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Weighted Miranda—Talenti inequality and applications
to equations with discontinuous coefficients

S. LEONARDI

Abstract. Let  be an open bounded set in R™ (n > 2), with C? boundary, and N?:*(Q)
(1 <p<+00,0< X< n) be a weighted Morrey space.

In this note we prove a weighted version of the Miranda-Talenti inequality and we
exploit it to show that, under a suitable condition of Cordes type, the Dirichlet problem:

o2 ;
>0 =1 @i () axi@uxj = f(z) € NPXQ) in Q
u=20 on 0N
has a unique strong solution in the functional space

d%u
afEiaZBj

{u e WP A WP (Q) : e NPAQ), i,j=1,2,... n}

Keywords: Miranda-Talenti inequality, nonvariational elliptic equations, Hoélder regula-
rity
Classification: 35B45, 35B65, 35J25, 35J60, 35R05

1. Introduction

Let  be an open bounded set in R™ (n > 2), with C? boundary, and NP (1)
(1 <p<+00,0< X< n)be the weighted Morrey space formed by the functions
u : Q — R for which

1/p
l[ull yp.r () = sup {/ |z — 20| ™M u(x)|P da:} < +o0.
ToEQN Q
Also, let WHP(M)(Q) be the linear space of functions u € W*P(Q) such that
D% € NPA(Q) for |a| = k.
In this note we will prove, at first, a weighted version of the Miranda-Talenti
inequality (see [35]), namely we will demonstrate the following

Theorem. Let 1 < p < 400 and 0 < A\ < n. Then there exists a constant
Cur = Crrr(n,p, A, 0Q) > 0 such that, for any u € WP N Wol’p(Q) for which
Au € NPA(Q), we have

||uHW2vPv()‘)ﬂWol’p(Q) < CMT ||AU’HNP’A(Q) :
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Next, we exploit the previous result to show that, under a suitable condition

of Cordes type, the Dirichlet problem:

8%
noai(2)———— = f(z) € NPAQ in Q
Sl y(0) g = o) € NPA@)
u=20 on 0f)

has a unique strong solution in the functional space w2p, () VVO1 P(Q).

2. Notations, assumptions, auxiliary results
In R™ (n > 2), with a generic point = (z1,x2,... ,xn), we shall denote by Q

an open nonempty bounded set with C2-boundary 99 (1).
For p > 0 we define
B(xo,p) ={x € R" : |z — mo| < p}
Q(zo, p) = Q2N B(zg, p).

If u € L'(A), A being an open nonempty bounded set of R”, then we will set
1 / 9
ug=— | u(z)dx (%),
Al Ja

if moreover u € L*(R™) we recall the definition of the Hardy-Littlewood maximal

function
Mu(z) = sup up(y ,)-
>0 (2,p)

If = (a1, a9,...,ay) is a multiindex we set

olal 3
|a|:041+042+"'+an, Da:ax?lax?...ax%” ( :

Moreover let p €]1,400[ and A € [0,n] (1).
Definition 2.1. Let & € N. By WkP(Q) (respectively Wf’p(Q)) we denote the
closure of C*°(Q) (respectively C5°(£2)) with respect to the norm

lallyrney = Il oy + 10D D)2 1oy

laf=k

1 This hypothesis will always be implicitly used.

2 | A| is the n-dimensional Lebesgue measure of A.
3 For the sake of simplicity we will denote the gradient (Dau)‘a‘:l by Du and the Hessian

matrix (D%u)|q = by H(u).
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Definition 2.2 (Morrey’s space). By LP*(92) we denote the linear space of func-
tions u € LP(2) such that

1/p
20€Q,p>0 Q(zo,p)

LPA(Q) equipped with the norm (1) is a Banach space.

Definition 2.3 (Weighted Morrey’s space [27]). By NP*(Q) we denote the linear
space of functions u € LP(Q2) such that

1/p
(2) ||u||Np,A Q) :{ sup / | — xo|™ )‘|u|pd:§} < 4o00.

zo€EN
Remark 2.1. Fixed z, € R", set
Vo () = @ — 5UO|_)\-

The Weight Vg, (x) satisfies the following properties:
(i) o (x) € LS (R™),

(i) va,(z) € LL (R™),
(iil) vg,(x)is an Ap (or Muckenhoupt) weight i.e. v, (x) satisfies the condition

sup (|Q| / Ve (2) d:v) (ﬁ /Q Vo, (2) 7T dx)p_l < 400

where the supremum is taken over all cubes @ (see [37, Corollary 4.4,
p. 236 and Proposition 3.2, p. 229]).

Properties (i), (ii) imply respectively that NP*(2) equipped with the norm (2)
is a Banach space and that C3°(Q2) is dense in NPA(Q).

Proposition 2.1 ([22]). It holds
NPAQ)  LPAQ).
Proposition 2.2 ([22]). If

/\2_n§/\1_n
p q

)

with 1 < p < g < oo, then

N2 Q) C NP2 ().
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Definition 2.4. By WF?(M)(Q) we denote the linear space of functions u €
WkP(Q) such that D% € NPA(Q) for |a| = k.

Wkr:(M(Q) equipped with the norm

3) ullyencoay = lelzoey + 1S ID2UR Y2y 0
la|=k

is a Banach space.

Proposition 2.3 (Weighted Poincaré’s inequality). Let u € W1»(M)(Q). Then
there exists a constant C = C(n,p, A, |?|) > 0 such that

[u = ullnra) < ClD ull yor(q)-
PRrROOF: From Lemma 3.4 in [26] (see also [15, p. 162]) we deduce
(4)  |u(z) —uq| < C(n)/ |z —y|' "D u(y)|dy = C(n) I(z) aa. z e
Q

After extending Du to the whole R™ by assuming Du = 0 in R" \  we get
@< [ ey ID )y
le—y|<dq

+00
< Z/ _ Jz—y' "D uly) dy
j=0

do2-i-1<|z—y|<dn2—7

+oo )
<Y (dgaIhion / D u(y)|dy
=0 |

:E—y‘<dg27j

< C(n,dg)M|Du(x |Zz—ﬂ

The thesis now follows from the weighted norm estimate for the maximal function
(see [24] or Theorem 1 from [9]) and Remark 2.1(iii); indeed we have

[u = uallnea) < CllInpa@ny < CllDull ypa@ny = CllDull yoa(q)
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Proposition 2.4. Let u € W2P(M)(Q). Then D*u € NPA(Q) for |o| < 1.

PRroOF: Poincaré’s inequality gives
(6) [Du = (Du)allnpa) < Clp, A [QDIH (W)l v (0)-

On the other hand by Hélder’s inequality and (6) we infer

1/p
Doy < | 190 = (Dudallyos ey + Dl sup ([ oo o) |
(7) < Cnp M 190) (IH @)y + 1Dul o)) < +o0

whence, using again Poincaré’s inequality,

1/p
fullnsoy < [ = wallymaey + fual sup ([ 1o = aof ) |

o€

(®) < Cp M 12) (IDull v @)+l o)

< Cnp A 12D (IH @)@y + 1Dul o) + lull ooy ) -

O
A consequence of the above proposition is the following interpolation inequality.

Proposition 2.5. Let u € W2P (M) (Q). Then for any ¢ > 0 one has
(9) 1Dull @y < CE) llullynrgy + & IH W) ye )

where C(e) > 0 is independent of u.

PROOF: It is enough to establish (9) for u € C?(Q).

For y € Q fixed, let us introduce radial and angular coordinates p = |z — y|,
_ =y
w===.

P
Then we have for x € €,

Du(y) = Du(zx) — /op D2u(y + rw) dr

whence

p
| Du(y)|P < 2P~ 1 [|Du|p dx + ’ /0 DZu(y + rw) dr

1

47
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Fixing §, > 0 and integrating with respect to x over Q(y, d,) we obtain

|Du(y)|P < zp—lc(n)5;"[ / | DulP da:
Q

P
+ / d:c}
Q(y,00) )

= 27710 (n)s; " / | DulP da
LJa
do p P
/ / /D%u(y—i—rw)dr
lw]=11J0
— Lo /|Du|pd:v

do
+/ / =1
(10) 0 Jjwl=1

p 2
/ Diu(y + rw) dr
0

o dw dp}

p

/ D2u(y + rw) dr

dw dp}

< 210—10(”)50_ / |Du|? dz
A _ 1 1-x [? 12
+ o) / PP pn— / |Dru(y+rw)|pdrdwdp]
|w]=1
< 2p—10(n)50—”{/ | Dul? d
Q
o
cay [ DR+ gl dod
0 |w|=1
_ 210—10(”)50_"{/ |Du|pd:17+5£\+p/ |$—y|_)\|H(U)|pd4
Q

< 2100, [|Dull ) + 0P IH @) R0 ]

Multiplying both sides of (10) by |y — 2,|~* and integrating with respect to y
over Q(x,,do), for fixed z, € Q, we get

/ Du(y)Ply — w0 dy
Q(z0,00)

< C(n,p, o5 [Pl 0y + 0042 IHH () [0 g

whence, using Theorem 7.28 from [15],
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sup [ |Duly)Ply ol dy
6<60 JQ(20,5)
M) < Clnp A 100 (05772l ) + BIH I ) + 08 1H @)1 ]

< Cn,p, M 120 (5572l 0 ) + 8 NH @R ] -

The thesis now follows from the equivalence of norms as in [20, p. 25]. O

3. Weighted Miranda-Talenti inequality

Before proving a weighted version of the Miranda-Talenti inequality we will
premise some useful propositions.

Proposition 3.1. Let u € Wg’p(Q) such that Au € NPA(Q). Then H(u) €
NPA(Q) and there exists a constant C = C(n,p, \) > 0 such that

(12) 1@ lxer) < C lAull vy -

ProoF: We will proceed as in the proof of Proposition 3, p. 57 from [32].
Denoted by R;(v), j = 1,...,n, the j-th Riesz transform of a function v €

C2(R™) (see [32, pp. 57 and 68]). By a density argument and Theorem 3, p. 39
from [32] we get the identity

(13) H(u) = —Ri(R;j(Au)), Yue WHP(Q).

If we now extend Au to the whole R™ by setting Au = 0 in R™\ Q, the thesis is
then an immediate consequence of (13), the properties of the kernel of the Riesz
transform (see also [34, pp. 220 and 243]) and the weighted LP inequality from [9,
p. 244] (see also [25] and [31]).

Namely we have

1H (u)llypr ) < Cll AUl yprgny = CllAul v q) -

O
The above proposition allows us to prove the following interior estimate.

Theorem 3.1. Let u € W2P(Q) such that Au € NPNRQ). Then, for any do-
mains ' cc Q' cc Q, H(u) € NPN) and there exists a constant C =
C(n,p, \, dist(,09")) > 0 such that

(14) 1H @)@y < € (lullvna@n + 18u]xnag)) -
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PROOF: Suppose 0 < A <n (if A = 0 see e.g. Theorem 9.11 from [15]).
Let ' cc Q" cc 9,0 < R <dist(,09"); set Bg = B(yo, R), yo € ¥ and,
for o €]0, 1[, let us introduce a cutoff function n € C2(Bpg) satisfying

0<n<1, VxzeBp

n=1 in B,R
1
n=0 for |t —yo| > 'R, o' = —;0
4 16
Dpl<—— |H < —m

Then, if v = nu we also have v € Wg’p(BR). We want to prove that Av €
NPA(BR).

As a matter of fact, being u € W?P(Q), one obtains u, Du € NPH(Q) for
some g > 0 (4). Thus, since Au € NPA(Q) it follows Av € NP#(Bg) for some
€10, M.

Let us suppose p €10, A[.

In this case the previous observations together with Proposition 3.1 imply
H(v) € NPH(Bp) and thus H(u) € NPH(B,g), p €10, A[.

Starting now from the fact that u € W2P:(W)(B, ) and repeating the above
argument we get u, Du € NP#1(Bypg), for some py €|u, A (4), and Av €
NPH1(BR).

If still 41 # X\ we iterate a finite number of times the previous procedure up
obtaining Av € NPA(Bp).

Thus another application of Proposition 3.1 gives

H(v) € NPNBR) = H(u) € NPA(Byg)

and

(15)
H (W) NexB,5) = H Ol NeaBr) < ClAVINeABE)

1 1
<C T oFR [ull N (Br) + A=oF [Dullnvr(B,, ) |Au|Np,A(BR)} .

Proceeding now as in the proof of Theorem 9.11 from [15] and taking into
account Proposition 2.5, we then obtain, for o = 1/2,

C
||H(U)||NM(BR/2) < "2 ||UHNP»A(BR) +R? ||Au||NPvA(BR)} '

4 Using Sobolev and Hoélder inequalities and Proposition 2.2.
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The required estimate follows once more from the above one by covering
with a finite number of balls of radius R/2. O

In order to extend Theorem 3.1 to the boundary 02 we first consider the case
of a flat boundary portion.

If yo = Yol,--- »Yon—1,0), we set
By, = (B(yo, R))" = B(yo, R)NR%
= B(yo, R) N {z = (2/,2n) € R™ : 2, > 0}.

Proposition 3.2. Let u € Wz’p(Bi"'), u = 0 on By NORY, such that Au €
Np’)‘(Bf'). Then, for every R €]0,1[, H(u) € NP’A(BE) and there exists a
constant C'= C(n,p, \) > 0 such that

(16) Ity < C [Illyon sy + 1880 s |

PROOF: We extend u and the weight vy, (z) = | — 2|, zo € B, to all of By
(see [2, Lemma IX.2]) by setting

2’ xn) € BY

Vg, (2, xp) for (
Vg, (7', —p) for (¢/, —xy) € By \ By,
/ /

Uy (2!, 2n) = {

(2, zp) € Bi’_
w(z',xp) =4 0 for (¢/,2n) € B NORY
u(x', —xn) for (2/, —xn) € B .
It can be readily checked that the function @ € W?P(B;) and moreover
18l (1) < ClA Ul gy < +oo.

Arguing as in the previous theorem, for R €]0,1], let us introduce a cutoff
function n € C2(Bj) satisfying

0<n<l1, Vee B

n=1 in By
1+ R
n=0 for |z —yo| >R/, R/=+T
4 16
Dn| < Hn)| € ———==

and consider the function v = ni € WP (By).

51
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Then, since Av € NPA(By), we have H(@) € NP(Bg) and

V@l e (5 < C [1llma 5y + 1A llynacs,)) -
The estimate (16) follows now in the standard way:
V@) ey < IH@ o (5
< C [l yma ) + 18 @l na )]

< C [l sy + 18 6l yor 5] -

With the aid of the previous propositions we derive a global estimate.

Proposition 3.3. Let u € W2P N Wol’p(Q) such that Au € NPAQ). Then
H(u) € NPA(Q) and there exists a constant C = C(n, p, \, Q) > 0 such that

(17) I @lxraay < C (lullyma gy + 186l yory) -

PROOF: Since 99 € C2, for each point y, € IQ there is a neighborhood N = Ny,
and a corresponding diffeomorphism ¢ = 1)y, from N onto the unit ball B =
B(0,1) in R™ such that
(i) v € C* V), v~'eC?(B),

(i) $(V N Q) = BF,

(iil) Y (N NoQ) = BNORY.

Writing

w(z) =u((z)), zeEN

we have @ € W2P(B1), Ad e NPAB*) and @ =0 on BN OR".

By Proposition 3.2 we thus obtain the estimate

V@) gy < C Il + 18Txer sy | - R €101

Taking N = Ny, =~ }(Bp /2) and returning back to our original coordinates,
we obtain

(@)l ypriry < C |lellveaovy + AUl vpa | -
W)

Finally, by covering 9 with a finite number of such neighborhoods N and
using also the interior estimate (14) we obtain the thesis. O

The following inequality of Miranda-Talenti type holds (see Talenti [35], Gris-
vard [18, Section 2.3] and also Gilbarg, Trudinger [15, Chapter 9]).
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Theorem 3.2. There exists a constant Cpyp = Cppr(n, p, A,0Q) > 0 such that,
for any u € W2P(M) n Wol’p(Q) (®), we have

(18) ||uHWz,p,()\)mW01’P(Q) < Cur ||AUHNP,A(Q) .

PROOF: Since NP () ¢ LP(Q) () the Laplace operator
A WP AWIP(Q) — NPAQ)
is a bijection. Moreover, by virtue of Proposition 3.3
A W2 nwhe(Q) — NPA(Q),

is also a bijection.
On the other hand, being

|‘AUHNP7)\(Q) < ||u||W2’p’(A)nW01’p(Q) )
it follows that
A W2 A Wwhe(Q) — NPAQ)

is continuous and thus, by the “open mapping” Theorem, also A~ is continuous,
ie.
-1
A (AU)sz,p,(A)nW(}m(Q) < Cur HAUHNp,A(Q) .

4. Applications to elliptic equations
Let us now consider the question of existence and uniqueness in w2p,(A) n

wir (Q) of the solution to the Dirichlet problem:

i 8%
E(u) = Z%(x)m = f) ENPAQ) i Q

u=20 on 0N.
The structural hypotheses on the operator E (see Cordes [10], [11], [12], Talenti
[35], Giusti [16], Campanato, Cannarsa [8], Campanato [6] and also Guglielmino
[19], Nicolosi [28]) are:

5 Due to inequality (11) we can equip W2P(*) 0 W2 P(Q) with the norm (3).
6 See Proposition 2.1.

93
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(a) aij(x) € L2(Q), agj(x) = aji(z) i,j=1,2,...,n;
(b) (Strong ellipticity condition) there exists a constant v > 0 such that

n
(20) > a(a) &€& > Vg aa xeQ, VEeR
ij=1
(c) (Cordes-type condition) there exists a constant K € [0, 1[ such that

>n——— a.a. zrci

(X8 aii(x)? K>
2D ST (g @E ",y

Existence-uniqueness of the solution in the space W220W, ’2(0) and regularity
of its second derivatives in the classical Morrey space L2*(£2) for such a class of
elliptic equations have been studied respectively by Talenti [35] and by Talenti
[36], Giusti [16], [17]; while in the case of a generic p €]1,+o0], as far as the
author is aware, until now only existence-uniqueness of the solution in the space
W2P A WP (©) have been studied by Pucci [29] and Campanato [4], [5], [6] (see

also Pucci, Talenti [30]).

It is our aim to prove global regularity in NP*(Q) of the second derivatives of

the solution to the problem (19).
Before proving the above stated result we will premise some remarks.

Remark 4.1. Hypothesis (20) implies that
n
(22) ZCLH(I) >nu.
=1
Moreover, by Cauchy-Schwartz inequality we infer
(23) D ai(z) =Y ag(@)di; < \/ﬁ( > (aij(x)) ) -
i=1 ij=1 ij=1

The above two inequalities yield

n

(24) > (aij(x)? = v’

ij=1
From (a), (22), (23) and (24) we deduce that the function

>ieq ii(2)

(25) O S @)
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is measurable, strictly positive and bounded a.e. in Q (7) (see also Giusti [16,
p. 368] and Campanato, Cannarsa [8, pp. 1378-1379]).

Now, using the Lax-Milgram type Theorem of [21] (see also Campanato [5],
[6], [7]) we prove the following theorem:

Theorem 4.1. Let f € NP () and let conditions (a),(b),(c) be satisfied. Then
there exists a unique solution u of the problem

ue W2rMN 0 WaP(Q)

(26) n D%u
Zi7j:1 az’j(@m = f(x).

Moreover we have the estimate

C
< MT

(27) Hunwz,p,(x)mwol,p(g) = m ||f||Np,/\(Q) :

Proor: Fixed f € Np’)‘(Q), let us observe that, by virtue of Remark 4.1, problem
(26) is equivalent to problem

u e W2 A WP (Q)

28 2,,
(28) Au) = ?,j:l a(x) aij(w)%&rj = a(z) f(z).

We will prove that the operator A is “near” by the Laplace operator
A W2 A Wwhe(Q) — NPA(Q).

7 By (23) and (24) we get

> ieq aii(2) 1

) T s @) (557, (s ()92

<

N =

95
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In fact, for any u € W2 n VVOI’ID(Q)7 we have

(29)
- 9%u
Au— a(z)a;;(x) ———
iJZ:1 ( ) ]( )8$Z8I] Np,A(Q)
- 9%y
= 0i7 — a(z) a;i(z)) 7——=—
ZJZ:].( J ( ) .7( ))8172817] NP)\(Q)
- 1/2r n 92y \271/2
<[ | Sy -ewai@r| | (55 )]
_i’jZ:1 J J i,jzzl 8%18.%] Np,A(Q)
- n n ) /21 n 92u \2 1/2
=|[ln—2) a(x)a;z)+ (a(z) a;(x)) } [ (7) }
- ; ZJZ:I ! ZJZzl dri0z; NPA(Q)
2
' (Z?ﬂ au’(x)) Y21 s g2, \271/2
B _n— EZj:l(aij(x))2] [wzzl (3%3%’) ] NPA(Q)
K
S -

| H ()] 0
T

where we have exploited Cauchy-Schwartz inequality, the definition of a(x) and
hypotheses (a), (21).
From (29) and (18) we deduce

(30) A — A(w)]| yor 0y < K 1A ulxpro) -

Thus from the Theorem in [21] it follows that there exists a unique u €
w2p (M) n Wol’p(Q) which satisfies equation (26).

To prove the required estimate for the solution u we will argue in the following
way:

lAullyorg < 11— AWy

- %u
31 + a(x) aij(z)
o ]21 70wz e
<

K| Aullynagy + 17 [l

from which it follows

1
(32) 1A ull o) < v A=K) 1fllver () -

Combining together (18) and (32) we get (27). O
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Corollary 4.1. Let the hypotheses of Theorem 4.1 be satisfied.
() If1<p<mn,n—p<A\<n, then Du € CO*(Q) Withu—l——,
(i) if p >n, 0 <A <n, then Du € CO*(Q) with p=1—-12.

Remark 4.2. Given a function ¢ € W2P(M)(Q), the result of Theorem 4.1 can
be readily extended to the nonhomogeneous Dirichlet problem

u e W2r(Q)

S an@) = — f@) € NPAQ)
ij=1%5 " ox; (’“)x]

u—p € WP A WaP(Q)

just observing that the previous problem is equivalent to the following one

w e WP n WP Q)

02w - a%p
n ..
Zi’jzl %) G o 8xzax] Z 8:1:,8%

Remark 4.3. Let us consider the fully nonlinear second order elliptic operator
of “quasi-basic” type

A(u) = a(z, H(u))
where

e u:Q—RY (NeN),

a(z, £) is a vector of RV, measurable in x and continuous in & such that a(x,0) = 0,
elliptic in the sense of the definition (44) of Campanato [6], i.e. there exist three

constants «, vy, §, with v+ § < 1, such that Vz € Q and V&, 7 € RN

HZ@———wHﬂwuﬂmggi

With a few formal adjustments the above result can as well be extended to
quasi-basic operators just substituting the constant C(gq) by the constant Cp;p
from Theorem 3.2.

Acknowledgments. The author wishes to thank Professors F. Guglielmino,
J. Necas, F. Nicolosi and E.M. Stein for their interest in this work.

8 C(q) is the constant of the unweighted (i.e. A = 0) Miranda-Talenti inequality.
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