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Commutative modular group algebras

of p-mixed and p-splitting abelian Σ-groups

Peter Danchev

Abstract. Let G be a p-mixed abelian group and R is a commutative perfect integral
domain of charR = p > 0. Then, the first main result is that the group of all normalized
invertible elements V (RG) is a Σ-group if and only if G is a Σ-group. In particular, the
second central result is that if G is a Σ-group, the R-algebras isomorphism RA ∼= RG
between the group algebras RA and RG for an arbitrary but fixed group A implies A
is a p-mixed abelian Σ-group and even more that the high subgroups of A and G are
isomorphic, namely, HA

∼= HG. Besides, when G is p-splitting and R is an algebraically
closed field of charR = p 6= 0, V (RG) is a Σ-group if and only if Gp and G/Gt are
both Σ-groups. These statements combined with our recent results published in Math.
J. Okayama Univ. (1998) almost exhausted the investigations on this theme concerning
the description of the group structure.
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Classification: Primary 20C07, 16U60, 16S34; Secondary 20K10, 20K20, 20K21

1. Introduction

Standardly, throughout the text, denote by RG the R-group algebra of an
arbitrary abelian group G over a commutative unitary ring R in prime charac-
teristic, for instance, p. As usual, V (RG) will designate the group of normed
units (i.e. units of augmentation equal to 1), and S(RG) is its p-primary Sylow
component; I(RG;Gp) is the relative augmentation ideal of RG with respect to

the p-primary part Gp of G. For G a group, we let G1 be the group of all infinite

heights in G, or in other words G1 =
⋂

p Gpω
, where Gpω

equal to the intersection

of all Gpn
for n < ω, is the first Ulm subgroup of G. A subgroup of G is said to

be a high subgroup if it is maximal with respect to the intersection with G1 equal
to 1. All other unexplained notation and terminology will be in agreement with
the classical books of L. Fuchs [16] and our articles [1]–[15].
The group V (RG), that is on the focus of our interest, was studied in [1]–

[15]. We established there criteria under which this group has some important
properties, as more especially, necessary and sufficient conditions were found for
V (RG) to belong to certain classes of abelian groups. Our purpose here is to
continue these studies for the class of so-called Σ-groups, introduced by Irwin-
Walker in 1961 year (see, for example, [19]). The Σ-groups are mixed in general
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and form a quite large class of abelian groups that contains many other abelian
groups as their subclasses; for instance such as all direct sums of countable torsion
abelian groups.
By definition (see [19]), an abelian group A is said to be a Σ-group if some of

its high subgroups is a direct sum of cyclic groups (consequently all of its high
subgroups are direct sums of cyclics — see [21] and [18, 19]). A criterion for
p-primary abelian groups to be Σ-groups was obtained by us in [3]. However, for
the general mixed case there is no useful necessary and sufficient condition than
the definition yet. Using the above mentioned criterion for the p-torsion case,
we have obtained in [3] some results about the commutative group algebras of
Σ-groups. That is why, it is a real goal to supply these statements with a new
treatment of the Σ-structure in the commutative mixed modular group rings. So,
our global aim here is to strengthen these facts by proving such similar assertions
and removing some not needed conditions. Thus we almost settled a problem
posed by us in [10] of finding a suitable criterion for V (RG) to be a Σ-group.
Although there are many high subgroups of an abelian group A that are uniso-

morphic in general (cf. [19]), with no confusion, we shall consider in the sequel (no
fixed) high subgroup defined as HA. The torsion subgroup and its p-component
are denoted as At and Ap, respectively.

We continue with

2. High subgroups and the Direct Factor Problem in modular

commutative group rings

We begin this section with the following technical matter.

Lemma 1. Let G be a p-mixed abelian group and let R be an integral domain
that is commutative with nonzero characteristic p. Then

V (RG) = GS(RG).

Proof: The canonical epimorphism G → G/Gp can be linearly extended to
epimorphism V (RG) → V (R(G/Gp)) with kernel 1 + I(RG;Gp). By virtue
of a classical result due to G. Higman [17], V (R(G/Gp)) = G/Gp. Thus

V (RG) → G/Gp and S(RG) → 1. Consequently V (RG)/S(RG)
ϕ
∼=G/Gp and

S(RG) = 1 + I(RG;Gp) (see also [2]). On the other hand, it is easy to

see that the isomorphism ϕ−1 maps G/Gp onto GS(RG)/S(RG), so G/Gp
∼=

GS(RG)/S(RG), where this last isomorphism is clearly induced by ϕ−1. Combin-

ing these claims, V (RG)/S(RG)
ϕ
∼=G/Gp

ϕ−1

∼= GS(RG)/S(RG). Finally, we derive,
V (RG) = GS(RG), thus concluding the proof. �

In this aspect we formulate
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Lemma 2. Assume G is a p-mixed abelian group andR is a commutative integral
domain of positive characteristic p. Then G is a pure subgroup of V (RG).

Proof: Owing to the previous lemma, V (RG) = GS(RG). Take an arbi-

trary natural number n. If p | n, n = pk1pk2
2 . . . pkt

t , where p2 < . . . < pt are
prime numbers different from p. Thus V n(RG) = (GS(RG))n = GnSn(RG) =

GnSpk1 (RG), hence G ∩ (GnSpk1 (RG)) = Gn(G ∩ S(Rpk1Gpk1 )) = GnG
pk1

p =
GnGn

p = Gn, according to the modular law.

If now p ∤ n, Sn(RG) = S(RG) and so G ∩ (GS(RG))n = G ∩ [GnS(RG)] =
Gn(G ∩ S(RG)) = GnGp = GnGn

p = Gn, employing the modular law as well.
The proof is finished. �

The next technical affirmation is classical and well-known, but for the sake of
completeness, we include its new proof.

Lemma 3. A pure subgroup of an abelian Σ-group is also an abelian Σ-group.

Proof: Presume N is a pure subgroup of an abelian Σ-group C. Therefore HC
is a direct sum of cyclics. But HN ∩C1 = HN ∩N ∩C1 = HN ∩N1 = 1, whence
with no harm of generality we may presume that HN ⊆ HC (actually HN may
be expanded in some high subgroup of C). A theorem due to L. Kulikov (see for
example [16, p. 110, Theorem 18.1]) leads us to the fact that HN is a direct sum
of cyclics or equivalently N is a Σ-group too, as stated. The proof is verified. �

Lemma 4. Let M be a subgroup of the abelian p-group C such that Mpn
[p] =

Cpn
[p] for each n ≥ 0. Then M = C.

Proof: For n = 0, we write M [p] = C[p]. Next, by [16], [19] it remains to verify

only that M is pure in C. To this end, M ∩ Cpn
[p] = M ∩ Mpn

[p] = Mpn
[p]

whenever n ≥ 1. So, consulting with [16], [20], it holds true. The lemma is
proved. �

Lemma 5. Suppose C is an abelian p-group and N is its pure subgroup. Then

HC ∩ N = HN .

Proof: Employing Lemma 4, it is enough to show that (HC ∩ N)p
n
[p] =

(HN )
pn
[p] for some high subgroupHN ofN . Indeed, (HC∩N)p

n
[p] ⊆ (HC)

pn
[p]∩

Npn
[p]. In view of [19], we detect that Npn

[p] = (HN )
pn
[p] × Npω

[p] for some
HN such that HN ⊆ HC as in Lemma 3 above argued. Since the modular law
in [16] implies (HC ∩ N)p

n
[p] ⊆ (HN )

pn
[p] and the converse relation is evident,

everything is proved. �

As an immediate consequence, we obtain
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Corollary 6. Let G be an abelian group and R a commutative ring with identity
of prime characteristic p. Then

HS(RG) ∩ Gp = HGp
.

Proof: It is a straightforward that Gp is pure in S(RG) (see cf. [2], [4]), whence
Lemma 5 is applicable to finish the proof. �

The following technical matter is crucial for the further conclusions.

Lemma 7. Let G be an abelian group and let R be a commutative ring with
unity in prime characteristic p. Then

(HS(RG)Gp)[p] = HS(RG)[p]G[p].

Proof: Let z be an arbitrary element from the left hand-side. So, z = hg and
hp = g−p, where h ∈ HS(RG) and g ∈ Gp. Certainly, g

p ∈ HS(RG)∩Gp, hence by

using Corollary 6, gp ∈ HGp
. But HGp

is pure in Gp according to [18], therefore it

is a routine matter to obtain that gp ∈ H
p
Gp
. That is why, g ∈ HGp

G[p]. Finally,

z ∈ HS(RG)[p]G[p], and thus the relation “⊆” is fulfilled.
The reverse dependence “⊇” is elementary. The proof is finished. �

Now, we are in a position to attack the significant affirmation that characterizes
the high subgroups in V (RG), namely we formulate

Theorem 8. Let G be a p-mixed abelian group and R a commutative integral
domain of positive characteristic p. Then the following explicit formula is valid:

(∗) HV (RG) = HGHS(RG).

Proof: Foremost, we will show that (HGHS(RG)) ∩ V 1(RG) = 1. In fact, first,

complying with Lemma 1, V (RG) = GS(RG). Therefore, we need to compute

(GS(RG))1 =
⋂

q 6=p
(GS(RG))q

ω
∩(GS(RG))p

ω
, where all q are primes. And so, we

observe that (GS(RG))p
ω
= Gpω

S(Rpω
Gpω
). Really, choose an arbitrary element

x from the left hand-side. Hence x ∈
⋂

n<ω
(GS(RG))p

n
=

⋂

n<ω
(Gpn

S(Rpn
Gpn
))

and x = gpn ∑

i
r
pn

i g
pn

i = g′p
m ∑

i
r
′pm

i g
′pm

i = . . . , where g, g′ ∈ G; ri, r
′
i ∈ R;

gi, g
′
i ∈ G; i ∈ N and n < m are positive integers. Furthermore, the canonical

forms imply gpn
gpn

i = g′p
m

g′p
m

i and rpn

i = r′p
m

i . Since
∑

i
rpn

i gpn

i ∈ S(RG),

there is a member of this sum that belongs to Gp, say g
pn

1 ∈ G
pn

p . By the same
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reason, we can presume that g′p
m

1 ∈ Gpm

p . Finally, x = (gg1)
pn ∑

i
rpn

i (gig
−1
1 )

pn
.

But (gg1)
pn

∈ G
pm

p and
∑

i
r
pn

i (gig
−1
1 )

pn
=

∑

i
r
′pm

i (g′ig
′−1
1 )

pm
∈ S(Rpm

Gpm
).

Applying the same inductive procedure for infinitely many element’s rations, we
can calculate that x ∈ Gpω

S(Rpω
Gpω
), as required.

Next, we see that (GS(RG))q
ω
= Gqω

S(RG) for every prime q 6= p, whence
⋂

q 6=p
(GS(RG))q

ω
=

⋂

q 6=p
(Gqω

S(RG)) = (
⋂

q 6=p
Gqω
)S(RG).

Indeed, take an arbitrary element x from the left hand-side of (GS(RG))q
ω
.

Then x ∈
⋂

n<ω
(GS(RG))q

n
=

⋂

n<ω
(Gqn

S(RG)), and so x = g
qn

n vn = g
qm

m vm =

. . . , where gn, gm ∈ G; vn, vm ∈ S(RG). Therefore, g
qn

n g
−qm

m ∈ S(RG) ∩ Gqn
=

(Gqn
)p ⊆ Gp = Gqm

p , whence gqn

n ∈ Gqm
, i.e. gqn

n ∈
⋂

n<ω
Gqn

= Gqω
. Thus, the

first equality is manifestly satisfied.

Now we take an arbitrary element x from
⋂

q 6=p
(Gqω

S(RG)). Hence, x = gq1v1 =

gq2v2 = . . . , where gq1 ∈ Gqω
1 , v1 ∈ S(RG); gq2 ∈ Gqω

2 , v2 ∈ S(RG); q1 6= q2
are prime numbers different from p. Therefore, gq1g

−1
q2 ∈ S(RG) ∩ G = Gp.

Finally, we get that gq1 ∈ Gqω
2 because Gp = G

q2
p whenever q2 6= p. Thus

(GS(RG))1 = [(
⋂

q 6=p
Gqω
)S(RG)] ∩ [Gpω

S(Rpω
Gpω
)] = (

⋂

p
Gpω
)S(Rpω

Gpω
). In

order to prove this, we see by the modular law in [16] that [(
⋂

q 6=p
Gqω
)S(RG)] ∩

(Gpω
S(Rpω

Gpω
)) = S(Rpω

Gpω
)[(

⋂

q 6=p
Gqω
)S(RG)] ∩ Gpω

]. Further, given an ar-

bitrary element x ∈ [(
⋂

q 6=p
Gpω
)S(RG)] ∩ Gpω

, we derive x = av = g, where

a ∈
⋂

q 6=p
Gqω
, v ∈ S(RG) and g ∈ Gpω

. Since v ∈ S(RG), there exists cp ∈ Gp such

that acp = g. Henceforth, it is plain that x ∈ (
⋂

p
Gpω
) = G1 =

⋂

n
Gn. Finally, we

deduce that [GS(RG)]1 = G1S1(RG) = G1S(Rpω
Gpω
). After this, we concen-

trate on the intersection (HGHS(RG))∩V 1(RG) = [HGHS(RG)]∩[G
1S(Rpω

Gpω
)].

Foremost, we shall show that it possesses only trivial p-elements. In order to ar-
gue this, bearing in mind that (HG)p = HGp

[19, Theorem 13], we observe that

[HGHS(RG)]p ∩ [G
1S(Rpω

Gpω
)]p = [HGp

HS(RG)] ∩ [G
1
pS(R

pω
Gpω
)] = HS(RG) ∩

S(Rpω
Gpω
) = 1. And so, next choose an arbitrary element x belonging to the

intersection that we examine. Hence, there is a natural d with the property

xpd
∈ HG ∩ G1 = 1. Thus x is a p-element, and by what we have just shown

above, x = 1, as desired. Then, [HGHS(RG)] ∩ V 1(RG) = 1.
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Suppose now there exists v ∈ V (RG) \HGHS(RG) such that 〈HGHS(RG), v〉∩

(G1S(Rpω
Gpω
)) = 1. Writing by Lemma 1 that v = gw, where g ∈ G and

w ∈ S(RG), we extract 〈HGHS(RG), gw〉 ∩ (G1S(Rpω
Gpω
)) = 1. From this, it

follows that 〈HS(RG), gw〉 ∩ S(Rpω
Gpω
) = 1 and 〈HG, gw〉 ∩ G1 = 1. Let us

presume that wpt
= 1 for some t ∈ N.

If now g ∈ Gp, then gw ∈ S(RG) \ HS(RG) and so 〈HS(RG), gw〉 ∩

S(Rpω
Gpω
) = 1 leads us to a contradiction.

Otherwise, when g ∈ G \ Gp, we detect 〈HG, gw〉p
t

= 〈HG, g〉p
t

=

〈(HG)
pt

, gpt
〉 = 〈H

Gpt , gpt
〉, where the last equality holds true by virtue of [18].

If gpt
/∈ HG, i.e. g

pt
/∈ H

Gpt , we obtain 〈H
Gpt , gpt

〉 ∩ G1 = 〈HG, gw〉p
t
∩ G1 = 1,

that is false.
In the remaining case when gpt

∈ HG, i.e. by the purity of HG in G (see

[19]) gpt
∈ H

pt

G , we have g ∈ aHG whenever a ∈ G with apt
= 1. Thus,

〈HGHS(RG), gw〉 = 〈HGHS(RG), aw〉, where aw ∈ S(RG)\HS(RG). That is why

〈HS(RG), aw〉 ∩ S(Rpω
Gpω
) ⊆ 〈HGHS(RG), gw〉 ∩ (G1S(Rpω

Gpω
)) = 1, which is

wrong.
Finally, our above supposition is invalid, so HGHS(RG) is a high subgroup of

V (RG), as stated. The proof is finished. �

Remark. The maximal divisible subgroups and p-basic subgroups of the p-mixed
group V (RG) were classified in [8], [11]; [8], [12], [13], [14], respectively. Moreover,
no every high subgroup of S(RG) is of the above kind.
Now, we can prepare the other key statement which determine the high sub-

groups in the factor-group S(RG)/Gp, namely we state

Theorem 9. Let G be an abelian group and R be a commutative unitary ring
without nilpotent elements in prime characteristic p. Then the following explicit
formula is fulfilled:

(∗∗) HS(RG)/Gp
= HS(RG)Gp/Gp

∼= HS(RG)/HGp
.

Proof: First, we consider the intersection [(HS(RG)Gp/Gp)∩(S(RG)/Gp)
pω
][p].

Since Gp is nice in S(RG) (see, for instance, [3], [5], [11]), this ration may be

represented as (HS(RG)Gp/Gp)[p] ∩ (S
pω
(RG)Gp/Gp). Because, as we have ob-

served, Gp is pure in S(RG), whence in HS(RG)Gp, then adapting Lemma 7,

(HS(RG)Gp/Gp)[p] = (HS(RG)Gp)[p]Gp/Gp = HS(RG)[p]Gp/Gp.

Furthermore, the examined intersection is equal to (HS(RG)[p]Gp/Gp) ∩

(Spω
(RG)Gp/Gp) = [(HS(RG)[p]Gp) ∩ (S

pω
(RG)Gp)]/Gp. The modular law

(cf. [16]) does imply that (HS(RG)[p]Gp) ∩ (S
pω
(RG)Gp) = Gp[HS(RG)[p] ∩

(GpS
pω
(RG))]. But [2], [3] together with [18], [19] give Spω

(RG) = S(Rpω
Gpω
)
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and (GpS(R
pω

Gpω
))[p] = G[p]S(Rpω

Gpω
)[p] = HGp

[p]S(Rpω
Gpω
)[p]. Thus,

again in view of the cited modular law, HS(RG)[p] ∩ (GpS
pω
(RG)) = HGp

[p].

Consequently, the studied intersection is precisely 1.
Moreover, by making use of [18], [19], S(RG)[p] = HS(RG)[p] × Spω

(RG)[p].
Therefore, by what we have just demonstrated,

S(RG)[p]Gp/Gp = (HS(RG)[p]Gp/Gp)× (S
pω

(RG)[p]Gp/Gp),

i.e. in other words (S(RG)/Gp)[p] = (HS(RG)Gp/Gp)[p]× (S
pω
(RG)Gp/Gp)[p] =

(HS(RG)Gp/Gp)[p]× (S(RG)/Gp)
pω
[p].

Next, we will argue that HS(RG)Gp/Gp is pure in S(RG)/Gp which by [16]

is equivalent to prove that HS(RG)Gp is pure in S(RG) because as we have seen

above, Gp is pure in S(RG). In order to show this, exploiting [20] or [16], it is

sufficient to compute that (HS(RG)Gp)[p]∩Spn
(RG) = (HS(RG)Gp)

pn
[p] for each

natural number n. Well, owing to Lemma 7, (HS(RG)Gp)[p] = HS(RG)[p]G[p].

From [18], it follows that G[p] = HGp
[p] × Gpω

[p]. Thus, using the modular

law in [16] together with the purity of the high subgroups [18], [19], it obviously

holds that (HS(RG)Gp)[p] ∩ Spn
(RG) = Gpω

[p]H
pn

S(RG)
[p] ⊆ (G

pn

p H
pn

S(RG)
)[p] =

(HS(RG)Gp)
pn
[p], as required. Our claim on purity is extracted. As a final,

combining these two general conclusions, we derive that HS(RG)Gp/Gp is indeed

a high subgroup of S(RG)/Gp, as claimed. The isomorphism relation is valid
taking into account Corollary 6. We are done. �

Remark. Maximal divisible subgroups and basic subgroups for the quotient group
S(RG)/Gp were described in [11]; [8], [12], [13], [14], respectively. Besides, no each
high subgroup of S(RG)/Gp is of the present type.
We conclude the major part with

3. Main attainments and their proofs

We now come to the first important attainment, namely

Theorem 10. Suppose G is a p-mixed abelian group and R is a perfect commu-
tative integral domain in characteristic p 6= 0. Then V (RG) is a Σ-group if and
only if G is a Σ-group.
Suppose G is a p-splitting abelian group and R is an algebraically closed field

in characteristic p > 0. Then V (RG) is a Σ-group if and only if Gp and G/Gt are

Σ-groups. In particular, if G is a torsion Σ-group, then V (RG) and V (RG)/G
are Σ-groups.

Proof: Foremost, we deal with the first half. For the necessity, we observe that
Lemmas 2 and 3 are applicable.
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For the sufficiency, by making use of formula (∗) from Theorem 8 in the
preliminary paragraph, we derive HV (RG) = HGHS(RG). On the other hand,

applying [19] or Lemma 3, G a Σ-group implies that so is Gp, hence accord-
ing to [3], the same holds for S(RG)/Gp. Therefore, owing to Theorem 9,
HS(RG)/Gp

∼= HS(RG)/HGp
is a direct sum of cyclics. Moreover, a claim of

[18], [19] asserts that HGp
is pure in Gp, whence in S(RG), whence in HS(RG).

Consequently, a result due to L. Kulikov ([16, p. 143, Theorem 28.2]) guaran-
tees that HGp

is a direct factor of HS(RG) with a direct sum of cyclic groups

complementary factor. Furthermore, it follows from the present equality that
HV (RG)

∼= HG × HS(RG)/Gp
∼= HG × HV (RG)/G. That is why, HV (RG) is a

direct sum of cyclics since HG is, or equivalently by the definition, V (RG) is a
Σ-group, as claimed.

For the second part, complying with [9], we write G = Gp×G/Gp and V (RG)×
R∗ ∼= S(RG)××|G|(R

∗ ×G/Gt). Because of the fact that R∗ is divisible whence

a Σ-group, the claim is fulfilled by using of [3], [19] and Lemma 3.

Moreover, via [9], we derive V (RG)/G ∼= S(RG)/Gp × V (R(G/Gp))/(G/Gp).
But when G is torsion, V (R(G/Gp)) is divisible again from [9], hence so is
V (R(G/Gp))/(G/Gp). Since Gp is a Σ-group, we can apply [3] and [19] to con-
clude V (RG)/G is a Σ-group. The proof is completed.

�

We are now ready to proceed by proving the second central assertion, namely
we formulate and argue

Theorem 11. Suppose G is a p-mixed abelian Σ-group and let R be a commu-
tative ring with unity of prime characteristic p. Then RA ∼= RG as R-algebras
for any group A yields that HA

∼= HG, and thus A is a p-mixed abelian Σ-group
as well.

Proof: First, we know that RA ∼= RG does imply PA ∼= PG as P -algebras
for some perfect field P with charP = p. It is trivial that this P -isomorphism
ensures that Amust be also a p-mixed abelian group. Moreover, V (PA) ∼= V (PG)
and HV (PA)

∼= HV (PG) because in virtue of Theorem 10 and [19], [21] the high

subgroups would be p-basic, so [16] is applicable. By what we have just proved
in Theorem 10, A is a Σ-group, too. So, HG and HA are both direct sums of
cyclics, whence they split. Written down, HG = (HG)p ×HG/(HG)p and by the
same reason HA = (HA)p ×HA/(HA)p. But, conforming with [19, Theorem 13],
(HG)p = HGp

and by symmetry (HA)p = HAp
, respectively. On the other hand,

PG ∼= PA gives HGp
∼= HAp

consulting with [3]. Besides, the formula (∗) from

Theorem 8 along with Corollary 6 mean that HG/HGp
∼= HGHS(PG)/HS(PG) =

HV (PG)/HS(PG)
∼= HV (PA)/HS(PA)

∼= HA/HAp
. Finally, we deduce HG

∼= HA,

as desired. The proof of the statement is verified. �
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Remark. The last statement improves a result of this type obtained by us in ([3,
Theorem - Corollary, p. 83]).
Moreover, it is well to note that HG/Gp

6∼= HG/HGp
in general, so the usage of

formula (∗) is needed.
We close the manuscript with

4. Concluding discussion and remarks

The question is still left open about obtaining a general criterion for V (RG)
to be a Σ-group (see, for example, [10]). As we have observed above, some of
our own structural characterizations and descriptions of V (RG) given in [9] along
with the results established here and listed above yield such a restricted necessary
and sufficient condition for the modular and semisimple case. Thus we almost
complete the problem, but the main case is unsolved yet.
Of some majority and interest is also the question whether the isomorphism

of commutative group algebras over all fields preserves the property of being a
Σ-group (when G/Gp is reduced see [3]), or, in other words, if G is a Σ-group and
for every field F the F -algebra isomorphism FG ∼= FA holds, is it true that A is
a Σ-group?
The other central problem is the Direct Factor Conjecture for Σ-groups, namely

is it fulfilled that G is a direct factor of V (RG) whenever G is a p-mixed abelian
Σ-group, or more generally for such a group G does it follow that V (RG)/G is a
simply presented p-group?

Acknowledgment. The author would like to thank the anonymous expert ref-
eree for the helpful comments and suggestions.
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