . . . , 6.
We are able to state our final result.
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Theorem 5. Let L = (L;∨,∧, ◦, 1) be a lattice with sectionally antitone involu-
tions and ∅ 6= I ⊆ L. Then I is a congruence kernel if and only if I is an ideal of

L. If I is an ideal of L then it is kernel of ΘI ∈ ConL defined by

〈x, y〉 ∈ ΘI if and only if x ◦ y ∈ I and y ◦ x ∈ I.

Proof: Firstly suppose I = [1]Θ for some Θ ∈ ConL. Then clearly 1 ∈ I

and for every b1, b2, b3, b4 ∈ I we have 〈bj , 1〉 ∈ Θ for j = 1, 2, 3, 4, thus for any
a1, a2, a3, a4 ∈ L we obtain

〈ti(a1, a2, a3, a4, b1, b2, b3, b4), 1〉

= 〈ti(a1, a2, a3, a4, b1, b2, b3, b4), ti(a1, a2, a3, a4, 1, 1, 1, 1)〉 ∈ Θ,

proving ti(a1, a2, a3, a4, b1, b2, b3, b4) ∈ [1]Θ = I (i = 1, . . . , 6), thus I is an ideal
of L.
Conversely, let I be an ideal of L. By the definition, I 6= ∅ and hence there

exists a ∈ I. One can easily compute t1(a, . . . , a) = 1, thus also 1 ∈ I. Define a
binary relation ΘI on L as shown in the theorem and set

[1]ΘI
= {x ∈ L; 〈x, 1〉 ∈ ΘI}.

If a ∈ I then 1 ◦ a = a ∈ I and a ◦ 1 = 1 ∈ I, thus 〈a, 1〉 ∈ ΘI , i.e. I ⊆ [1]ΘI
. If

a ∈ [1]ΘI
then a = 1 ◦ a ∈ I showing [1]ΘI

⊆ I. Together, I = [1]ΘI
. To complete

the proof we need only to show that ΘI ∈ ConL.

Evidently, ΘI is reflexive. Suppose 〈a, b〉 ∈ ΘI and 〈c, d〉 ∈ ΘI . Then a ◦ b ∈ I,
b ◦ a ∈ I, c ◦ d ∈ I and d ◦ c ∈ I. Applying the term t1, we obtain

(a ◦ c) ◦ (b ◦ d) = t1(a, b, c, d, a ◦ b, b ◦ a, c ◦ d, d ◦ c) ∈ I.

Analogously,

(b ◦ d) ◦ (a ◦ c) = t2(a, b, c, d, a ◦ b, b ◦ a, c ◦ d, d ◦ c) ∈ I,

whence 〈a ◦ c, b ◦ d〉 ∈ ΘI .

Applying t3, t4 instead of t1, t2, we conclude 〈a ∧ c, b ∧ d〉 ∈ ΘI and, for t5, t6
we obtain 〈a ∨ c, b ∨ d〉 ∈ ΘI .

Thus ΘI is a reflexive and compatible relation on L. Since the variety of lattices
with sectionally antitone involutions is permutable, we can apply the theorem of
H. Werner [6] which yields ΘI ∈ ConL. �
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