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Generalized Bochner-Riesz means
on spaces generated by smooth blocks

JiNncAl WANG

Abstract. We investigate generalized Bochner-Riesz means at the critical index on spaces
generated by smooth blocks and give some approximation theorems.
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Classification: 42B99, 41A35

1. Introduction and statement of result

The Bochner-Riesz multiplier of order « is defined by

]

Sh'w) = (1= ) _d@. 1 e o),

where p(R"™) is the Schwartz class.
It is known that for the Bochner-Riesz means at critical index there exists
a function f € L(R™) such that limsup(SgL_l)/zf)(:v) = oo, a.e. (see [1]).

— 00
Shanzhen Lu and Shiming Wang [2] introduced so-called spaces generated by
smooth blocks, a subspace of L'(R™). On this space, the Bochner-Riesz means at
the critical index ng—l)/2f converge to f a.e. as R — oo.
Now let us turn to the definition of smooth blocks. A (g, A)-block (1 < ¢ < o)

is a function b that is supported on a cube @ satisfying
1
Ibles < 1Ql7,

where L‘)]\(R") denotes the Bessel potential space ([3]). We define the spaces
generated by smooth blocks as

B)(R™) = {f L= by, by is (g, \)-block, N({my}) < oo},
k

where N({my}) = Y Imy| (1-+1og ZL), and Ny(f) = inf{N({my}) : f =

[m,
>k mibr} is a quasinorm on Bé‘.
Shanzhen Lu and Shiming Wang [2] get the following result.
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Theorem A. If f € B(}(R")(l < ¢ < 00), then

(Sgl_l)pf)(:v) - f(x) = o(}%) a.e. as R — oo.

Let a be complex number, Rea > —1, b > 0. The generalized Bochner-Riesz
multiplier of order « is defined by

b (0%
b T 2
(53°)) = ( - %L) f@), 1 ep@),
+
The main result of this paper is

Theorem 1. If f € B;(R")(l < g < o0),b>1, then

n—1
b

(Sg*

) — f(z) =0(1/R) a.e. as R — .

2. Proof of Theorem 1

Let
(M) (@) = sup [RM(SE F)(@) — f(2)}]-
R>0

To prove Theorem 1, we need the following theorem.
Theorem 2. Let0§/\§2,1<p<oo,b>2,oz:a—|—i7'anda>"T_1%—1|.
If fe Eﬁ(R"), then

b
1650 llp < Ol g2,
where C' is independent of f.
First we give some lemmas.

Lemma 1 (Xuean Zheng [6, p.1342]). Let ¢(t) = (1 — t®1)01 ... (1 — @)%
0 <t <1, a be the minimum of a1, -+ ,as except 2, 6 =1 +d2 + -+ - + ds, and

1
H™ (1) = /0 o(u) (ut) TV T, (ut) du, T = %(n —2).

Then
aq

2

Qg

)51...(2

)% HP (t) + i CLH]TF(t) + R(t),
k=1
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where a 22, m >1l+ a1+ ---as+ 2+ and m is a positive integer, Hf(t) =
2.6 _ e
H2(6) = 207(5 + 1)1 (00, [RE)] < ORIt — 0), [RE)| < 1t —

00), Ji(t) is the Bessel function (see [7]).

Setting
(b b(x) _ { (]‘ - |I|b)a5 |$| < ]-7
o =
’ 07 |x| Z ]'7
where Rea > —1, we have
1 1
F(¢ap)y) = W/O (1 =) 001 (Jylr) dr

(see [9]), where F denotes the Fourier transform.
It is known ([8]) that for o > "T_l we have

F(bap)(y)dy = 1.
R?’L

Lemma 2. Let 1 <p<oo,a =0 +ir, 0> 251 b>2. If f € LE(R™), then
b
M5 £l < Cel HfHLg,
where C is independent of T and f.

PROOF: Setting ¢(t) = (1 —t*)*,1 = 5 — 1 in Lemma 1, we have
b\“ &
(1) Hb(t) = (§> HY(t)+ > CLHTF(t) + R*b(¢),
k=1
b 1 n
HO 1) = HY, (1) = /O (1= ) (ut)3 T5_y (ut) du,
(2) HY(t) = HY2(t), m > g —14+b+2+Rea is a positive integer,

[ROY(H)] < CE" Mt — 0), [RYP(@)] < CEPH(E — o0).
By (1), we have

S 1 — DY 3 Jn r)dr
F0us)) = g e [, =Ry ) d
1 o,b
S —
o e
L1 [\ H () HOH () RO(ly)
‘<2w>%{(2) g1 +ZO gl T e }

Q

) Floa)0) + 3 O Gar)(w) + —a W)

b
2 k=1 (2m)z|y|n =L

g
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where ¢q () = ¢o,2 and Rea > —1. Denote (SR f)(z) = (S%gf)(:v). We have

(5% f)(a / F(y + ) R"F (o) (Ry) dy

@ = (3)" smn@ + X cutsg )

k=1

1 R (Rly|)
G o 1D e

_ (|y\)
Let vg = (2 % fR I dy and note that

/ Flbap) () dy = / Flo) () dy =
Rn Rn

Integrating both sides of (3), we get vg =1—>_jr; Ck — (%)O‘ By (4), we have
[RA{(SE" F) (@) — f()}
<17 (5) (SRN@ - S+ 3 OIS N - f)]

k=1
R ROYBIY) o
+|{(27r)3 /Rnf(aﬁ—y) Ry R"™dy — R?vyf( )}|

By Lemma 1 of [2], to prove Lemma 2, we must set up the following inequality:

owp 1| [ R|oflzb|§|y1|)Rndy‘“°f(x)H

R>0

7|2
ey,

In fact,

R [ﬁ [ s (|n|y1|)R”dy—vof(x)]

RY(R|y))
| Ry|"—1

2

o | @) = @) R" dy

1

7 L

;n / /Z fle+ty) + flz —ty) — 2f(x)] dy’ - R*P(Rt)Rdt
) _Im

w7 ),

2

R
(
= R?
(2m)n/
Y\ pa,b
R @ oy g(x, R)R (t) dt,
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where g(z,t) = fz [f(x + ty/) + f(z — ty') — 2f(x)]dy’. Denote A(t) =

A R*b(r)dr, B = [P A(r)dr. Tt is easy to see that g(z, }%)H:O =0,
%g(w, %)hzo = 0. Usmg 1ntegrat10n by parts, we get
Y b(RIyI)

:/0 detzg( ;)B(t)dt.

Let

0 0
.. — .. / / .. —
gij(z,1) /an |Djj f(x+ty)|dy’, where Dj;f(x) Da; O, (2),

b _ 2| 1 BRI b
(M, f)(w)—;i%R e Rnf(:v y) Ryl R"dy —vof(v)|.
Then
@t n@ < 3 s [ oo IBOI
i,j= 1
Fort>1,
o o
|A(t)|:‘/ Ravb(T)dT]gc/ gy — o,
too oot
|B(t)|:‘/ A(T)dT\ gc/ b=t (> ).
t t
Fort <1,

101 <0| [~ mre | +| [ Rt | <

and by (2),

00 1 e} 1
t)] < ‘/ A(T) dT‘ + ‘/ A(r) dT‘ S/ cr—b dT+/ Cdr <C.
1 t 1 t



494

J. Wang

By this, we have
1 t 1 t
| aste Bl < [ oy g

1
< CR/R/ |Dijf(z+ty')| dy' dt
0 X:nfl

L t
:CR/Rtl_"d [/ (/ |D,~jf(x+7y/)|dy'7"_1> dT]
0 0 2'n,fl
I\ %
<CR (—) / / 1Dy fla +ty)| dy't" L dt
R 0 X:'nfl
% t
+CR/O ¢ [/0 (/E |Dijf(x+7y')|dy'> T"—ldT] dt
n—1
1 —n
SO(—) [, syl
R pl<t

R

1
von [T ( / |D2,.f<x+y>|dy) i
0 ly|<t

< CHL(D;; f) (=),

where HL(g) is the Hardy-Littewood maximal function of g. Thus, we get

1
t
sup/ gii(x, =)|B(t)|dt
sp [ g5y, B

2
< C)fllzg < C™N 11l g,
p

where C' is independent of 7. Meanwhile, we have

> b B(t)| dt < - p b —b+1 gy _ p—b+1
gZ](va” (t)| i< gZ](IaR)t t=R
1 1

o0

o 9ij(z, )t~ Rt

R

Using the inequality f(f " Lg;i(x,7)dr < Ct"HL(D;; f)(x), we obtain

h ! —b2 [ mbri—(n-1) L
/1 gij(w’EHB(t)'dtSR /1 t d /OT gij(x,7)dr
7
1

s A

o0 t
+C/1 gb—n+l (/ T"_lgij(x,T) dT) dt
1 0

R

< CHL(D;;f) ().

S R—b+2
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Thus

0 t 2
s [~ giste. plBlar]| < sl < e sl
R>0J1 p

Using the same method, we have
Lemma 2. Let 1 <p < oo, a=0+ir, o0 > "T_l, b>1.1If f € Lll)(]R"), then
MO f), < Cel™P||f]| 1y, where C' is independent of 7 and f.
Lemma 3. Let0§)\§2,1<p<oo,a:0+i770>"T_l,b>2. If
f € LY (R™), then

7b 2
MRl < Ol £l

where C is independent of T and f.

PROOF: Suppose {r;} is a sequence consisting of all positive rational numbers.
Let Ap = {r1,72, - ,r}. Define

(B0 = swp BISEDE) = 1@

Then
(FYF 1) (@) < (FEMFH ) ()

and

L0 f) () = Jim (FP f) (@),

For any fixed f € £§ (R™), there exists g € LP(R™) such that f = jpg. Fix k and
let S;(1 < j < k) be a set such that for 2 € S,

(FPE D) @) = 1S3 1)) = ()]
and
ESPED @) > (S50 ) () = Fo)l, i<
It is easy to see that the sets {S;} do not intersect each other. Let 2 = {z €
C,0 <Rez < 1} and define
¢;(x) = sign{ (S f) () — f(2)},
(Teg) (@) = Y r3*xs, (@){S2P(12:9) () — (12:9) ()} ;.-

Tj EAL

495



496 J. Wang

Now we assert that {7} is an admissible family of operators in the sense of
E.M. Stein (see [7]). Indeed, {y2,9} is an admissible family of operators in the
sense of E.M. Stein, so we only set up the following inequality:

b
() IS5 fllp < Cllfllp: f€LPR™), p>1.
By (4), we must prove that
O‘b(Rlyl)
(6) H/ Flat ) R | < 1l
In fact,

fot ) BB

Rr |Ry["1

= /I/R </ flx—ty) dy') Ro"b(Rt)Rdt
0 Yn—1

+ /OO (/ flz—ty) dy’) RY(Rt)R dt
1/R \Js,_,

=11+ Ip.
‘We have
1/R
z—ty)dy "lRd
|11|s/0 </2Mf< ty>y><Rt> R
1
i x—y)d C HL T
@) e CHL)
and

> —b—1 ! /
| < /I/R(Rt) R(/anf(x ty)dy)dt
e t
_ —b—1p;—n+1 Fn—l p— N dr
- /1/R‘R” Rt d(/o (/Enlf(:v y)dy>d>
1/R
R"/O -l </E flz—T1y) dy') dr
* —b,—n—b—1 t n—1 T / /
O/l/RR t /OT /anf( Ty )dy | dr

< CHL(f)(z) + HL(f)(x)O/lj; Rt dt < CHL(f)(x).

IN

_|_
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Thus (6) is true. So (5) is also true, therefore {7} is an admissible family of
operators in the sense of E.M. Stein.
Now we write

~ A
g =Grxg, Gi(z)=(1+4r°z[*)"2.
A multiplier theorem (see [3, p.96]) implies that

2in9llp < L) llgllp,

where P(z) is a polynomial of degree k > n/2. Note that Rea > (n —1)/2 and
we have

7b7k 7b
1 Tingllp < [1F5""" G2in9)lp < IM5 (92in9) |lp
2 2
< Cel™ | g2imgllp < CeTPEY)lgllp.

By Lemma 2, we get

b,k b
I T1ingllp < 1F5""" (242in9) lp < [IM5 (92+42in9)|lp

2 2 2
< Cel™ 2420l 15 < Cel™ 321l < Cel™P(21) |91l
Using Stein’s interpolation theorem of analytic operators, we obtain
bk 2 2
I Flp < Ty gllp < O llgllp < Cel™ ] 5.
Finally, by Lebesgue’s monotone convergence theorem, we get

7b 2
1ML fllp < CelTPII ] 5

If we define T, in the proof of Lemma 3 as
(Tog)(@) = D rixs, (@){S (0:9)() — (1:9)(2)}¢;
JEA
and using the same method of proof of 2/, we have

Lemma 3'. Let0§)\§1,1<p<oo,a:0+i7,o>"T_l,b>1. If
f € LR(R™), then

b 2
MY fllp < Cel™) £l g2,
where C is independent of T and f.

Define ) . )
(NP f)(x) = ;i%RAI(S}lgH’ N) = (SE" (@)
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Lemma 4. Leta =0 +ir,0>0,0<A<7,b>\ If f € L3(R"), then
b
INYfll2 < 1 gz

PrOOF: Let € C,Ref3 >4, 6> -1, 0<X<2 Then

(S5 ) (@) — (SpH f) ()

R
e A G A (AR O R CA )

=

Writing (G20 f)(z) = { JE A1 (ST 1y () — (SO0 £) () 2 dt} , we have

o b 9,b
RM(SETTH ) (@) — (S50 ) (@)
1 R b\2Res—2,2b-27-1
Sy Ty sy /0 (R” —17) t dt

x { [ et - )| dt}2
0

N

< /| {/1(1 B tb)QReﬁ—2t2b—2)\—1dt}§ (&))< CEP f)).

0
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Choose5:(’T_1>—%,6:a—5:"T‘H+iT. Then
Na,b 2 - o GLgl,b 2
INY"flla < ClG* T Flia-
Further,
o—1
21 9
1G* 7 flI2

< [ ([T 0w - 6T k) @

o+l o=1|2
:/oot2>‘—1/ 1_ﬂ ’ _ 1_@ :
0 lyl <t tb tb

x| f(y)* dy dt

00 b\ 7L 2
M1 |y [y 2, |2
— [T [ (=B SriwR e
/0 lyl<t < tb ) 2

o b o—1
=/ I F ) / e BRI I
R™ Iyl t
lyl

Setting 5 = t, we get
b
yl t

Therefore

o—1 b

-1 A 1
G 1= [ WP @R [ it < s,

PROOF OF THEOREM 2: Let f = j\g, g € LP(R"). For 0 > 0, we choose k € N

such that o + k > "T_l By Lemma 3, Lemma 4 and inequality

k-1 '
(M2 f) (@) < DTN ) (@) + (M f) (@),

Jj=0
we have

b 2 2
(7) 1M fll2 < Cel™ )£l 22 = Cel™Plg]l.

0 oa—2b—1 yl® o1 L on_2b 1, 9ai2bil bro—1 1Yl
/ AT (1 - =)0 dt:/ |y[PA20 AR (1 — )T
\ 0 t
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Let p1 > 1, 0 > 25=. Then by Lemma 3

b 2 2
||M;‘ Flips < CVIIf N gon = Ce gl

For p1 < p < 2, there exists 0 < t < 1 such that % = % + p%' Let ug > 0,
up > ”T_l, 0(z) =ug(l — 2z) +u12, 0 <Rez < 1. Then
g—1
0(t) = uo(1l —t) + urt = up + (w1 — up)t = up + (u1 — up) 12)
2
Thus
n—1 2-1 n-12 n—1
50 — "ot B> "2 )
2 51 2 p
and 1 9
5(t) — “S—(=~1) as p1 \ 1.
p
So for o > "T_l( 2 —1|), there exist ug, w1, p1 such that §(t) = o, where t =

1/p—1/2 _
ﬁ. Thus for given 1 < p < 2 and ¢ > "Tl(% — 1), we can find ug, u; and

p1 such that 1 <p; <p < 2,4(t) =

Fix such ug, u1, p1. Let {Rj} be a sequence consisting of all positive rational
numbers. Denote Ay, = {Ry, -, Ri}, and

(FOY ) (@) = sup {RMNSEF)(@) — f(x)).

ReAy

Then we have (F)'\l’b’kf)(x) < (F;’b’k'i_lf)(x), and,

For 1 <j <k, let

Ej={xeR": sup | RY(S3,"f) (@) - f<:c>|}=R§|<ssz><x>—f<w>|},

ReAy

-1
and Fy = E, Fj = Ej — U E;, j=2,3,--- k. Define

(T=9)(a Z (SR (100) (@) — (29) (2)} 5 (=),
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where

¢;(x) = sign{Sp (ng)() (129)(2)}-

It is easy to verify that {T,} is an adrn1ss1ble family of linear operators. Since

o(it),b,k o(it),b

ITirgll2 < 1 F Iz < Celt =10 ||,

IT11irgllpy < [1F)

fllz < [[My

d(1+ bk
WHTLOE )1,y < Celtr=uw) T g

by Stein’s interpolation theorem of analytic operators, we have

bk 5(t),bk
1ES* £l = IEY % £ lp = I Tegllp < Clgllp = CI 3.

Hence, by the monotone convergence theorem we obtain
,b
1M fllp < Cllflp 1 <p<2.

Finally, it should be pointed out that the proof in the case 2 < p < oo is similar
to the above. ]

Applying the same method and using Lemma 2', we have
Theorem 2. Let 0 < A <1, 1<p<oo,b>1,a:a+i7,a>"T_1|%—1|. If
f € LY (R™), then

b
1Ml < Cllfll g
where C' is independent of f.

To prove Theorem 1, we first need to establish a weak type estimation of the

n—1

maximal operator M; > ™ on any block.

Lemma 5. Let a(z) be a (¢,1)-block, b > 1. Then

(®) o (O, Ya)(x) > A} < OxL,

where C is independent of A and a(z).

ProOOF: We have

sy @) - ot}
_ { (g) T (Sp7 a)(x) + kf: Cu(Sp a)(a)
=1

n—1
R 2 (jylR
o e 0 e o]
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Denote
n_*l
o, -1 $ta- (3) T
n-1y R 5 (YR
(M2 a)(:v):supR/ [a(w—l—y)—a(w)]%}{”dy
R>0 n | Ry

By Lemma 4 in [2], we must prove that

o (M;T Pa)(@) > A < OAL
In fact, setting g(z,t) = fy, _[a(z — ty) — a(x)] dy/, we have
R / ol +y) - mm%m dy
_R / {/ lnfo - %y) (:v)]dy’}RnTl’b(t)dt
~R / ERr )dt‘
- R / (/TOOR”Tlvb(T)dT)’
R [ 5 i JA()de,

—1

where A(t) = [ R*T
Fort > 1,

’b(T) dr.

0 B oo
1A < / IR™Tb(7)| dr < c/ gy — ot < c%
t t

and for 0 <t < 1,

A<l [ R |+/‘m2, Jldr <C <

“lQ
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Hence

R*T Y(ly|R) ,,
[ e+ ) = el Ry

n

OAW{A |Dm@+§yww}mth
o/oo {/E \Dga(z + ty')| dy' } |A(RE)| R dt

/ / |Dza( a:+ty)|dy—
n 1

d D
= O/ |Dma(x+y)l—i = C/ [Da(w)]
Rn lyl R

nju —xz|?

R

Therefore

nlp Da(w)|
(M, x><04 du,

where supp a(z) C Q.
Let Q = 2@Q. Then for z ¢ Q,

nlb

C _1
M= )@ < % [ 1patian < L ipawllQl
2" Jg |z]

C 1—1 C
< — g < ——
> |x|"||a”£({|Q| = |.’L'|"

So

H ¢0: M ”1")()>M<@H§cx1.

Clearly,

n—1

HeeQ: M, T Ya)@) > A A< =} <|0] < AL,

Q|
By Theorem 2/, we have
Lﬁ{b
M2 Tallq < C||a||£¢11, 1 <q<oo.
Thus

nlb

erR":(M12 Ya)(z) > A A > IQIH
Q"
A

< (A Hlallz0)? < C( )< oAt

Therefore (8) holds.

503
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PROOF OF THEOREM 1: Suppose f(z) € Bi(R"). Then

N [e%S)
f@) = mybp(z) = > mpbe(@) + Y mpbe(@) = g(x) + h(z),
k k=1 k=N+1

where by, is a (g, 1)-block and N{my} < oco.
To complete the proof of Theorem 1, we must prove for all A > 0,

{estmsw i 1@ - 1@} > A} <o

R—o0
Since g € LI(R™), by theorem in [9] we have

(Snz o)) — g(a) = o(L), ace.

So

n=1yg
Hx limsup |[R{(Sg* '

R—o0

@) = 9} > 32} =o.
Thus by Lemma 5 and Lemma 1.3 in [10], we get

[ s timsup [R{(S,™ ")) = F(@)} > A

<o (M (@) > A2}

o0 > |
<ox! Z || 1+logl— — 0, N — o0
k=N+1 ugd
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