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Spaces X in which all prime z-ideals

of C(X) are minimal or maximal

Melvin Henriksen, Jorge Mart́ınez, R. Grant Woods

Abstract. Quasi P -spaces are defined to be those Tychonoff spaces X such that each
prime z-ideal of C(X) is either minimal or maximal. This article is devoted to a sys-
tematic study of these spaces, which are an obvious generalization of P -spaces. The
compact quasi P -spaces are characterized as the compact spaces which are scattered
and of Cantor-Bendixson index no greater than 2. A thorough account of locally com-
pact quasi P -spaces is given. If X is a cozero-complemented space and every nowhere
dense zeroset is a z-embedded P -space, then X is a quasi P -space. Conversely, if X is a
quasi P -space and F is a nowhere dense z-embedded zeroset, then F is a P -space. On
the other hand, there are examples of countable quasi P -spaces with no P -points at all.
If a product X × Y is normal and quasi P , then one of the factors must be a P -space.
Conversely, if one of the factors is a compact quasi P -space and the other a P -space
then the product is quasi P . If X is normal and X and Y are cozero-complemented
spaces and f : X −→ Y is a closed continuous surjection which has the property that
f−1(Z) is nowhere dense for each nowhere dense zeroset Z, then if X is quasi P , so is Y .
The converse fails even with more stringent assumptions on the map f . The paper then
closes with a number of open questions, amongst which the most glaring is whether the
free union of quasi P -spaces is always quasi P .

Keywords: quasi P -space, P -space, scattered space, Cantor-Bendixson derivatives,
nodec space, quasinormality
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1. Preliminaries

Let C(X) denote the ring of continuous real-valued functions whose domain is
the Tychonoff space X . This paper examines those spaces for which every prime
z-ideal of C(X) is either maximal or minimal, or, equivalently, for which each
chain of prime z-ideals has no more than two elements. Consideration of lengths
of such chains leads to a development of a notion of z-dimension; that will be
explored elsewhere.
Much of what follows can be put in the context of f -rings or algebras, and

will be phrased that way when convenient. There is a close connection between
our work and the work of S. Larson in [La95], [La97a] and [La97b]; we shall
feature some key theorems in those papers prominently. We will also make use
of recent improvements in the latter due to C. Kimber [Ki01]. The notation and
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terminology is largely that of [GJ76] except that absolutely convex ideals of a
C(X) will be called ℓ-ideals as in [BKW77] and [D95].
We are grateful to Richard Wilson for valuable conversations, written com-

ments, and for results that fail to appear explicitly only because of subsequent
improvements they inspired. Were it not for many of his initial results, the quality
of this paper would have suffered.
Throughout, every ring will be a commutative ring with identity element; unless

otherwise indicated the reader may assume that the rings under discussion here
are in fact semiprime, that is, that they have no nonzero nilpotent elements. All
lattice-ordered rings that will arise in this paper will be f -rings; that is, subdirect
products of totally ordered rings. Note that each C(X) has the abovementioned
properties.
All spaces are assumed to be Tychonoff. Recall that, for each f ∈ C(X),

Z(f) = { x ∈ X : f(x) = 0 }, the zeroset of f , while coz(f) = X \ Z(f), the
cozeroset of f . Likewise, we recall that pos(f) = coz(f ∨ 0) = { x ∈ X : f(x) >
0 }, while neg(f) = coz(f ∧ 0) = { x ∈ X : f(x) < 0 }. We denote by βX the
Stone-Čech compactification of X ; αX stands for the one-point compactification
of X (provided X is locally compact).
In this introductory section we review several of the pertinent elements which

will form part of the subsequent presentation. We begin with annihilators in
f -rings.

Definition & Remarks 1.1. (a) If S is a subset of the ring A, let

Sd = { a ∈ A : aS = {0} }.

An ideal of the form Sd is called an annihilator ideal . It is well known that for a
semiprime f -ring A the set A(A) of all annihilators of A forms a boolean algebra
relative to inclusion, in which, for each K ∈ A(A), Kd is the complement. For

convenience we write ad for {a}d, and add ≡ {ad}d.

An annihilator of the form add is called a principal annihilator . The subset of
principal annihilators, pA(A), is a sublattice of A(A), a fact which follows from
the identities below, which are easy to verify. For each 0 ≤ a, b ∈ A,

add ∧ bdd = (a ∧ b)dd and add ∨ bdd = (a+ b)dd.

If the f -ring A is semiprime then, in terms of the additive lattice-ordered group
structure of A, Sd may also be viewed as

Sd = { a ∈ A : |a| ∧ |b| = 0, for all b ∈ S }.

Indeed, if A is a lattice-ordered group, we may take the preceding description of
Sd as its definition; in the language of lattice-ordered groups Sd is called the polar
of S.
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(b) Recall that a lattice-ordered group A is projectable if for each a ∈ A,

A = add + ad.
Whenever A = Sdd+Sd for an arbitrary subset S of A, then, since Sdd ∩Sd =

{0}, we have, for each f ∈ A, a unique decomposition f = f [S] + f [Sd], with

f [S] ∈ Sdd and f [Sd] ∈ Sd. We shall refer to f [S] as the projection of f on S.
If S = {a}, we use the notation f [a] in place of f [{a}]. To recap the definition
in the preceding paragraph then, A is projectable if and only if for each f, g ∈ A
there exist elements f [g] ∈ gdd and f [gd] ∈ gd (which are necessarily uniquely

determined by f) such that f = f [g] + f [gd].
For later use we record the following observation: if the lattice-ordered group

A is projectable and C is any convex ℓ-subgroup — that is, a subgroup which is
at once a sublattice and order-convex — then C too is projectable; (this follows
from [D95, Theorem 18.4], which gives a necessary and sufficient condition for
projectability which is preserved by passage to a convex ℓ-subgroup).

We also observe that R
D, the lattice-ordered group of all real valued functions

defined on a set D is projectable. This is well known, but also easy to see as soon
as one observes that, for each g ∈ R

D,

gdd = { f ∈ R
D : coz(f) ⊆ coz(g) } and gd = { f ∈ R

D : coz(f) ⊆ Z(g) }.

(Note that R
D = C(D) when D is endowed with the discrete topology.) These

descriptions make it clear that for each f ∈ R
D, the functions defined by

f [g](x) =

{

f(x) if x ∈ coz(g),

0 if x ∈ Z(g),
and f [gd](x) =

{

0 if x ∈ coz(g),

f(x) if x ∈ Z(g),

are the projections of f which witness that gdd + gd = R
D.

The above material will be used in a number of places further on: in the proof
of the crucial Lemma 4.2, and in Section 6, in the proofs of Lemma 6.11 and 6.12.
We will refer the reader to the preceding commentary prior to those results.
Next, we review some elementary notions in topology.

Definition & Remarks 1.2. (a) An ideal I of C(X) is a z-ideal if Z(g) ⊆ Z(h)
and g ∈ I imply that h ∈ I. By 2.7 and 14.7 of [GJ76] it follows, respectively,
that maximal ideals and minimal prime ideals of C(X) are z-ideals. As in [GJ76],
if S is a subset of C(X) then Z[S] denotes the set {Z(f) : f ∈ S }, and Z(X)
the set of all zerosets of X . For the collection of all z-ideals of C(X) we shall use
Z(C(X)).

(b) Recall from [GJ76, Chapter 1] or [W75, §10] that a subspace Y of a space
X is said to be C-embedded (resp. C∗-embedded) in X if the map f 7→ f |Y is a
surjection of C(X) onto C(Y ) (resp. C∗(X) onto C∗(Y )). The subspace Y is said
to be z-embedded in X if the map Z 7→ Z ∩X is a surjection of Z(X) onto Z(Y ).
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Clearly, C-embedding implies C∗-embedding, and C∗-embedding, in turn, implies
z-embedding. It is well known that every closed subspace of a normal space is C-
embedded. Moreover, by [W75, 10.7], every cozeroset and every Lindelöf subspace
is z-embedded.

(c) A point p of a spaceX is called a P -point (resp. almost P -point) if whenever
f ∈ C(X) and f(p) = 0 it follows that p ∈ intZ(f) (resp. intZ(f) 6= ∅). X is
called a P -space (resp. an almost P -space) if every point is a P -point (resp. an
almost P -point). Observe that X is almost P if and only if every zeroset of X is
regular closed.
If the closure of each cozeroset (resp. open set) of X is open, then X is called

basically (resp. extremally) disconnected . If disjoint cozerosets in X are com-
pletely separated, then X is said to be an F -space. It is shown in [GJ76] that
every P -space and every extremally disconnected space is basically disconnected,
and that each basically disconnected space is an F -space, and that none of the
reverse implications hold.

(d) Our discussion will involve repeated references to the ideals Op and Mp

of C(X), and in any case, it seems reasonable to include a brief review of the
relationship between points of X and maximal ideals of C(X). The notation is
that of [GJ76]; see 7.2 and 7.12 of that reference.
For each p ∈ βX then recall that

Mp = { f ∈ C(X) : p ∈ clβX ZX(f) },

is the maximal ideal of C(X) associated with p. Also,

Op = { f ∈ C(X) : clβX ZX(f) is a neighborhood of p in βX }

and the latter is the intersection of all the minimal prime ideals of C(X) that
are contained in Mp. The map p 7→ Mp defines a homeomorphism of βX onto
Max(C(X)), the space of all maximal ideals of C(X), endowed with the hull-kernel
topology.
Finally, when p ∈ X one writes Mp (resp. Op) in place of M

p (resp. Op).

We come now to the central definitions of this article, prefaced by a review of
some facts from Suzanne Larson’s [La95] and [La97a].

Definition & Remarks 1.3. (a) An f -ring is defined to be quasinormal if the
sum of any two minimal prime ideals is a maximal ℓ-ideal or the whole ring. This
is equivalent, by [La97a, 1.3], to the following pair of conditions:

(i) the sum of any two semiprime ℓ-ideals is semiprime and
(ii) every nonmaximal prime ℓ-ideal contains a unique minimal prime ideal.

We will call a space X quasinormal if C(X) is a quasinormal ring. (The reader is
cautioned that this label does not imply a relaxation of normality in a topological
space. “Normality” in this sense comes from the terminology in Riesz spaces.)
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(b) Suppose X is a space, and M is a maximal ideal of C(X). We say that
C(X) is quasi P at M if every prime z-ideal contained inM is minimal or elseM .
If C(X) is quasi P at each of its maximal ideals, we call it a quasi P -ring, and
say that X is a quasi P -space. We will also say that x is a quasi P -point of X if
C(X) is quasi P at Mx.

Let υX denote the Hewitt realcompactification of X ; see [GJ76, Chapter 8].
Since C(υX) ∼= C(X) it follows that X is quasi P if and only if υX is quasi P .

Every P -space is a quasi P -space, since it is well known that X is a P -space
precisely when every maximal ideal of C(X) is a minimal prime ideal ([GJ76,
14.29]).

(c) Every quasi P -space is quasinormal. For, if X is not quasinormal, there are
two distinct minimal prime ideals of C(X) whose sum Q is contained properly in
a maximal idealM of C(X). By [GJ76, 14.8], Q is a z-ideal, so M , Q, and one of
the two minimal prime ideals form a chain of three z-ideals, showing that X is not
a quasi P -space. The converse is false, as the reader will see in Proposition 2.7:
for example, letting ω stand for the discrete space of natural numbers, βω is
quasinormal but not quasi P .

If X is compact then it is quasi P if and only if each x ∈ X is quasi P , but the
reader should note that any space Ψ belonging to the class of spaces described
in [GJ76, 5I] is locally compact, pseudocompact and not normal. As we shall see
in 4.4, such a Ψ is not quasi P , while every point of Ψ is quasi P .

A second example with this feature is given in Example 7.4.

(d) If X is an F -space then in C(X) every maximal ideal contains a unique
minimal prime ideal — by [GJ76, Theorem 14.25] — which makes it clear that any
F -space is quasinormal. In [La95, Example 3.7] Larson shows that the one-point
compactification of any infinite discrete space is quasinormal.

The image of a quasinonormal f -ring under a surjective homomorphism is
quasinormal ([La95, Proposition 3.2]). Hence, every C-embedded subspace of
a quasinormal space is quasinormal. In particular, every closed subspace of a
normal quasinormal space is quasinormal.

The assertions made in the preceding paragraph clearly hold if “quasinormal”
is replaced by “quasi P”.

It follows easily from Theorems 3.4 and 3.5 of [La97a] that if X is normal and
realcompact, then βX is quasinormal if and only if X is quasinormal and Op is
prime for every p ∈ βX \X . It is further asserted that the latter condition holds
if X is locally compact and σ-compact. As will be seen below, this is not correct.

Theorem 1.4. Consider the following assertions about a Tychonoff space X .

(a) Op is a prime ideal for all p ∈ βX \ X .
(b) The intersection of the closures in X of any pair of disjoint cozerosets of

X is compact.
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(c) For every f ∈ C(X), the intersection of the closures of pos(f) and neg(f)
is compact.

Then (b) and (c) are equivalent, (c) implies (a), and if X is normal or an F -space,
then (a) implies (b).

Proof: The equivalence of (b) and (c) is immediate from the fact that for
g, h ∈ C(X), with gh = 0,

cl(coz(g)) ∩ cl(coz(h)) = cl(pos(f)) ∩ cl(neg(f)),

where f = g2 − h2.

Suppose Op is not a prime ideal for some p ∈ βX \ X . By [GJ76, 2.9], there
is an f ∈ C∗(X) that changes sign on the trace on X of every neighborhood in
βX of p. So the intersection of the closures in X of pos(f) and neg(f) cannot be
compact. Hence (c) implies (a).

Assume that (a) holds and there is an f ∈ C(X) and a point

p ∈ clβX (clX pos(f) ∩ clX neg(f)) \ X.

If X is normal,

(∗) clβX (clX pos(f) ∩ clX neg(f)) = clβX pos(f) ∩ clβX neg(f).

So p ∈ clβX pos(f) and p ∈ clβX neg(f). Note that we may assume that
f ∈ C∗(X). Also, since in an F -space disjoint cozerosets are completely sep-
arated, equation (∗) holds in any F -space.

It will be shown next that p /∈ intβX clβX{ x ∈ X : f(x) ≤ 0 }. For otherwise,
there would be an open set W ⊆ βX for which p ∈ W ⊆ clβX{ x ∈ X : f(x) ≤
0 }. Now, p ∈ clβX pos(βf), so that W ∩ pos(βf) 6= ∅. But

pos(βf) ∩ clβX{ x ∈ X : f(x) ≤ 0 } = ∅,

a contradiction. Similarly, p /∈ intβX clβX{ x ∈ X : f(x) ≥ 0 }. Now, Op is
a prime z-ideal, making Z[Op] a prime z-filter. Since, for each x ∈ X , either
f(x) ≤ 0 or f(x) ≥ 0, it follows that

p ∈ intβX clβX{ x ∈ X : f(x) ≤ 0 } or p ∈ intβX clβX{ x ∈ X : f(x) ≥ 0 },

and it has just been shown that this cannot happen. This shows that (a) implies
(c), and hence (b), provided X is normal or an F -space. �
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Remark 1.5. In a number of places in [La97a], it is asserted that if X is locally
compact and σ-compact, then Op is prime for every p ∈ βX \ X . This is not
correct. For, if it were, then by this last theorem, the closures of the disjoint
cozerosets

{ (x, y) : x < y } and { (x, y) : x > y }

of R × R would have a compact intersection, which is not the case.

Coupling the previous theorem with [Ki01, Theorem 5.2] yields:

Theorem 1.6. If X is normal and realcompact, then the following are equiva-
lent.

(a) X is quasinormal and Op is prime for every p ∈ βX \ X .
(b) X is quasinormal and the intersection of the closures of any pair of disjoint
cozerosets of X is compact.

(c) βX is quasinormal.

Last, in this introduction, we briefly review scattered spaces, for use in Sec-
tion 4.

Definition & Remarks 1.7. (a) A topological space X is said to be scattered or
dispersed (in French clairsemé) if each nonvoid subspace Y has an isolated point
of Y . It is easy to see that if each nonempty closed subspace of X has an isolated
point, then X is scattered. Many properties of scattered spaces are summarized
in Z. Semadeni’s memoir [Se59], his book [Se71], and in a paper by R. Levy and
M. Rice [LR81].
A compact scattered space is necessarily zero-dimensional. The Stone dual is

a superatomic boolean algebra: every homomorphic image has an atom. For a
discussion of superatomic boolean algebras the reader is referred to [Ko89, §17].
As with quasi P -spaces, no space containing a copy of βω can be scattered.

(b) Next, we review the Cantor-Bendixson sequence of a space. If Y is a space

let Is(Y ) denote its set of isolated points, and let: Y (0) = Y , Y (1) = Y \ Is(Y ).

For any ordinal η, let Y (η+1) = (Y (η))(1), and if η is a limit ordinal, let

Y (η) =
⋂

ξ<η

Y (ξ).

The spaces Y (η) are called Cantor-Bendixson derivatives of Y . The reader will
note that these derivatives form a decreasing transfinite sequence of closed sub-
spaces of Y . From cardinality considerations there is an ordinal α such that

Y (α) = Y (β), for each β > α. Let CB(Y ) denote the smallest ordinal for which

Y (α) = Y (α+1); this is the CB-index of a space Y .

Now, it is easily seen that Y is scattered if and only if Y (α) = ∅, for suitable α.

If Y is compact and α = CB(Y ), then it is clear that
⋂

η<α Y (η) is nonempty.
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It follows that α has a predecessor γ such that Y (γ) is finite and, hence, the
last nonempty Cantor-Bendixson derivative. (To illustrate, if Y is compact then
CB(Y ) = 1 means that Y itself is finite; CB(Y ) = 2 that Y \ Is(Y ) is finite but
nonvoid; and so on.)
Note that if Y is compact and scattered, then CB(Y ) = 2 if and only if Y is a

finite topological sum of one-point compactifications of discrete spaces.

2. Basic properties of quasi P -spaces

As is customary in the theory of commutative rings, Spec(A) denotes the set
of prime ideals of the ring A. In the lemma which follows we regard Spec(A) as a
poset under inclusion. The lemma is easily proved from the definition of a prime
ideal, keeping in mind that a prime ideal is necessarily a proper ideal. The result
is well known; it appears as Exercise 15, p. 713, in [DF99].
Below Spec(A) is assumed to bear the hull-kernel topology; the reader is re-

minded that it is rarely Hausdorff.

Lemma 2.1. Suppose that A = A1×A2, a direct product of commutative rings.
Then Spec(A) is partitioned into clopen sets S1 and S2, where

Si = {P ∈ Spec(A) : Oi ⊆ P }, (i = 1, 2)

and O2 = A1 × {0} and O1 = {0} × A2. Moreover, for each i = 1, 2, Si is

isomorphic as a poset to Spec(Ai) via the map P 7→ P/Oi.

We interpret Lemma 2.1 in a ring of continuous functions. Observe that, for
any set F , eS stands for the characteristic function of the subset S of F .

Lemma 2.2. Suppose that X is the topological sum of X1 and X2. Then

(i) C(X) ∼= C(X1)× C(X2), via the ℓ-isomorphism f 7→ (f |X1 , f |X2).
(ii) The isomorphism in (i) induces a map Θ which is at once an isomorphism
of posets and a homeomorphism from Spec(C(X)) onto the free union
Spec(C(X1)) ∪ Spec(C(X2)), such that, for a prime ideal P of C(X),

Θ(P ) =

{

{ f |X1 : f ∈ P } ∈ Spec(C(X1)), if eX2 ∈ P,

{ f |X2 : f ∈ P } ∈ Spec(C(X2)), if eX1 ∈ P.

(iii) Subject to the identification of βX with Max(C(X)) — see 1.2(d) — Θ
restricts to the natural homeomorphism from βX onto the topological sum
of βX1 and βX2.

Proof: That f 7→ (f |X1 , fX2) is an ℓ-isomorphism, as asserted, is easy to check;
we leave it to the reader. Next, with the notation of Lemma 2.1, setting A = C(X)
and Ai = C(Xi), i = 1, 2, we note that

Oi = { f ∈ C(X) : f vanishes on Xi } = ed
Xi

,
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and also that ed
X1
= edd

X2
= (eX2), where (eXi

) is the ideal generated by eXi
.

Then we have

S1 = {P ∈ Spec(C(X)) : eX2 ∈ P } and S2 = {P ∈ Spec(C(X)) : eX1 ∈ P }.

Item (ii) should now be clear from Lemma 2.1. It is easy to see that (iii) follows
from (ii), and we leave this to the reader as well. �

Proposition 2.3. Let X be a space and K be a clopen subset with p ∈ clβX K.
Then

(a) Mp (in C(X)) is a minimal prime ideal if and only if Mp (in C(K)) is a
minimal prime ideal;

(b) C(X) is quasi P at Mp (relative to X) if and only if C(K) is quasi P at
Mp (relative to K).

Proof: Note that X is the free union of K and X \ K and apply Lemma 2.2.
�

We now exhibit a class of quasi P -spaces that contains all one-point compact-
ifications of discrete spaces. Exercise 14G in [GJ76] asserts that αω is quasi P ,
without using this terminology.
The reader should recall the following about commutative semiprime rings:

suppose that P is a prime ideal of a such a ring A. Then it is minimal if and only
if a ∈ P implies that ad 6⊆ P . For rings of continuous functions this is shown in
[HJ65]; it will be used presently.
If S is a subset of a partially ordered group G then we define S+ = { x ∈ S :

x ≥ 0 }.

Lemma 2.4. Let X = D ∪ {p∞}, where D is an infinite P -space, and p∞ is the
unique non P -point of X . Then

(a) every prime z-ideal of C(X) properly contained inMp∞ is a minimal prime

ideal;

(b) every free maximal ideal of C(X) is a minimal prime ideal.

Thus, X is a quasi P -space.

Proof: The final claim obviously follows from (a) and (b).
(a) On the contrary, suppose that Q is a prime z-ideal of C(X) contained

properly in M = Mp∞ that is not minimal. Then by the remark preceding this

lemma, there is an f ∈ Q+ such that fd ⊆ Q. Choose also g ∈ M+ \ Q and note
that p∞ ∈ clX (coz(g) ∩ D). For otherwise, g vanishes on a neighborhood of p∞
and lies in Op∞ , and hence in Q.
Let S(g, f) = coz(g) ∩ Z(f) and observe that it is a clopen subspace of the

P -space D. We consider two cases:

I. p∞ /∈ clX (S(g, f)). Then S(g, f) is clopen in X and its characteristic

function u is continuous. Because u ≡ 0 on coz(f), we have u ∈ fd ⊆ Q,
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so that f + u ∈ Q. Since

Z(f + u) = Z(f) ∩ Z(u) = Z(f) ∩ (Z(g) ∪ coz(f)) ⊆ Z(g),

and Q is a z-ideal, it follows that g ∈ Q, contrary to assumption. So we
must have:

II. p∞ ∈ clX(S(g, f)). Then define v on X by

v(x) =

{

g(x) if x ∈ S(g, f),

0 otherwise.

Then v ∈ C(X) and v(p∞) = 0. Clearly, vf = 0, so it follows from our
choice of f that v ∈ Q; consequently, f + v ∈ Q as well. As in case I,
Z(f + v) ⊆ Z(g), whence g ∈ Q, again contrary to assumption.

These contradictions mean that (a) is satisfied.

(b) Suppose that p ∈ βX \ X . Clearly, βX is zero-dimensional, so p∞ has a
clopen X-neighborhood L whose complement L′ contains p. It is also clear that
L ∩ X and L′ ∩ X form a clopen partition of X , and that L′ ∩ X is a P -space.
Furthermore,

C(X) ∼= C(L ∩ X)× C(L′ ∩ X).

Invoking Proposition 2.3(a), we have that Mp is a minimal prime ideal of C(X),
as claimed. �

We now put together Lemmas 2.2, 2.4 and induction.

Corollary 2.5. Any finite topological sum of quasi P -spaces is a quasi P -space.
In particular, any space in which all but a finite number of points are P -points is
a quasi P -space.

The reader will recall — see [GJ76, Chapter 14] — thatX is an F -space if every
cozeroset of X is C∗-embedded in X . We also recall the following generalization
of F -spaces.

Definition & Remarks 2.6. (a) The space X is an SV -space if for each prime
ideal P of C(X), C(X)/P is a valuation domain. (Note: a valuation domain is
an integral domain in which, given any two ideals, one is contained in the other.)
It is well known that every F -space is an SV -space ([GJ76, Theorem 14.27]).
[HLMW94, 5.6] shows that every compact SV -space contains a copy of βω.
The rank of a point p in a space X , denoted rkX (p), is defined to be the

number of minimal prime ideals contained inMp (see [HLMW94]); if this number
is infinite, we write rkX(p) = ∞. (If the underlying space is understood we
will drop the subscripting of the rank of a point.) A space X has finite rank if
there is a finite number k such that rk(p) ≤ k, for each point p ∈ X . To say
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that rkX(p) = n is to say that n is the maximum number of pairwise disjoint
cozerosets of X having p in all their closures [HLMW94, Theorem 3.1]. Also —
[HLMW94, 5.10] — if X is normal, then rkX(p) = rkβX(p). Finally, it is shown
in [HLMW94, Theorem 4.2] that an SV -space necessarily has finite rank.

(b) In [Ki01, Theorem 4.3], C. Kimber shows that if X is a normal space, then
C(X) is quasinormal if and only if for each pair of disjoint cozerosets U and V ,
clX U ∩ clX V is a P -space. Earlier, in [La97a, Theorem 3.5], S. Larson obtained
this result in case X is compact. (In [Ki01], the terminology “2-boundary” is used
to denote the interesection of the closures of a pair of disjoint cozerosets.)

With the following observation in hand, we are able to see that compact quasi-
normal spaces which are not quasi P abound.

Proposition 2.7. No compact space containing a copy of βω is a quasi P -space.
In particular, no infinite compact SV -space, nor any infinite compact F -space is
a quasi P -space.

Proof: In [GJ60, Theorem 3.10], it is shown that the quasi P -points of βω are
the points of ω together with those points in βω \ ω that are P -points of the
space βω \ ω. Because every compact P -space is finite, this set cannot be all of
βω \ ω, so βω is not a quasi P -space. The remaining assertions follow from 2.6,
by appealing to 1.3(d). �

The following corollary is immediate from Proposition 2.7; it will be used in
Section 6.

Corollary 2.8. Any locally compact F -space that is quasi P is discrete.

Proof: By Proposition 2.7 and 1.3(d), each point of such a space has a finite
neighborhood and hence is discrete. �

Remark 2.9. By Proposition 2.7, any infinite P -space is an example of a quasi
P -space whose Stone-Čech compactification is not quasi P .

After Theorem 5.9 an example will be given of a countable quasi P -space
without any P -points, which is, in fact, extremally disconnected.

3. z-Embedded subspaces

This brief section contains an observation about the poset of prime z-ideals
Specz(C(X)) of C(X), and its inverse image under the homomorphism induced
by a continuous map to X . Ultimately, the goal is to describe the passage from
Specz(C(X)) to Specz(C(Y )) when Y is a dense z-embedded subspace. We shall
need this information later on.
We denote the set of minimal prime ideals of a ring A by Min(A). For a

semiprime f -ring (and, indeed, more generally) Min(A) is a zero-dimensional
Hausdorff space under the hull-kernel topology ([HJ65]).
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Definition & Remarks 3.1. If τ : Y −→ X is a continuous mapping, and P is
a z-ideal of C(Y ), then

Specz(τ)(P ) ≡ { g ∈ C(X) : g · τ ∈ P }

is a prime z-ideal of C(X), and the mapping Specz(τ) is an order preserving map
(under set inclusion) of Specz(C(Y )) into Specz(C(X)) that sends My to Mτ(y),

for each y ∈ Y . See [Mo73, §5].
Let us examine Specz(τ) more closely. Assume that τ is a z-embedding. Let

C(τ) : C(X) −→ C(Y ) be the induced ℓ-homomorphism, of restriction to Y , and
Kτ denote its kernel. Note that, for each P ∈ Specz(C(Y )),

Specz(τ)(P ) = C(τ)−1(P ) = { f ∈ C(X) : f |Y ∈ P }.

Next, we wish to highlight a consequence of [Mo73, §8] and [Mo70, Theorem 6.2]:

Specz(τ) is an order preserving isomorphism of Specz(C(Y )) into the
subset Sτ of Specz(C(X)) consisting of all prime z-ideals contain-
ing Kτ .

Moreover, Specz(τ) has the feature that if P is a prime z-ideal of C(Y ) contained
in the maximal ideal M , then Specz(τ)(P ) is contained in the maximal ideal
Specz(τ)(M).

Now we have the following observations.

Proposition 3.2. Suppose τ : Y −→ X is a z-embedding. Then

(a) if C(X) is quasinormal (resp. quasi P ), then so is C(Y ). In particular, ev-
ery Lindelöf subspace and every cozeroset of a quasinormal (resp. quasi P )
space is quasinormal (resp. quasi P );

(b) if Y is also dense in X , then the restriction of Specz(τ) toMin(C(Y )) is a
homeomorphism onto Min(C(X)) with respect to the hull-kernel topolo-
gies.

Proof: The first sentence of (a) follows from 3.1, and the second sentence from
the fact that Lindelöf subspaces and cozerosets of a space are z-embedded in that
space, as is noted in of [W75, 10.7]. Part (b) is shown in [Mo70, 7.6]. �

Observe that Proposition 3.2(a) improves on Theorems 3.7 and 3.8 of [La97a].

4. Locally compact quasi P -spaces

We begin with a necessary condition for a compact space to be a quasi P -space.
We remind the reader of the remarks in 2.6. Our goal is Theorem 4.3, describing
locally compact quasi P -spaces and characterizing those that are normal.
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Theorem 4.1. Suppose that X is a compact space. Then,

(I) if X is quasi P we have that

(a) the subset of X of all points p for which rk(p) = 1 is cofinite;

(b) each point p with rk(p) > 1 has infinite rank;
(c) each point with rank 1 is isolated; thus, X is scattered with
CB(X) ≤ 2.

(II) X is a quasi P -space if and only if X is a finite topological union of a
number of one-point compactifications of discrete spaces.

Proof: Item I(a) follows immediately from [Ki01, Theorem 5.2]. To verify I(b),
let p ∈ X , and assume that rk(p) > 1. By I(a), there is a compact neighborhood
K of p which excludes the other points of rank > 1. Note that any such K
must be infinite. Observe that rkX(p) = rkK(p). Note also that by [HLMW94,
Corollary 1.8.2] the other points of K still have rank 1. Thus, if rkK(p) < ∞,
then according to [La97b, Theorem 4.3], K is an SV -space and also quasi P . On
the other hand, since p is not isolated in K, K is infinite, and we may then apply
Proposition 2.7, to obtain a contradiction. This means that rk(p) =∞.
To prove I(c), observe that, by (a), the set S of points of rank 1 is open. For

each p ∈ S, let C be a compact neighborhood of p contained in S. Then C is
a quasi P -space consisting of points of rank 1, and hence an F -space ([GJ76,
Theorem 14.25]). Using Proposition 2.7 once more, we conclude that C is finite,
and so p is isolated in X . Then it is obvious that X is scattered with CB-index
≤ 2. The necessity in (II) is a consequence of (c) in (I). The converse follows from
Lemma 2.4 and Corollary 2.5. �

For locally compact spaces we have a characterization, which improves a bit
on Theorem 4.1. We shall need the following lemma. The reader is encouraged
to review the comments in 1.1(b).

Lemma 4.2. Suppose that X is a space with a dense set of isolated points,

for which the first Cantor-Bendixson derivative, X(1), is C-embedded. Let ρ :

C(X) −→ C(X(1)) be the restriction homomorphism, and K = ker(ρ). Then, for
each minimal prime ideal P of C(X) that does not contain K, P ∩K is maximal
among the z-ideals of C(X), which are properly in K.

Proof: Note at the outset that ρ is surjective becauseX(1) is C-embedded. Also,
we have

K = { f ∈ C(X) : coz(f) ⊆ Is(X) },

and we may then regardK as a convex ℓ-subgroup of C(Is(X)). Now, as a lattice-
ordered group, C(Is(X)) is projectable by the remark in 1.1(b), as C(Is(X)) ∼=
R
Is(X). Since K is a convex ℓ-subgroup of C(Is(X)), it follows — invoking 1.1(b)
once more — that K is projectable as well.
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Suppose now that P is a minimal prime ideal of C(X) that does not containK.
Let 0 < f ∈ K \ P . Pick g > 0 in K. Then, owing to the projectability, we have

that g[f ] ∈ fdd and g[fd]f = 0, whence g[fd] ∈ P . As for g[f ] and f , they are
continuous functions on the discrete space Is(X) and so Z(f) ⊆ Z(g[f ]), which
implies that g lies in the z-ideal generated by f and P ∩ K. This proves the
lemma. �

Theorem 4.3. Suppose that X is a locally compact space. If X is a quasi P -
space then X is scattered of CB-index ≤ 2. The converse is true if X is assumed
to be normal.

If X is quasi P then each nonisolated point has infinite rank.

Proof: (Necessity) Suppose that p ∈ X and that K is a compact regular
closed neighborhood of p. Owing to the remarks in 1.3(d), K is quasi P , and
hence, by Corollary 4.1, all but finitely many points of K are isolated in K. As
K = clX intX K, all such points are isolated in X . This proves that Is(X) is

dense in X , and by shrinking K if necessary, that for each p ∈ X(1), there is a

neighborhood of p which intersects X(1) in p only. Thus X(1) is discrete, proving
that X is scattered of CB-index ≤ 2.
If rkX(x) > 1, then the above arguments are sufficient to show that x has

infinite rank in some compact neighborhood, and therefore in X . This proves the
final claim of the theorem.

(Sufficiency) Suppose that CB(X) ≤ 2, and assume that X is normal. We
carry the notation of Lemma 4.2. If CB(X) = 1, then X is discrete and there is
nothing to show, so we may assume that CB(X) = 2. Thus, we have Is(X) dense

in X , with X(1) C-embedded in X , in view of the normality of X .
Now we recall (see [D95, Theorem 12.13]) that the trace map Q 7→ Q∩K is an

order-preserving bijection between the prime convex ℓ-subgroups of C(X) that do
not contain K and the proper prime convex ℓ-subgroups of K. It is easy to verify
that Q is a z-ideal if and only if Q ∩ K is a z-ideal. We leave that to the reader.
Suppose, by way of contradiction, that there is a maximal ideal M in C(X)

and prime z-ideals P0 < P1 < P2, contained in M . Without loss of generality, we

may assume that P0 is a minimal prime ideal. Since C(X)/K ∼= C(X(1)) is von
Neumann regular, P1 6≤ K, and by tracing on K, we have P0 ∩K < P1 ∩K, both
z-ideals which are properly contained in K, a contradiction to Lemma 4.2. �

Here are the details of the example mentioned in 1.3(c).

Example 4.4. Let Ψ be a member of the class of spaces discussed in [GJ76, 5I].
Each nonisolated point has a clopen neighborhood which is homeomorphic to αω,
which is quasi P . Thus, invoking Proposition 2.3, it follows that Ψ is quasi P at
each of its nonisolated points, which means that it is quasi P at each of its points.
Next, we establish that any noncompact pseudocompact space X which is

scattered with CB-index 2 is not quasi P . Since X is pseudocompact, υX = βX
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([GJ76, 8A.4]). Thus,
C(X) ∼= C(υX) ∼= C(βX);

now if βX is scattered, its CB-index is at least 3, and so C(X) is not quasi P ,
by Theorem 4.3. If βX is not scattered, then by the same theorem, C(X) is not
quasi P .
The upshot of this is that Ψ is not quasi P .

In Example 7.4, an example will be given of a locally compact, realcompact ,
nonnormal space X which is scattered with CB-index ≤ 2, which is not quasi P ,
but is quasi P at each of its points.

Remark 4.5. It is worth noting that there are locally compact quasi P -spaces for

which X(1) is infinite. For instance, let X be the topological union of countably
many copies of αω, the one-point compactification of the discrete natural numbers.

X is clearly scattered with CB-index 2. Here X(1) ∼= ω is C-embedded in X , and
so by Theorem 4.3, X is quasi P .

The next result is an immediate consequence of Theorem 4.3.

Theorem 4.6. If X is a locally compact normal quasi P -space, and D is a
discrete space, then D × X is a quasi P -space.

Note in the preceding theorem that the space D×X may also be described as
the free union of |D| copies of X .
This section is concluded with the following simple application of the last the-

orem.

Corollary 4.7. A locally compact σ-compact space is a quasi P -space if and only
if it is a countable free union of one-point compactifications of discrete spaces.

Proof: A countable free union of one-point compactifications of discrete spaces
is clearly locally compact and σ-compact, and is a closed subspace of the product
of the one-point compactification of a discrete space of any cardinality exceeding
that of each of the factor spaces and a countable discrete space. Because this
latter product is normal, the resulting space is quasi P by Theorem 4.6.
Conversely, if X is a locally compact σ-compact quasi P -space, then X is

scattered and CB(X) ≤ 2, and X(1) is countable and discrete. Because each

x ∈ X(1) has a compact neighborhood meeting no other point of X(1), it has one
homeomorphic to the one-point compactification of a discrete space with x as its
only nonisolated point, so the desired conclusion holds. �

5. Quasi P -spaces X for which Min(C(X)) is compact

We remind the reader that if S ⊆ C(X), then Sd = { g ∈ C(X) : gS =
{0} }; see Section 1. The space Min(C(X)) will denote the set of minimal prime
ideals of C(X) endowed with the hull-kernel topology. The following facts about
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Min(C(X)) appear in [HJ65]; in fact, most of the equivalences listed in Proposi-
tion 5.1 are shown in [HJ65] for semiprime f -rings. Note that f is a zero-divisor
if and only if intX Z(f) 6= ∅.

Proposition 5.1.

(a) If P ∈ Min(C(X)) and f ∈ P , then fd is not contained in P . In particular,
each member of a minimal prime ideal is a zero divisor. Thus no element

of Z[P ] is nowhere dense.
(b) Min(C(X)) is a zero-dimensional Hausdorff space which is countably com-
pact, but need not be compact.

(c) The following are equivalent in C(X):
(i) Min(C(X)) is compact;

(ii) for each f ∈ C(X), there is a g ∈ C(X) such that fdd = gd;

(iii) if every element of a (proper) prime ideal is a zero-divisor, then it is
minimal;

(iv) for each f ∈ C(X), there is a g ∈ C(X) such that cl(int(Z(f))) =
cl(coz(g));

(v) for each f ∈ C(X), cl(coz(f)) is the closure of the interior of a
zeroset;

(vi) for each cozeroset U of X there exists a cozeroset V of X such that
U ∪ V is dense in X and U ∩ V = ∅.

Remark 5.2. (a) Perhaps because of 5.1(c)(vi), such spaces are called cozero-
complemented . We observe that the equivalence of (i), (ii) and (iii) of Propo-
sition 5.1(c) is known in any semiprime f -ring. Indeed, in [CM90] it is shown
for arbitrary lattice-ordered group that the space of minimal prime convex ℓ-
subgroups is compact precisely when 5.1(c)(ii) is satisfied.
The claim of Proposition 5.1(a) was already noted prior to Lemma 2.4, for

arbitrary commutative semiprime rings.

(b) If the closure of every cozeroset of a space X is a zeroset, in particular,
if X is perfectly normal or basically disconnected, then Min(C(X)) is compact.
A space in which every regular closed set is a zeroset is called an Oz -space; see
[Bl76]. We note that a space is Oz if and only if each of its open subspaces is
z-embedded. It follows from Proposition 5.1(c) that if X is an Oz-space, then
Min(C(X)) is compact.

(c) Recall that a space satisfies the countable chain condition, or is a ccc -space,
or has countable cellularity if any collection of pairwise disjoint open subsets
is countable. Any separable space is a ccc -space, but the cube [0, 1]α and the
generalized Cantor space {0, 1}α are ccc for any cardinal α, and they both fail to
be separable if the exponent α exceeds 2ω. In fact, continuous images of dense
subspaces of ccc-spaces are ccc. See 2N(6) and 3RST of [PW88].
Combining Theorem 1.1 and Proposition 4.3 of [HM93] yields immediately that

every ccc-space has a compact space of minimal prime ideals that is extremally
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disconnected. The arguments of [HM93] also show that every Oz -space has this
property.

We now proceed to examine consequences of the hypothesis that Min(C(X))
be compact.

Proposition 5.3.

(a) If X is a quasi P -space, then any prime z-filter that contains a nowhere
dense zeroset is a z-ultrafilter.

(b) The converse of (a) holds if Min(C(X)) is compact.

Proof: (a) The prime z-filter determines a prime z-ideal Q that is contained in
a unique maximal ideal M and contains a minimal prime ideal P . By Proposi-
tion 5.1(a), Q 6= P , so that Q =M , since X is a quasi P -space.
(b) Suppose P is a minimal prime ideal contained properly in a prime z-idealQ.

By Proposition 5.1(c)(iii) the z-filter Z[Q] contains an element with empty inte-
rior, and so by assumption must be a z-ultrafilter. Thus, Q is a maximal ideal,
proving (b). �

Definition & Remarks 5.4. (a) A space in which every nowhere dense subspace
is closed is called a nodec space; (equivalently, a space is nodec if each of its closed
nowhere dense sets is discrete.) This definition was introduced by van Douwen
in [vD93].

(b) It is shown in [HM93, 2.6(d)] that if Min(C(X)) is compact and extremally
disconnected, and |X | is nonmeasurable, then each almost P -point ofX is isolated.
(For a definition of measurable cardinal and the reason why it is consistent with
ZFC to assume that all cardinals are nonmeasurable, see [GJ76, Chapter 12].)

Observe that Theorem 5.5(a) below appears implicitly in [HM93, §2].

Theorem 5.5. Suppose that X is cozero-complemented.

(a) Every almost P -point of X is a P -point. Thus, an almost P -space with
a compact space of minimal prime ideals is a P -space.

(b) If Y is a dense z-embedded subspace of X , then Min(C(Y )) is compact.
(c) If every nowhere dense zeroset of X is a z-embedded P -space, then X is
a quasi P -space.

Proof: (a) If p is an almost P -point of X , then intZ(f) 6= ∅ for every f ∈ Mp.
So by Theorem 5.1(c)(iii), Mp is a minimal prime ideal, and it follows that p is a
P -point (see [GJ76, 4L]).

(b) follows immediately from Proposition 3.2(b).

(c) Suppose I is a prime z-ideal of C(X) that is not minimal and is contained
in the maximal ideal Mp for some p ∈ βX . Then Z[I] contains a nowhere dense
zeroset F , which by assumption is a P -space. Suppose T is a zeroset of X such
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that p ∈ clβX T . It suffices to show that T ∈ Z[I]. To see this, note first that
T ∩F is a zeroset of F and hence is clopen in the P -space F . Hence F \T ∈ Z(F )
and by assumption there is an S ∈ Z(X) such that S ∩ F = F \ T . To continue,

p ∈ clβX T ∩ clβX F = clβX(T ∩ F ).

So p /∈ clβX(F \ T ), and it follows that F \ T /∈ Z[I]. But

(F \ T ) ∪ (F ∩ T ) = F ∈ Z[I],

and I is prime, so that F ∩ T ∈ Z[I], and hence T ∈ Z[I]. Thus, by [GJ76,
Theorem 6.4], I =Mp, and the result follows. �

Theorem 5.6. If F is a nowhere dense z-embedded zeroset of a quasi P -space
X , then F is a P -space.

Proof: It follows easily from Proposition 3.2(a) that the map τ that sends the
prime z-ideal I of C(F ) to { f ∈ C(X) : f |F ∈ I } is an order preserving injection
of the set of prime z-ideals of C(F ) into the set of prime z-ideals of C(X). Suppose
there were distinct prime z-ideals I ⊂ J of C(F ). Then τ(I) is contained properly
in τ(J), and since both Z[τ(I)] and Z[τ(J)] contain the nowhere dense zeroset F ,
neither is a minimal prime ideal. Because X is a quasi P -space, both ideals are
maximal and hence equal, contrary to the fact that τ is an injection. Hence F
must be a P -space. �

The following is immediate from Theorems 5.5(c) and 5.6.

Corollary 5.7. If every nowhere dense zeroset of X is z-embedded (in particular,
if X is normal) and X is cozero-complemented, then X is a quasi P -space if and
only if each of its nowhere dense zerosets is a P -space.

Next, we look at quasi P -spaces with certain countability conditions.

Proposition 5.8. Suppose that every point of the quasi P -spaceX is aGδ-point.

Then every nowhere dense zeroset of X is discrete. If X is also ccc then it is
nodec. If, in addition, X is first countable, then it is scattered of CB-index ≤ 2.

Proof: Suppose that X is a quasi P -space, yet has a nowhere dense set S
with a point p ∈ clS \ S. By replacing S by cl S \ {p}, we may assume that
cl S = S ∪ {p}. Let Q denote a minimal prime ideal of C(cl S) contained in
{ f ∈ C(cl S) : f(p) = 0 }, and let

Q′ = { f ∈ C(X) : f [Z] = {0} for some Z ∈ Z[Q] }.

By Proposition 5.1(a), each element of Z[Q] and hence of the prime z-filter Z[Q′] is
infinite, while Z(Mp) contains the one element zeroset {p} since X has countable
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pseudocharacter. ThusMp contains the prime z-idealQ′ properly. If S = Z(g) for
some g ∈ C(X), then clearly g ∈ Q′. Using Proposition 5.1(a) again, we conclude
that Q′ contains a minimal prime ideal of C(X) properly. This contradicts that
X is a quasi P -space, and we must then conclude that S is discrete.
If X is a ccc-space, any open set contains a cozeroset densely. Thus, if T is

a nowhere dense closed set, it is contained in a nowhere dense zeroset Z(h). By
the arguments above, Z(h) is discrete, proving that T is discrete and that X is
nodec.
Now assume that X is also first countable, but fails to be scattered. Then it

has a closed subset A without isolated points that contains a convergent sequence
and its limit. By the remarks in 5.4(a) this cannot happen in a nodec space. If
CB(X) > 2, then X \ Is(X) contains a convergent sequence and its limit, again
contradicting that the space is nodec. �

We are now able to characterize some kinds of quasi P -spaces that need not
be locally compact.

Theorem 5.9.

(a) If X is normal and either ccc or basically disconnected, then X is a quasi
P -space if and only if each of its nowhere dense zerosets is a P -space.

(b) If X is perfectly normal, then X is a quasi P -space if and only if it is
nodec.

(c) If X is metrizable, then X is a quasi P -space if and only if it is scattered
with CB(X) ≤ 2.

Proof: (a) From the remarks in 5.2 X is cozero-complemented. Therefore, (a)
follows from Corollary 5.7.

(b) is a consequence of Corollary 5.7, when one realizes that in a perfectly
normal space, every closed set is a zeroset and every P -point is isolated.

(c) The necessity follows immediately from 5.2 and Proposition 5.8, and the
sufficiency follows from (b) and the fact that scattered spaces of CB-index ≤ 2
are nodec. �

Next, we refer to the example promised at the conclusion of Section 2. It is
due to van Douwen.

Remark 5.10. Example 3.3 of [vD93] is a countable (hence perfectly normal)
nodec, extremally disconnected space. By Theorem 5.9(b) this space is quasi P .
Since the example has no isolated points and is countable, it has no P -points.
Note as well that it is nowhere locally compact ; that is, there are no points with
compact neighborhoods.
To verify all this the reader should examine, in [vD93], Definition 1.1, Theo-

rem 1.2(a) and its proof, Fact 1.14, and Theorem 2.2.
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Remark 5.11. An example will be given below (Example 7.5) of a space satis-
fying the hypotheses of Theorem 5.9(a) that fails to be nodec.

6. Product spaces

In this section, conditions under which a product of two spaces is quasinormal
or quasi P are given. First we show that requiring even the former imposes severe
restrictions on the factor spaces. Note that if the product of two spaces is normal,
quasinormal, or quasi P , then so is each of the factor spaces. This is a consequence
of the following two facts: first, if X and Y are any two spaces, and y ∈ Y , then
X×{y} is C-embedded in X×Y ; second, all three properties under consideration
are invariant under passing to a C-embedded subspace.

Theorem 6.1. Suppose X × Y is normal.

(a) If X × Y is quasinormal and X is not an F -space, then Y is a P -space.
Thus, if this product is quasinormal and neither X nor Y is a P -space,
then both are F -spaces. In particular, if X×X is normal and quasinormal,
then it is an F -space.

(b) If X × Y is a locally compact quasi P -space, then X or Y is discrete. In
particular, if X×X is a locally compact quasi P -space, then X is discrete.

(c) If X ×Y is a compact quasi P -space, then X or Y is finite, and the other
is a finite free union of one-point compactifications of discrete spaces. In

particular, if X × X is a compact quasi P -space, then X is finite.

Proof: (a) Because X is not an F -space, there are disjoint cozerosets U, V of X
with closures having nonempty intersection. So, U × Y and V × Y are disjoint
cozerosets of the quasinormal space X × Y whose closures in X × Y have a
nonempty intersection S. By Theorem 4.3 of [Ki01], S is a P -space. If (x, y) ∈ S,
then {x}×Y is a P -space contained in S that is a homeomorphic copy of Y . The
second assertion is now obvious.

(b) Because quasi P -spaces are quasinormal, it follows from (a) that if X is not
an F -space, then Y is a locally compact P -space, and hence, by Corollary 2.8, is
discrete. Otherwise, X is a locally compact F -space that is quasi P , and hence
is discrete (see Theorem 4.3).

(c) This follows immediately from (a), using facts from Section 2 and Theo-
rem 4.6.

�

Remark 6.2. Let p ∈ βω\ω andX denote the subspace ω∪{p} of βω. BecauseX
is an F -space with exactly one non P -point, and because X ×X is countable and
hence normal, we may apply [La97a, Theorem 3.10], to conclude that C(X×X) is
quasinormal. This shows that we cannot conclude that quasinormality of X × X
implies that X is a P -space. Also, X × X is a not a quasi P -space. For, if

T = { f ∈ C(X × X) : Z(f) contains a neighborhood in {p} × X of (p, p) }
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then T is a prime z-ideal of C(X × X) that is not minimal, which is contained
properly in M(p,p). So, any minimal prime ideal of C(X ×X) contained properly
in T , together with T and M(p,p), forms a chain of three distinct prime z-ideals

in C(X ×X). Thus, the product of two scattered F -spaces of CB-index ≤ 2 need
not be a quasi P -space.

We will next show that if a product of two spaces is a normal quasi P -space,
then at least one of the factors is a P -space. (We do not know whether the
hypothesis of normality is necessary.) We begin with some lemmas.

Lemma 6.3. If X × Y is a quasi P -space and Y is an F -space that is not a
P -space, then X is an almost P -space.

Proof: By way of contradiction, suppose that there is a proper dense cozeroset
coz(f) of X , and let s ∈ Z(f). Define F ∈ C(X × Y ) by letting F (x, y) = f(x)
for all (x, y) ∈ X × Y . Then {s} × Y ⊆ Z(F ) and intX×Y Z(F ) = ∅. Because Y
is an F -space that not a P -space, there a t ∈ C(Y ) such that the prime z-ideal
Ot is contained properly in the maximal ideal Mt of C(Y ). Now let

Ot(X × Y ) = {G ∈ C(X × Y ) : G(s, ·) ∈ Ot }.

(Note that here we identify C(Y ) with C({s} × Y ).) Then the maximal ideal
M(s,t) of C(X × Y ) contains the prime z-ideal Ot(X × Y ) properly. The latter

cannot be a minimal prime ideal, as F ∈ Ot(X×Y ), yet F is not a zero-divisor in
C(X×Y ). Let Q be any minimal prime ideal of C(X×Y ) contained in Ot(X×Y );
then

{Q, Ot(X × Y ), M(s,t) }

is a chain of three distinct prime z-ideals, contradicting that X × Y is quasi P .
�

Lemma 6.4. If the product of two spaces is a normal quasi P -space, then either
one is a P -space or else both X and Y are F -spaces and almost P -spaces. In
particular, if X × X is a normal quasi P -space, then X is both an F -space and
an almost P -space.

Proof: By Theorem 6.1(a), if neither factor is a P -space, then both are F -
spaces. Combining this with the previous lemma yields that both are also almost
P -spaces. �

The next lemma tells us that the P -spaces are the hereditarily almost P -spaces.
This result is stated as Theorem 9 in [Ve73], with our condition (c) replaced by
“every regular closed subspace of X is almost P”. Very little is proved in [Ve73],
and we have not found the characterization anywhere in English. The short proof
we have provided seems, therefore, appropriate.
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Lemma 6.5. For a Tychonoff space X , the following are equivalent.

(a) X is a P -space.
(b) Every subspace of X is almost P .
(c) Every closed subspace of X is almost P .

Proof: That (a) implies (b) is well known, and it is obvious that (b) implies (c).
Now assume (c) and suppose, by way of contradiction, that p ∈ X is not a

P -point. Then there is an f ∈ C(X) such that p ∈ Z(f) \ intX Z(f). Now let
Y ≡ clX coz(f); observe that ZY (f |Y ) is nowhere dense in Y , and so Y is a closed
subspace of X that fails to be an almost P -space. �

We are ready for the anticipated result.

Theorem 6.6. If X × Y is a normal quasi P -space, then X or Y is a P -space.

Proof: If one factor is not an F -space, then the other is a P -space by The-
orem 6.1. Otherwise, by Lemma 6.4, both are F -spaces that are also almost
P -spaces. On the other hand, according to Lemma 6.5, if neither is a P -space,
then X has a closed subspace X ′ and Y has a closed subspace Y ′ that are not
almost P -spaces. Using Lemma 6.4 again, X ′×Y ′ is not a quasi P -space, despite
being a closed subspace of the normal quasi P -space X × Y . This contradiction
completes the proof. �

The next corollary is straightforward, and the proof is left to the reader. One
should observe, however, that as far as we know, (c) in the corollary might be
without content; see Question 9.1.

Corollary 6.7.

(a) If X × X is a normal quasi P -space then X is a P -space.
(b) If X × Y is a perfectly normal quasi P -space then one of the factors is
discrete and the other is nodec.

(c) If X×X is an infinite connected quasi P -space, then it fails to be normal.

Remark 6.8. Let X denote the product of the discrete space ω and its one-
point compactification αω. Then X is a locally compact scattered normal space
of CB-index 2, and hence X is quasi P , contrary to the assertion made in [La97a,
Example 3.6(1)]. This example shows also that [La97a, Corollary 3.11] is incorrect.
These errors stem from the incorrect assertion that for every locally compact

σ-compact space X , Op is prime, for every p ∈ βX \ X . The reader may refer
to the comments in 1.5 above. No other errors seem to exist in this otherwise
excellent paper.

We conclude the section with a sufficient condition for a product of two spaces
to be quasi P . As we now know, for normal products, a standing assumption
should be — and will be — that one of the two factors is a P -space.
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First we present a pair of lemmas (Lemmas 6.9 and 6.12) on how to piece
together P -spaces to form a quasi P -space. The lemmas themselves are intriguing.
The reader is reminded of the notation of 3.1 for the z-embedding τ of a subspace
Y in X . In particular, for such a τ , Sτ stands for the set of all prime z-ideals of
C(X) containing the kernel of C(τ), Kτ .

Lemma 6.9. Suppose that X is a Tychonoff space having a dense, open P -
subspace S, such that the embedding τ : X \S −→ X is a C-embedding. Then if
P ∈ Sτ C(τ)(P ) is a prime z-ideal of C(X \ S).

Proof: Let Y = X \ S. As Y is assumed to be C-embedded in X the ho-
momorphism C(τ) is surjective. Thus, from elementary algebra, if P ∈ Sτ then
Q = C(τ)(P ) is a prime ideal of C(Y ). The question is whether it is a z-ideal. We
show this now. We remind the reader that C(τ) is the restriction homomorphism
to Y .
Suppose that f, g ∈ C(X) with f ∈ P and Z(f)∩Y ⊆ Z(g)∩Y . To show that

Q is a z-ideal we must prove that g ∈ P . Without loss of generality, f and g may
be taken to be positive. Now, let h be defined on X as follows:

h(x) =

{

g(x) if x ∈ S ∩ Z(f),

0 otherwise.

We prove that h is a continuous function. Note first that, since S is a P -space,
S′ = S ∩ Z(f) is clopen in S, so that both S′ and S \ S′ are open in X . This
means that h is continuous at any point of S.
Continuity at the points of Y remains to be settled. By way of contradiction,

suppose that there is a y ∈ Y and positive number δ such that, for each neigh-
borhood U of y, there is a pU ∈ S ∩ U with h(pU ) = g(pU ) ≥ δ. Then g(y) ≥ δ
as well, and therefore not zero, which means that f(y) > 0 as well. Now select a
neighborhood W of y such that, for each x ∈ W ,

(∗) |f(y)− f(x)| < f(y).

Letting x = pW , we have f(x) = 0, for otherwise, h(x) = h(pW ) = 0, by definition
of h, which is contrary to the choice of pW . However, f(x) = 0 contradicts (∗).
This proves that h ∈ C(X), and it is clear that it lies in Kτ .
Next consider g − h. Note that Z(f) ⊆ Z(g − h), while h ∈ Kτ and therefore

in P . This implies that g − h ∈ P , whence g is also in P . This proves that Q is a
prime z-ideal of C(Y ), and, clearly, the claim of the lemma. �

Remark 6.10. Returning to 3.1 for a moment, that discussion shows that, under
the conditions of Lemma 6.9, Specz(τ) is an order isomorphism of the poset
Specz(X \ S) onto Sτ .

Recall that an f -ring A is projectable if every principal annihilator of A is a
summand. The reader should also review the notation of Remark 1.1(b).
The following lemma is well known. We prove it here for completeness.
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Lemma 6.11. For each spaceX , C(X) is projectable if and only if X is basically
disconnected.

Proof: First, observe that, for each f ∈ C(X),

fdd = {g ∈ C(X) : coz(g) ⊆ clX coz(f)} and fd = {g ∈ C(X) : coz(g) ⊆ Z(g)}.

Now if C(X) is projectable then 1 = 1[f ] + 1[fd], for each f ∈ C(X). It is easy

to check that 1[f ] and 1[fd] are mutually annihilating idempotents of the ring

C(X). Also we have the partition X = coz(1[f ])∪ coz(1[fd]), into clopen sets. It
follows that coz(1[f ]) = clX coz(f), proving that clX coz(f) is clopen and that X
is basically disconnected.
Conversely, if X is basically disconnected, clX coz(f) and intX Z(f) partition

X into clopen sets. The characteristic functions of these sets, e1 and e2, satisfy
e1 + e2 = 1 and e1e2 = 0. We leave it to the reader to check that e1 = 1[f ]

and e2 = 1[f
d]. Finally, for each g ∈ C(X), we have that g = g 1[f ] + g 1[fd],

and g 1[f ] ∈ fdd and g 1[fd] ∈ fd, because each annihilator is an ideal. Thus,

C(X) = fdd + fd, proving that C(X) is projectable. �

Lemma 6.12. Suppose that X is a Tychonoff space having a dense, open P -
subspace S, such that X \ S is C-embedded and also a P -space. Then X is

quasi P .

Proof: We shall keep to the notation of Lemma 6.9 and its proof. We begin by
proving the following.

(†) Suppose that P is a prime z-ideal of C(X) that does not contain Kτ .
Then P ∩ Kτ is maximal among the z-ideals of C(X) which are properly
contained in Kτ .

First observe that the dense embedding of S in X induces an ℓ-embedding ρ
of C(X) in C(S) by restriction of functions. We shall strain the notation a bit,
and identify Kτ with its image under ρ. Note as well that, for the balance of this
argument, we shall treat C(S) as an ℓ-group, ignoring the ring structure.
Since S is a P -space it is also basically disconnected. Now Kτ is a convex

ℓ-subgroup of C(S): for if |g| ≤ |h|, and h ∈ Kτ , with g ∈ C(S), then extending g
to X by setting g(y) = 0, for each y ∈ Y , extends it continuously to X . Evidently,
g ∈ Kτ . The importance of this is that Kτ too is projectable.
Now to the proof of (†). It is clear that P∩Kτ is a z-ideal of C(X), and properly

contained in Kτ . To establish (†) it suffices to show that for each f ∈ Kτ \P , the
z-ideal of C(X) generated by f and P ∩ Kτ is Kτ .
The reader is encouraged at this point to review the projection notation defined

in 1.1(b). To begin, Kτ ⊆ fdd + fd, so that, if b ∈ Kτ , we have b = b[f ] + b[fd],

with b[f ] ∈ fdd and b[fd] ∈ fd. Since b[fd]f = 0, we have that b[fd] ∈ P ∩ Kτ .

Finally, we assert that ZX(f) ⊆ ZX(b[f ]): for b[f ] ∈ fdd means that

cozS(b[f ]) ⊆ clS cozS(f |S) = cozS(f |S),
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the latter identity coming from the assumption that S is a P -space. Since f ∈ Kτ ,
we get, in fact, that cozX(b[f ]) ⊆ cozX(f), whence ZX(f) ⊆ ZX(b[f ]). This fact
shows that b[f ] lies in the z-ideal of C(X) generated by f , which proves (†).
Now suppose that P0 ⊂ P1 ⊂ P2 are distinct prime z-ideals of C(X). Since

Y is assumed to be a P -space, we have that every prime ideal is maximal, as
pointed out in 1.3(b). Thus Lemma 6.9 shows that P0 and P1 cannot contain
Kτ , whereas (†) implies that P1 and P2 must contain Kτ . This is a contradiction,
proving that every prime z-ideal of C(X) is either maximal or minimal. The proof
of this lemma is now complete. �

Theorem 6.13. Suppose that X is either a compact or a metrizable quasi P -
space, and Y is any P -space. Then X × Y is quasi P .

Proof: Since X is compact (resp. metrizable) it is scattered of CB-index ≤ 2
(in the metrizable instance by Theorem 5.9(c)). To say that CB(X) = 1 is to
say that X is finite (resp. discrete), in either case making X × Y a free union of
copies of Y . Since a free union of P -spaces is a P -space, the claim is established.
We therefore suppose that CB(X) = 2.
Then X × Y is composed of Is(X)× Y , which is a free union of P -spaces (and

therefore a P -space) and (X \ Is(X))×Y , which is a finite union of P -spaces and
also a P -space. Next, observe that Is(X) × Y is open and dense in X × Y ; the
complement, (X \ Is(X))× Y is C-embedded in X × Y . By Lemma 6.12, X × Y
is quasi P . �

Remark 6.14. We do not know if the product of a locally compact space quasi
P -space X and a P -space Y must be quasi P , even if X is normal. The best we
seem to be able to do follows. The reader is referred to [En89, Chapter 5] for
the definition and basic properties of paracompact spaces. For our purposes, the
reader need only know from 5.1.27 of this reference that:

Every locally compact paracompact space is a free union of locally

compact σ-compact spaces.

Coupled with Corollary 4.7 and Theorem 6.13, the above comment yields:

Theorem 6.15. If X is a locally compact paracompact quasi P -space and Y is
a P -space, then X × Y is quasi P .

The following is worth noting.

Remark 6.16. We use αω to denote the one-point compactification of the dis-
crete natural numbers. Let Y be any P -space. Then according to Theorem 6.13,
αω×Y is a quasi P -space. Note also that αω is neither almost P nor an F -space.

In closing this section, we look ahead to Question 9.5 about free unions of quasi
P -spaces. Technically, what follows may be viewed as a result about products.



286 M.Henriksen, J.Mart́ınez, R.G.Woods

Let us call a space essentially a P -space if all of its points except possibly one
are P -points. By Lemma 2.4 every space which is essentially a P -space is a quasi
P -space.
The proposition which follows is easily proved using Lemma 6.12.

Proposition 6.17. A free union of essentially P -spaces is quasi P .

Proof: Suppose that {Xi : i ∈ I } is a set of essentially P -spaces, and let X be
their free union. If, for i ∈ I, Xi is not a P -space, denote the lone non-P -point
of Xi by pi, and let Yi = Xi \ {pi}. If Xi is a P -space, let Yi = Xi. Finally, let
S =

⋃

i Yi.
It is easily checked that S, being a free union of P -spaces, is a P -space. More-

over, S is open and dense in X , with X \ S C-embedded and discrete. Thus, by
Lemma 6.12, X is a quasi P -space. �

7. Some nonnormal examples

Most of the theorems we have used to create quasi P -spaces assume normality
conditions, and it is natural to ask about the extent to which such assumptions are
needed. The examples that follow in this section answer some of these questions
while raising others.
The first result is of independent interest and will be used below; it should be

compared to Theorem 4.3.

Theorem 7.1. Suppose X is a scattered space of CB-index 2 for which Is(X) is
countable. Then the following are equivalent.

(a) X is a quasi P -space.

(b) If X(1) is partitioned into two infinite subsets A and B, and one of them
is a zeroset of X , then so is the other.

Proof: (a)⇒ (b): Assume that (b) fails, and X(1) is partitioned into two infinite
subsets A and B, with A ∈ Z(X) but B /∈ Z(X). Suppose A and B were
completely separated in X . Then there would be disjoint zerosets Z1 and Z2 of
X such that Z1 ⊇ A and Z2 ⊇ B. Because Is(X) is countable, it is a cozeroset

of X , which implies that X(1), and hence X(1) ∩ Z2 = B, are in Z(X), contrary
to the assumption that B /∈ Z(X). Hence these two sets are not completely
separated, so there is a p ∈ clβX A ∩ clβX B.
Let

F = {Z ∩ X(1) : Z ∈ Z[Op] } ∪ {B},

and observe that since Z[Op] is a z-filter and p ∈ clβX B, F is closed under finite

intersection. Let U denote an ultrafilter on the set X(1) containing F , and let

P = {Z ∈ Z(X) : there is a U ∈ U such that U ⊆ Z ∩ X(1) }.
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It is not difficult to verify that P is a prime z-filter contained in Z[Mp]. Because it

contains the nowhere dense zero set X(1), P cannot be a minimal prime z-filter.
Moreover, P cannot be a maximal z-filter. For, A is a zeroset of X such that
p ∈ clβX A, which implies that A ∈ Z[Mp]. But, if A ∈ P , there is a U ∈ U
contained in A, and because B ∈ F ⊆ U and A ∩ B = ∅, U would fail to be a
filter. We conclude that Z[Mp] and any minimal prime z-filter contained in P is
a chain of three prime z-filters, contradicting that X is a quasi P -space.

(b) ⇒ (a): X is ccc, and so, by the remarks in 5.2(c), Min(C(X)) is compact.

Note also that because Is(X) is countable, X(1) ∈ Z(X). Suppose P is a prime
z-filter that is not minimal, and contained in the maximal z-filter Z[M q] for some
q ∈ βX . Because P is not minimal and mX is compact, it contains a nowhere

dense zeroset, which must be contained in X(1). Therefore X(1) ∈ P . It suffices
to show that P = Z[M q], that is, that if q ∈ clβX Z for some zeroset Z, then
Z ∈ P .
Because q is in the closure in βX of both Z and X(1), it is in clβX (Z ∩X(1)).

We now consider three cases.

(i) Z ∩ X(1) is finite. Then q ∈ Z ∩ X(1) ⊆ Z ∈ P , and so X(1) \ Z ∈

Z(X) \ Z[M q]. As X(1) ∈ P and P is prime, Z ∩ X(1) ∈ P , proving that
Z ∈ P .

(ii) Z ∩ X(1) is cofinite in X(1). Then X(1) = (Z ∩ X(1)) ∪ F for some finite

subset F of X(1) disjoint from Z ∩ X(1). Note that F ∈ Z(X); for each

point of F is in a clopen set disjoint from Z∩X(1), so that their finite union

G is a zeroset disjoint from Z ∩ X(1). Therefore, G ∩ X(1) = F ∈ Z(X).
But q /∈ F , which implies that F /∈ P .
Because P is prime, we conclude that Z ∩ X(1) and hence Z is in P .

(iii) Both Z ∩ X(1) and X(1) \ Z are infinite. By assumption, because Z ∩

X(1) ∈ Z(X), one has as well that X(1) \Z ∈ Z(X). Hence Z ∩X(1) and

X(1) \ Z have disjoint closures in βX . Because q ∈ clβX(Z ∩ X(1)), it is

not in clβX(X
(1) \Z). It follows that X(1) \Z is not in Z[Mp] and hence

is not in P . Because P is prime, this implies that Z ∩ X(1) ∈ P whence
Z too is in P .

The proof that (b) implies (a) is now complete. �

The next two lemmas will be used below. The first one appears as [O80,
Theorem 7.3]. Lemma 7.3 appears implicitly, but not explicitly, in [vR82, §11].
A proof is given for the sake of completeness.
We remind the reader that a function f : X −→ R is a Baire-1 function (or

that f ∈ B1(X)) if it is the pointwise limit of a sequence of continuous functions.

Lemma 7.2. If f ∈ B1(R), then the set of real numbers at which f fails to be
continuous is of the first category; (i.e., is a countable union of nowhere dense
closed sets).
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Lemma 7.3. If f ∈ B1(R), then Z(f) is not a countable dense subspace of R.

Proof: Let S denote a countable dense subspace of R. It will be shown that
Z(f) 6= S. For, otherwise, if r ∈ R \ S, f(r) 6= 0, and we may assume f(r) > 0.
If f is continuous at r, there is a δ > 0 such that if |x − r| < δ, then

|f(x) − f(r)| <
f(r)

4
.

So f(x) 6= 0 if x ∈ (r − δ, r + δ). Because S is dense in R this cannot happen, so
that f is discontinuous at each point of R \ S. By Lemma 7.2 there is a set E of
first category containing R \ S. Hence S ∪E = R. Since both S and E are of the
first category, R is a countable union of nowhere dense closed subsets, contrary
to the Baire Category Theorem. This contradiction completes the proof. �

Example 7.4. A first-countable, nonnormal, locally compact, realcompact, sep-
arable, scattered space with CB-index 2, that is not a quasi P -space, but which
is quasi P at each of its points.
In [Mr70, 1.2], S. Mrowka presents a first countable locally compact space T

constructed on a subset of { (x, y) ∈ R × R : y ≥ 0 }. Further,

(a) T has a countable dense subspace N of isolated points;
(b) T \ N is a copy of R with the discrete topology;
(c) if f ∈ C(T ), then f |T\N is a Baire-1 function on R with respect to its

usual topology.

In [Mr70, 1.1], it is shown that T is realcompact and (a), (b), and (c) hold. More-
over, T is nonnormal because it is separable but has a closed discrete subspace of
cardinality c of the continuum. Finally, T is not a quasi P -space by Theorem 7.1
and Lemma 7.3. For, if S is a countable dense subspace of R with its usual topo-
logy, then S /∈ Z[T ], but R \ S ∈ Z[T ]. However, as with Example 4.4, T is quasi
P at each of its points.

Example 7.5. A separable, scattered, quasi P -space X of CB-index 2 of cardi-
nality ω1 that fails to be normal or realcompact, such that its realcompactification
υX is Lindelöf, CB(υX) = 3, and υX fails to be nodec.
In [BSV, 3.5], the authors give an example of a subspace D ∪ {p} of βω \ ω,

such that D is a discrete space of cardinality ω1 and the neighborhoods of p are
cocountable in D. Let X = ω ∪D, and let Y = X ∪ {p}, considered as subspaces
of βω. The fact that every zeroset of D ∪ {p} is countable or cocountable has
three consequences:

(i) no two disjoint uncountable subspaces of X that are contained in D can
be completely separated in X , and so X is not normal;

(ii) X is a quasi P -space. To see this we make a number of observations.
First, since X is C∗-embedded in Y , it is also z-embedded in Y . Now we
show that Theorem 7.1 applies.
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If complementary uncountable subsets of D are zerosets of X , there
exist zerosets of Y , and hence of D ∪ {p}, whose traces on D form com-
plementary uncountable sets. This contradicts the fact that in D ∪ {p}
neighborhoods of p are cocountable.

Next, note that every cocountable subset of D is a zeroset of X . Hence
(to apply Theorem 7.1) we must show that every countable subset C of
D is a zeroset of X . As to that, note that the characteristic function e of
(D \C)∪{p} in D∪{p} is continuous. Now D∪{p} is Lindelöf and hence
C-embedded in the extremally disconnected space Y , so that e extends to
f ∈ C∗(Y ). Then C = Z(f |X) and f |X ∈ C(X).

(iii) The restriction of every f ∈ C(X) is constant on a cocountable subset of
D, whence Y = υX and hence the Lindelöf (realcompact) space Y is also
a quasi P -space.

Clearly Y is scattered of CB-index 3. Since D is a nowhere dense subspace of Y
that fails to be closed, Y is not nodec.

8. Mapping theorems

We turn next to the question of when continuous images of quasi P -spaces are
again quasi P .

Definition & Remarks 8.1. Suppose that f : X −→ Y is a continuous surjec-
tion. Recall that f is called irreducible if it is continuous, closed, and no proper
closed subset of X is mapped by f onto Y . It is well known that f is irreducible
precisely when the induced embedding (as f -rings) C(f) : C(Y ) −→ C(X) is
order dense; that is to say, when for each h > 0 in C(X) there is a k > 0 in C(Y )
such that C(f)(k) = k · f ≤ h.

We remind the reader — see Remark 1.1(a) — that the set A(C(X)) of all
annihilators of C(X) is a boolean algebra under inclusion. Observe then that f
is irreducible if and only if the “trace” map P 7→ C(f)←(P ) is an isomorphism
from A(C(X)) onto A(C(Y )). (The reader may combine [BKW77, 11.1.15] and
[BH87, Theorem 2.4] to get the measure of these assertions.)

Definition & Remarks 8.2. Suppose f : X −→ Y is a continuous mapping.

(a) If the inverse image f←(Z) of each nowhere dense closed subspace (resp.
nowhere dense zeroset) Z of Y is nowhere dense in X , then f is called a skeletal
map (resp. z-skeletal map).

(b) The notion of a skeletal map is introduced and discussed in I, Section 6,
and III, Section 1 of [MR69]. It is noted in [MR69] that a continuous surjection
f : X −→ Y is skeletal if the image of each open subset of X set has a nonempty
interior. A proof that irreducible maps are skeletal appears in [PW88, §6.5].
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Theorem 8.3. Suppose f : X −→ Y is a z-skeletal, continuous, closed surjection.
Assume that X is normal, and both Min(C(X)) and Min(C(Y )) are compact.
Then if X is a quasi P -space, Y is quasi P as well.

Proof: As is noted in [Bu80, Table III], a closed continuous image of a normal
space is normal. So, by Corollary 5.7, it suffices to show that every nowhere
dense zeroset of Y is a P -space. Suppose L ∈ Z(Y ) is nowhere dense. Because
f is z-skeletal, so is the zeroset f←(L) of X . Since Min(C(X)) is compact, by
Corollary 5.7, this zeroset is a P -space. Thus, if Z ∈ Z(L), then the zeroset
f←(Z) is open in f←(L). Thus f←(L) \ f←(Z) is closed in f←(L), and hence
in X . But

f←(L) \ f←(Z) = f←(L \ Z).

Because f is a closed map, it follows that L \ Z is closed and Z is open, proving
that L is a P -space. We conclude that X is a quasi P -space. �

As noted earlier, perfectly normal spaces have compact spaces of minimal prime
ideals, and by [Bu80, Table III], a closed continuous image of a (perfectly) normal
space is (perfectly) normal. Also, because a continuous image of a ccc-space is
ccc and ccc-spaces have compact spaces of minimal prime ideals, we deduce from
Theorems 5.8 and 5.9, and the preceding result:

Corollary 8.4. Suppose f : X −→ Y is a continuous closed z-skeletal surjection.
If X is a perfectly normal quasi P -space or a normal ccc-space that is quasi P ,
then so is Y .

To conclude this section let us see what happens when we strengthen the irre-
ducibility of a map.

Definition & Remarks 8.5. The reader is reminded that a continuous surjec-
tion f : X −→ Y is perfect if it is a closed map and f←({p}) is compact, for each
p ∈ Y .
Assume throughout that the surjection f : X −→ Y is perfect and irreducible.

Once more we consider the induced embedding C(f) : C(Y ) −→ C(X), but
for convenience in this situation we suppress the label C(f), and regard C(Y )
embedded in C(X) as a subring and sublattice. Note that the so-called trace
map of 8.1 is now to be viewed as P 7→ C(Y ) ∩ P .

(a) Call f ω1-irreducible if for each cozeroset U of X there is a cozeroset V
of Y such that f←(V ) is dense in U . This concept has been called sequentially

irreducible (in [BH87]) and Z#-irreducible (in [HVW87]). Note that f is ω1-
irreducible if and only if under the trace map in 8.1, P ∈ A(C(X)) is countably
generated if and only if C(Y )∩P is countably generated; in fact, one has [HM93,
Proposition 2.2], which is summarized here as follows:

Suppose that f : X −→ Y is irreducible. Then it is ω1-irreducible if
and only if for each h ∈ C(X) there is a g ∈ C(Y ) such that hdd = gdd.
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In [CM90] such an embedding (such as C(Y ) ⊆ C(X)) is said to be rigid . Observe
that C(f) induces a rigid embedding precisely when tracing P 7→ P∩C(Y ) induces
a lattice-isomorphism between the lattices of principal annihilators.

(b) It is a consequence of [CM90, Proposition 2.3] that if C(Y ) ⊆ C(X) is rigid
then tracing P 7→ P ∩ C(Y ) induces a homeomorphism from Min(C(X)) onto
Min(C(Y )).
Contrast this with the following example: let D be an uncountable discrete

space and f denote the perfect irreducible map that sends βD onto αD by identi-
fying all the points of the remainder of βD to the point at infinity of αD. As βD
is basically disconnected, Min(C(βD)) ∼= Max(C(βD)) = βD is compact, while
it is known that Min(C(αD)) is not.

The following is an immediate consequence of Theorem 8.3.

Corollary 8.6. Suppose that f : X −→ Y is perfect and ω1-irreducible. Assume
that X is normal and cozero-complemented. If X is quasi P , then so is Y .

The converse to Corollary 8.6 is false; here is an example. It also shows that
the converse of Corollary 8.4, involving ccc-spaces, is also false.

Example 8.7. The map βω −→ αω which collapses the remainder of βω to the
point at infinity in αω is perfect and ω1-irreducible. However, αω is quasi P ,
whereas βω is not. Note that the rings of continuous functions of these examples
have a (common) extremally disconnected minimal prime ideal space, βω. These
examples are ccc-spaces.

A particular instance of Corollary 8.6 gives us another interesting example.

Corollary 8.8. Suppose X is normal and Min(C(X)) is compact. Let F be a
compact subset of a nowhere dense zero set of X . Suppose that Y is obtained
from X by collapsing F to a point, and f : X −→ Y is the quotient map. If X
is quasi P , then so is Y .

Proof: Simply observe that the quotient map under consideration is perfect and
ω1-irreducible. �

Here is a simple application of Corollary 8.8.

Example 8.9. Take two copies E1 and E2 of a countable, nowhere locally com-
pact, extremally disconnected quasi P -space E and attach them together at a
point. (The reader is reminded of the example of van Douwen; see Remark 5.10.)
One gets a countable quasi P -space X with no P -points that fails to be an F -
space. It should be noted that X is an SV -space.

9. Open questions

There are many interesting open questions on quasi P -spaces. Here is a sample.
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Question 9.1. Are there any infinite connected quasi P -spaces, or must all of
them be zero-dimensional?

The results given above imply that no infinite locally compact or metrizable
quasi P -space could be connected. Indeed, in an infinite connected quasi P -space,
no point can have a compact neighborhood. Also, if there were a normal quasi
P -space that is not totally disconnected, it would have an infinite component that
is a connected quasi P -space. This question appears to be quite difficult, and even
a consistent answer would be welcome.

Question 9.2. Most of the results in Section 4 depend on the assumption of
local compactness. What happens if we weaken the local compactness to: the set

of points with no compact neighborhoods is compact?

The latter condition is equivalent to assuming that the space in question has
a locally compact remainder in any compactification.
Here is an example with some relevance to this question. Taking X = αω and

Y = λD ≡ D ∪ {λ} (with D discrete and uncountable); the neighborhoods of λ
are the subsets of Y which have countable complement in D. It is well known
that Y is a P -space. Thus, X ×Y is a quasi P -space by Theorem 6.13. However,
the CB-index is 3; this is easy to check. The point is that in X × Y the set of
points with no compact neighborhoods is not compact, as it is a copy of Y .

Question 9.3. We have assumed often that various spaces are normal in order

to carry out proofs of theorems; especially in the product theorems of Section 6.
To what extent is this assumption necessary?

Theorems 6.13 and 6.15 inspire the following questions.

Question 9.4. Must the product of a locally compact (normal) quasi P -space
and a P -space be quasi P?

Question 9.5. Must the free union of an infinite family of quasi P -spaces be a
quasi P -space?

With some assumptions one is able to answer this question in the affirmative.
In what follows let X be the free union of the spaces Xi (i ∈ I).

(i) Note that X is cozero-complemented if and only if each Xi is cozero-
complemented; apply Proposition 5.1(c)(iv). Also, X is normal if and
only if each Xi is normal. Now apply Corollary 5.7: assume each Xi is
normal and cozero-complemented. Then if each Xi is quasi P it follows
that X is quasi P .

(ii) In particular, the free union of any number of perfectly normal quasi P -
spaces is quasi P .

(iii) See Proposition 6.17: suppose, in addition, that each Xi is quasi P and
both locally compact and paracompact. By Corollary 4.7 and the remarks
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in 6.14, each Xi is a free union of one-point compactifications of discrete
spaces. Relabelling, it follows from Proposition 6.17 that X is quasi P .

In general, though, we are unable to answer this question even for a countably
infinite free union.
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