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Locally compact linearly Lindelöf spaces

Kenneth Kunen

Abstract. There is a locally compact Hausdorff space which is linearly Lindelöf and not
Lindelöf. This answers a question of Arhangel’skii and Buzyakova.

Keywords: linearly Lindelöf, weak P-point
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This note is devoted to the proof of:

Theorem 1. There is a compact Hausdorff space X and a point p in X such

that:

(1) χ(p, X) > ω;

(2) for all regular κ > ω, no κ-sequence of points distinct from p converges

to p.

As usual, χ(p, X), the character of p in X , is the least size of a local base at p.
Regarding (2), if ~q = 〈qα : α < κ〉 is a κ-sequence, we say ~q → p iff whenever U is
a neighborhood of p, ∃α∀β > α [qβ ∈ U ]. Then, (2) asserts that ~q 6→ p whenever
κ > ω is regular and all the qα 6= p. Observe that if χ(p, X) = ω, then (2) holds
trivially.
Theorem 1 answers Question 1 of Arhangel’skii and Buzyakova [1]. They point

out that given such an X, p, the space X\{p} is linearly Lindelöf (by (2)), not
Lindelöf (by (1)), and locally compact.
Note that in any compact Hausdorff space X , if the point x is not isolated,

then there is a sequence of type cf (χ(x, X)) converging to x. Thus, the X, p in
Theorem 1 must satisfy cf (χ(p, X)) = ω. In our example, χ(p, X) will be iω.
Our X will be constructed as an inverse limit. We begin by reviewing some

basic terminology:

Definition 2. An inverse system is a sequence 〈Xn, πn+1
n : n ∈ ω〉, where each

Xn is a compact Hausdorff space, and each πn+1
n is a continuous map from Xn+1

onto Xn.

Such an inverse systems yields a compact Hausdorff space,

Xω =
←−
limnXn = {x ∈

∏

n

Xn : ∀n [xn = πn+1
n (xn+1)]}.
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It also yields the obvious maps πω
m : Xω ։ Xm for m < ω and πn

m : Xn ։ Xm

for m ≤ n < ω.

Lemma 3. Suppose that 〈Xn, πn+1
n : n ∈ ω〉, is an inverse system and p = 〈pn :

n ∈ ω〉 ∈ X = Xω satisfies:

(A) each pn is a weak Pin
-point in Xn;

(B) each χ(pn, Xn) ≤ in+1;

(C) each (πn
0 )

−1{p0} is nowhere dense in Xn.

Then X, p satisfies Theorem 1 with χ(p, X) = iω .

As usual, y ∈ Y is a weak Pκ-point iff y is not in the closure of any subset of
Y \{y} of size less than κ, and y is a Pκ-point iff the intersection of fewer than
κ neighborhoods of y is always a neighborhood of y. In a Hausdorff space, every
Pκ-point is a weak Pκ-point, but note that in (A), the pn cannot all be Pin

-
points, as that would contradict (C). Note that (C) cannot be omitted; it is easy
to construct an example satisfying (A) and (B) where each Xn is a LOTS and
each πn+1

n collapses an interval around pn+1 to the point pn; then χ(p, X) = ω.

Proof of Lemma 3: First, note that one local base at any x ∈ X consists of all
the (πω

n )
−1(U) such that n ∈ ω and U is an open neighborhood of xn in Xn. It

follows that:

(α) χ(p, Xω) ≤ supn χ(pn, Xn) = iω;
(β) (πω

0 )
−1{p0} is nowhere dense in Xω.

Now, to verify (2) of Theorem 1, assume that ~q = 〈qα : α < κ〉 → p, where κ >

ω is regular and all the qα 6= p. The definition of ~q → p implies that κ ≤ χ(p, X),
so fix m with κ < im. Now, qα 6= p implies that πω

n (qα) 6= pn = πω
n (p) for some

n, so we can fix n ≥ m and an S ⊆ κ with |S| = κ and πω
n (qα) 6= pn for all α ∈ S.

But then pn ∈ cl{π
ω
n (qα) : α ∈ S}, contradicting (A).

In view of (α), to prove that χ(p, X) = iω , it is sufficient to fix m < ω

and prove that χ(p, X) ≥ im. Suppose that B were a local base at p in X

with |B| < im. Let F = (πω
m)

−1{pm}. By (β), F is nowhere dense in X , so
for each U ∈ B, we can choose yU ∈ U\F . Then p ∈ cl{yU : U ∈ B}, so
pm = πω

m(p) ∈ cl{π
ω
m(yU ) : U ∈ B}, contradicting (A). �

We now need to find an inverse system satisfying the hypotheses of Lemma 3.
Xn will be βin. In general, βκ denotes the Čech compactification of a discrete κ;
equivalently, βκ is the space of ultrafilters on κ; thus, the remainder, κ∗ = βκ\κ,
is the space of non-principal ultrafilters on κ.
The pn will be good ultrafilters. Following Keisler [5], an ultrafilter x on κ

is good (i.e., κ+-good) iff given As ∈ x for s ∈ [κ]<ω, there are Bα ∈ x for
α < κ such that

⋂
α∈s Bα ⊆ As for all non-empty s ∈ [κ]<ω. For every infinite κ,

there is a non-principal x ∈ βκ such that x is a good ultrafilter (Keisler [5] under
GCH and Kunen [7] in ZFC; see also Chang and Keisler [3, Theorem 6.1.4]). The
following folklore result about such ultrafilters is proved in [2] and [4]:
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Lemma 4. If x is a good ultrafilter on κ, then x is a weak Pκ-point in βκ.

Thus, fixing pn ∈ βin to be good will handle (A) of Lemma 3, but to get
p = 〈pn : n ∈ ω〉 to really define a point in X = Xω, we need to choose the
πn+1

n : βin+1 ։ βin such that each pn = πn+1
n (pn+1). In fact, πn+1

n will be
β(Πn+1

n ), where Πn+1
n : in+1 ։ in. Here, as usual, if f : P → Q, where P, Q

are Tychonov spaces, then βf : βP → βQ denotes its Čech extension. In the
special case of discrete P, Q, where x ∈ βP is an ultrafilter on P , (βf)(x) ∈ βQ

is the induced measure, {B ⊆ Q : f−1(B) ∈ x}. Now, showing that appropriate
Πn+1

n : in+1 ։ in can be chosen requires a digression:

Definition 5. An ultrafilter x on κ is regular iff there are Eα ∈ x for α < κ such

that
⋂

n Eαn
= ∅ whenever the αn (for n ∈ ω) are distinct.

Clearly, such x are countably incomplete. Moreover,

Lemma 6. If x is a countably incomplete good ultrafilter on κ, then x is regular.

This is Exercise 6.1.3 of [3]; a proof is contained in the proof of Lemma 2.1 of
Keisler [6]. The proof of universality of regular ultrapowers ([3, Theorem 4.3.12])
is easily modified to produce:

Lemma 7. Suppose that κ ≥ 2λ and y is any ultrafilter on λ. Let x be a regular

ultrafilter on κ. Then there is an f : κ ։ λ such that (βf)(x) = y.

Proof: Since κ ≥ 2λ, we may list the elements of y (possibly with repetitions) as
{Bα : α < κ}. Let the Eα ⊆ κ be as in Definition 5. Choose g : κ→ λ such that
g(ξ) is some element of

⋂
{Bα : ξ ∈ Eα} (observe that this is a finite intersection).

Then (βg)(x) = y because each g−1(Bα) ⊇ Eα ∈ x. This g may fail to be onto,
but we may now fix a set A ∈ x with |κ\A| = κ, and choose f : κ ։ λ such that
f ↾ A = g ↾ A, so that (βf)(x) = (βg)(x) = y. �

Proof of Theorem 1: We obtain the situation of Lemma 3. Fix Xn = βin,
and fix pn ∈ βin to be good and non-principal (and hence countably incomplete).
Applying Lemmas 6 and 7, fix Πn+1

n : in+1 ։ in so that setting πn+1
n = β(Πn+1

n )
yields pn = πn+1

n (pn+1). Then (A) follows by Lemma 4, and (B) is clear, since

there is a base for the space Xn of size 2
in = in+1. Finally, (C) holds because

(πn
0 )

−1{p0} ⊆ (in)
∗, which is nowhere dense in βin. �
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