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Complete ℵ0-bounded groups need not be R-factorizable

M.G. Tkachenko

Abstract. We present an example of a complete ℵ0-bounded topological group H which
is not R-factorizable. In addition, every Gδ-set in the group H is open, but H is not
Lindelöf.
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1. Introduction

A topological group G is called R-factorizable ([5], [6]) if for every continuous
function g:G → R, one can find a continuous homomorphism p:G → H onto a
second countable topological group H and a continuous function h:H → R such
that g = h ◦ p. The class of R-factorizable groups includes all totally bounded
groups, all Lindelöf groups, arbitrary subgroups of Lindelöf Σ-groups ([5]), and
many more.
By [6, Proposition 5.3], every R-factorizable group G is ℵ0-bounded, i.e., G

can be covered by countably many translates of any neighborhood of the identity.
The notion of an ℵ0-bounded group was introduced in [1] and since then it has
been intensively studied. It is known that ℵ0-bounded groups need not be R-
factorizable ([4]). However, all examples of ℵ0-bounded not R-factorizable groups
constructed so far are essentially incomplete, being proper dense subgroups of
special ℵ0-bounded groups.
In this note we present an example of a complete ℵ0-bounded group H which

fails to be R-factorizable. In addition, H is a P -group, i.e., every countable
intersection of open sets in H is open.

1.1 Notation and terminology. If A is a subset of a group G, we use 〈A〉 to
denote the subgroup of G generated by A. We say that A is independent in an
Abelian group G if a linear combination k1a1 + · · · + knan with k1, . . . , kn ∈ Z

and pairwise distinct a1, . . . , an ∈ A is equal to the neutral element of G iff
k1 = · · · = kn = 0.

2. The example

Given a topological group L, we denote by (L)ω the topological group with
the underlying group L (and the same group operation) whose base consists of
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Gδ-sets in L. It clear that the identity map idL: (L)ω → L is continuous, and idL
is a homeomorphism iff L is a P -group.
Our construction is based on three simple lemmas.

Lemma 2.1. Let H be an R-factorizable P -group. Then the image f(H) is
countable for each continuous real-valued function f on H .

Proof: Consider a continuous function f :H → R. Since H is R-factorizable,
one can find a continuous homomorphism π:H → K onto a second countable
topological group K and a continuous function g:K → R such that f = g ◦ π.
Denote by Kd the group K endowed with the discrete topology. Since H is a P -
group, the homomorphism π:H → Kd remains continuous. In addition, the group
H is ℵ0-bounded by [6, Proposition 5.3]. Therefore, Kd is ℵ0-bounded being a
continuous homomorphic image of H . It is easy to see that every ℵ0-bounded
discrete group is countable, so f(H) = g(Kd) is also countable. �

Lemma 2.2. The following conditions are equivalent for a P -group H with

w(H) ≤ ℵ1:

(1) H is R-factorizable;

(2) H is Lindelöf.

Proof: It is well known that (2) implies (1) for an arbitrary topological group
(see [5, Assertion 1.1] or [3, Assertion 10]). LetH be a P -group of weight ℵ1. Then
H is zero-dimensional and paracompact ([7]). Suppose that H is not Lindelöf.
Then there exists a disjoint cover γ = {Uα : α < ω1} of H by non-empty open
sets Uα. Let {rα : α < ω1} be a sequence of pairwise distinct real numbers. Define
a function f :H → R by f(x) = rα if x ∈ Uα, α < ω1. Then f is continuous and
|f(H)| > ω, so Lemma 2.1 implies that H is not R-factorizable. �

Lemma 2.3. Let G =
∏

i∈I Gi be the direct product of discrete groups endowed

with the Tychonoff topology. Then the group (G)ω is complete.

Proof: For every countable subset J of I, put GJ =
∏

j∈J Gj . Then the projec-

tion πJ : (G)ω → GJ onto the discrete group GJ is continuous and open. Denote
by eJ the neutral element of GJ .
Let ξ be a Cauchy filter in (G)ω . If J is a countable subset of I, then there

exists an element FJ ∈ ξ such that F−1
J · FJ ⊆ π−1

J (eJ ). Pick a point aJ ∈ FJ .
Clearly, πJ (x) = aJ for each x ∈ FJ . In addition, if K is a countable subset of I

and J ⊆ K, then the corresponding point aK ∈ FK satisfies πK
J (aK) = aJ , where

πK
J :GK → GJ is the projection. Indeed, if FK ∈ ξ and F−1

K ·FK ⊆ π−1
K (eK), then

πK(x) = aK for each x ∈ FK . Choose a point z ∈ FJ ∩ FK . Then πJ (z) = aJ

and πK(z) = aK , whence it follows that

aJ = πJ (z) = πK
J (πK(z)) = πK

J (aK).
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We conclude, therefore, that there exists a point a ∈ G such that πJ (a) = aJ for
every countable set J ⊆ I. It remains to verify that the filter ξ converges to a
in (G)ω .

Let U be a neighborhood of a in (G)ω . Then there exists a countable set J ⊆ I

such that V = π−1
J πJ (a) ⊆ U . Note that πJ (x) = aJ = πJ (a) for each x ∈ FJ ,

so FJ ⊆ V ⊆ U . This proves that ξ converges to a. Thus, the group (G)ω is
complete. �

Let Q be the set of rationals. Denote by K the free Abelian group A(Q)
endowed with the discrete topology. It is clear that the group K is countable. We
shall use the additive notation for the group operations in K and Kω1 .

Theorem 2.4. There exists a closed ℵ0-bounded subgroup H of (Kω1)ω which
fails to be Lindelöf. In particular, H is a complete ℵ0-bounded P -group which is
not R-factorizable.

Proof: Our aim is to define a subgroupH of G = (Kω1)ω satisfying the following
conditions:

(a) H is closed in G;
(b) H is not Lindelöf;
(c) |πα(H)| ≤ ω for each α < ω1, where πα:K

ω1 → Kα is the projection.

Suppose that the subgroup H of G satisfying (a)–(c) has been defined. Note
that G is a P -group, and so is H . The group G is complete by Lemma 2.3, so (a)
implies that H is also complete. Let us verify that ℵ0-boundedness of H follows
from (c). Suppose that U is a neighborhood of the neutral element of H . Then
there exists α < ω1 such that H ∩ π−1

α (0α) ⊆ U , where 0α is the neutral element
of Kα. By (c), there exists a countable subset A of H such that πα(A) = πα(H).
Then U + A = H , and hence H is ℵ0-bounded. In addition, (c) implies that
w(H) ≤ ℵ1. Indeed, the family

B = {H ∩ π−1
α (y) : y ∈ πα(H), α < ω1}

is a base for H and |B| ≤ ℵ1. Finally, H is P -group with w(H) ≤ ℵ1, so (b) and
Lemma 2.2 together imply that H is not R-factorizable.

Our first step is to define a closed non-Lindelöf subsetX of Qω1 which generates
a closed subgroup H = 〈X〉 of G once Qω1 is identified with the corresponding
subset of Kω1 . Our method of defining X is a “reminiscence” of the construction
of an Aronszain tree given in [2]. In what follows we use the symbol ≤ to denote
the usual linear order on Q. For every α < ω1, denote by In(α) the subset of Q

α

consisting of all strictly increasing functions, that is,

In(α) = {x ∈ Qα : x(ν) < x(µ) if ν < µ < α}.
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Let us construct a family {Xα : 0 < α < ω1} satisfying the following conditions
for all α, β, γ ∈ ω1 \ {0}:

(1) Xα ⊆ Qα and |Xα| = ω;
(2) Xα is an independent subset of K

α under the natural embedding
Qα →֒ Kα;

(3) π
β
α(Xβ) = Xα whenever α < β, where π

β
α:K

β → Kα is the projection;
(4) x(α) ≤ x(β) whenever x ∈ Xγ and α < β < γ;
(5) if x ∈ Xα+1 and x(α) = q, then (x, q) ∈ Xα+2;
(6) if α + 1 < γ, x ∈ Xγ and x(α) = x(α + 1), then x(β) = x(α) for each β
satisfying α < β < γ;

(7) if α < β, x ∈ Xα+1 ∩ In(α + 1), q, r ∈ Q and x(α) ≤ q < r, then there
exists y ∈ Xβ+1 ∩ In(β + 1) such that y|α+1 = x and q < y(β) < r;

(8) if α < γ and γ is limit, then for every x ∈ Xα+1 ∩ In(α + 1) and q ∈ Q

satisfying x(α) < q, there exists y ∈ Xγ ∩ In(γ) such that y|α+1 = x and
y(β) < q for each β < γ;

(9) if γ > 0 is limit, then every x ∈ Xγ is bounded, i.e., there exists q ∈ Q

such that x(α) ≤ q for each α < γ.

Note that if x ∈ Qα and q ∈ Q, then we write y = (x, q) instead of the usual x⌢q
to denote the element y ∈ Qα+1 defined by y|α = x and y(α) = q.
Put X1 = Q. Clearly (1)–(9) are fulfilled. Suppose that for some γ with

1 < γ < ω1, we have defined a sequence {Xα : 0 < α < γ} satisfying (1)–(9). Let
us consider the following three cases.

I. Suppose that γ = α+2 for some α < ω1. Put β = α+1. By (1), the set Xβ

is countable, so we can find a disjoint family {Sx : x ∈ Xβ} of subsets of Q such
that each Sx is dense in Q with respect to the interval topology on Q. Then we
put Zβ = Xβ ∩ In(β) and

Xβ+1 = {(x, x(α)) : x ∈ Xβ} ∪ {(x, q) : x ∈ Zβ , q ∈ Sx, x(α) < q}.

It is easy to see that the sequence {Xα : α ≤ β + 1} satisfies (1) and (3)–(9),
so it remains to verify (2). Assume to the contrary that the set Xβ+1 contains

elements satisfying a non-trivial linear relation in Kβ+1, say,

(2.1) k1(x1, q1) + k2(x2, q2) + · · ·+ kn(xn, qn) = 0β+1,

where k1, . . . , kn ∈ Z\{0} and (x1, q1), . . . , (xn, qn) are distinct elements of Xβ+1
(so that x1, . . . , xn ∈ Xβ and q1, . . . , qn ∈ Q). We can assume without loss of
generality that q1 is minimal among q1, . . . , qn. It is easy to see that (2.1) must
contain an expression

(2.2) (y1, r1)− (y2, r2) + (y3, r3)− (y4, r4) + . . .+ (y2s−1, r2s−1)− (y2s, r2s)



Complete ℵ0-bounded groups 555

with (yj , rj) ∈ {(x1, q1), . . . , (xn, qn)} for each j ≤ 2s, such that (y1, r1) =
(x1, q1), (yj , rj) 6= (yj+1, rj+1) for j = 1, . . . , 2s − 1, and r1 = r2, y2 = y3,
r3 = r4, . . . , r2s−1 = r2s, y2s = y1. In particular, the sum (2.2) is equal to the

neutral element of Kβ+1.
Clearly, (yi, ri) ∈ Xβ+1, so yi(α) ≤ ri for each i = 1, . . . , 2s. Since (y1, r1) 6=

(y2, r2) and r1 = r2, we have y1 6= y2. From Sy1 ∩ Sy2 = ∅ and our definition of
Xβ+1 it follows that either y1(α) = r1 or y2(α) = r2. It suffices to consider the
case y2(α) = r2 (one reduces the first case to the second one by changing the signs
in (2.2) and the enumeration of summands). Then y1(α) ≤ r1 = r2 = y2(α). We
claim that

(2.3) r2i = y2i(α) = y2i+1(α) < r2i+1 for i = 1, . . . , s − 1.

Indeed, from y2 = y3 it follows that r2 6= r3, and by the minimality of r1 = r2,
r2 < r3. So, r2 = y2(α) = y3(α) < r3, which implies (2.3) for i = 1. Further,
from r3 = r4 it follows that y3 6= y4, and since Sy3 ∩ Sy4 = ∅, we conclude
that either y3(α) = r3 or y4(α) = r4. The first case is impossible, so we have
y4(α) = r4. Again, from y4 = y5 it follows that r4 6= r5. Combining this with
r4 = y4(α) = y5(α) ≤ r5, we infer that r4 < r5, that is, (2.3) holds for i = 2.
Continuing this way, one proves (2.3) for each i ≤ s − 1.
Finally, r2s−1 = r2s implies that y2s−1 6= y2s. Since Sy2s−1 ∩ Sy2s = ∅, we

have either y2s−1(α) = r2s−1 or y2s(α) = r2s. The first case is impossible in
view of (2.3) with i = s − 1, so y2s(α) = r2s. Then the equality y2s = y1 implies
that y2s(α) = y1(α) ≤ r1, and hence r2s ≤ r1. However, (2.3) and the equalities
r2i−1 = r2i for i = 1, . . . , s together imply that

r1 = r2 < r3 = r4 < · · · < r2s−1 = r2s ≤ r1,

which is a contradiction. This proves that the set Xβ+1 is independent.

II. Suppose that γ = α+1, where α is a limit ordinal. In this case the definition
of Xγ is a little bit more complicated. Let Yα = Xα \ In(α). If x ∈ Yα, then
there exists µ < α such that x(µ) = x(µ+ 1). Then by (6), x(ν) = x(µ) for each
ν satisfying µ < ν < α. Denote this special value x(µ) of x by c(x).
As in the previous case, there exists a disjoint family {Sx : x ∈ Xα} of dense

subsets of the space Q endowed with the interval topology. We put Zα = Xα ∩
In(α) and

Xα+1 = {(x, c(x)) : x ∈ Yα} ∪ {(x, q) : x ∈ Zα, q ∈ Sx,

x(ν) < q for each ν < α}.

A routine verification shows that the family {Xν : ν ≤ α + 1} satisfies (1) and
(4)–(9). Since every x ∈ Xα is bounded by (9), we also have (3) at the step α+1.
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Therefore, we only have to check (2). If (2) fails to hold at step α + 1, we can
find, as in case I, an expression

(2.4) (y1, r1)− (y2, r2) + (y3, r3)− (y4, r4) + . . .+ (y2s−1, r2s−1)− (y2s, r2s)

with (yi, ri) ∈ Xα+1 for each i ≤ 2s, such that (yi, ri) 6= (yi+1, ri+1) if 1 ≤ i ≤
2s − 1 and r1 = r2, y2 = y3, r3 = r4, . . . , r2s−1 = r2s, y2s = y1. In particular,
the sum in (2.4) is equal to the neutral element of Kα+1. Again, we can assume
that r1 ≤ ri for each i ≤ 2s.
If i ≤ 2s and yi /∈ In(α), there exists µi < α such that yi(µi) = yi(µi + 1),

and hence (6) implies that yi(µi) = c(yi) = ri. Choose an ordinal ν < α such
that µi < ν for each i ≤ 2s with xi /∈ In(α) and zi = πα

ν+1(yi) 6= πα
ν+1(yj) = zj

whenever yi 6= yj , 1 ≤ i, j ≤ 2s. Our choice of ν implies that the following
conditions hold for each i ≤ 2s:

(i) if zi /∈ In(ν + 1), then zi(ν) = ri;
(ii) if zi ∈ In(ν + 1), then zi(ν) < ri;
(iii) for every j ≤ s, either z2j−1(ν) = r2j−1 or z2j(ν) = r2j .

Indeed, if zi /∈ In(ν+1), then yi /∈ In(α), and hence zi(ν) = yi(ν) = c(yi) = ri by
the choice of ν. This gives (i). Similarly, if zi ∈ In(ν+1), then yi ∈ Xα∩ In(α) =
Zα. Since (yi, ri) ∈ Xα+1, our definition of Xα+1 implies that zi(ν) = yi(ν) < ri.
This proves (ii). To verify (iii), assume that z2j−1(ν) 6= r2j−1 and z2j(ν) 6= r2j
for some j ≤ s. Then (i) implies that z2j−1, z2j ∈ In(ν + 1), which in turn gives
y2j−1, y2j ∈ In(α) ∩ Xα = Zα. Since (y2j−1, r2j−1) and (y2j , r2j) are elements
of Xα+1, our definition of Xα+1 implies that r2j−1 ∈ Sy2j−1 and r2j ∈ Sy2j .
By assumption, r2j−1 = r2j and (y2j−1, r2j−1) 6= (y2j , r2j), so y2j−1 6= y2j .
However, rj ∈ Sy2j−1 ∩ Sy2j 6= ∅, which is a contradiction. This proves (iii).
Finally, consider the sum

(z1, r1)− (z2, r2) + (z3, r3)− (z4, r4) + . . .+ (z2s−1, r2s−1)− (z2s, r2s)

and apply the same argument as in case I along with (i)–(iii) to show that

r1 = r2 < r3 = r4 < · · · < r2s−1 = r2s ≤ r1,

which gives a contradiction and finishes the verification of (2).

III. Suppose that γ is a limit ordinal. Consider the family

Fγ = {(x, q) : x ∈ Xα+1 ∩ In(α+ 1), q ∈ Q, α < γ, x(α) < q}.

For every pair (x, q) ∈ Fγ with x ∈ Xα+1, we shall define a function y ∈ Qγ

satisfying the following conditions for each β < γ:

(iv) y ∈ In(γ) and π
γ
α+1(y) = x;

(v) π
γ
β(y) ∈ Xβ ;

(vi) y(β) < q.
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For a given pair (x, q) ∈ Fγ , choose a strictly increasing sequence {βn : n ∈ ω} ⊆ γ
such that β0 = α and γ = limn∈ω βn. Let also {qn : n ∈ ω} be a strictly increasing
sequence in Q such that q0 = x(α) and qn < q for each n ∈ ω. Using (7), we define
by induction a sequence {yn : n ∈ ω} such that y0 = x, yn ∈ Xβn+1 ∩ In(βn+1),

qn < yn(βn) < qn+1 and πβn+1
βm+1

(yn) = ym whenever m < n < ω. Then there

exists a unique element y ∈ Qγ such that πγ
βn+1

(y) = yn for each n ∈ ω. An easy

verification shows that y satisfies (iv)–(vi). Denote this element y ∈ Qγ by y(x, q).
In addition, if α < γ and x ∈ Xα+1, denote by x̃ the element of Qγ defined by
x̃|α+1 = x and x̃(ν) = x(α) for each ν satisfying α < ν < γ. It remains to put

Xγ = {y(x, q) : (x, q) ∈ Fγ} ∪ {x̃ : x ∈ Xα+1 for some α < γ}.

A direct verification that the family {Xβ : β < γ} satisfies (1)–(9) is left to the
reader. This finishes our recursive construction of the family {Xα : α < ω1}.

Let X be the inverse limit of the system {Xα, πβ
α : α < β < ω1}. In other

words, X consists of all x ∈ Qω1 such that πα(x) ∈ Xα for each α < ω1. From (4)
it follows that every x ∈ X is a non-decreasing function from ω1 to Q. Since
Q is countable, (6) implies that x is eventually constant, that is, there exists an
ordinal α < ω1 such that x(β) = x(α) for each β with α < β < ω1. In what
follows we identify Qω1 with the corresponding subspace of Kω1 . We claim that
X has the following properties:

(d) πβ(X) = Xβ for each β < ω1;
(e) X is a linearly independent subset of Kω1 ;
(f) X is closed in (Kω1)ω;
(g) X is not Lindelöf.

First, we check (d). Suppose that β < ω1 and x ∈ Xβ . By (3), π
α+1
α (Xα+1) = Xα

for each α < ω1, so we can assume that β = α + 1. Use (5) and (6) to conclude
that the function y ∈ Qω1 defined by y(ν) = x(ν) if ν ≤ α and y(ν) = x(α) if
α < ν < ω1, belongs to X . Clearly, πβ(y) = x, which gives (d).
If x1, . . . , xn is a finite subset of pairwise distinct elements of X , one can

find α < ω1 such that the elements πα(x1), . . . , πα(xn) of Xα are also pairwise
distinct. By (2), the set Xα is independent, so (e) is immediate.
Since Qω1 is closed in (Kω1)ω, (f) will follow if we show that X is closed in

(Qω1)ω, where Q carries the discrete topology. Suppose that x ∈ X for some
x ∈ (Qω1)ω . Note that the projection πα: (Q

ω1)ω → (Qα)ω onto the discrete
space (Qα)ω is continuous for each α < ω1. Therefore, πα(x) ∈ Xα = Xα for all
α < ω1. Since X is the inverse limit of the sets Xα’s, we conclude that x ∈ X .
This proves (f).
Finally, for every x ∈ X take the minimal ordinal α = α(x) < ω1 such that

x(α) = x(α + 1), and define

Ux = {y ∈ Qω1 : y(α) = y(α+ 1)}.
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Then Ux is an open neighborhood of x in the Tychonoff topology on Qω1 (we
recall that Q is discrete). Clearly, U = {Ux : x ∈ X} is an open cover of X in
(Qω1)ω, but no countable subfamily of U covers X . Indeed, let V = {Ux : x ∈ C}
be a subfamily of U , where C ⊆ X is countable. Then there exists a limit ordinal
γ < ω1 such that α(x) < γ for each x ∈ C. By (8), we can find y ∈ Xγ ∩ In(γ),
and (d) implies the existence of an element z ∈ X such that πγ(z) = y. It is clear
that z ∈ X \

⋃
V , so (g) holds.

Our final step is to show that the subgroup H of Kω1 generated by X is
closed in (Kω1)ω . Suppose that y ∈ H for some y ∈ Kω1 \ {0}. Since the
projection πα: (K

ω1)ω → (Kα)ω onto the discrete group (K
α)ω is continuous, we

have πα(y) ∈ πα(H) = πα(H) = 〈Xα〉 for each α < ω1. Therefore, if α < ω1 and
πα(y) 6= 0α, we can find non-zero integers kα,1, . . . , kα,nα and pairwise distinct
elements xα,1, . . . , xα,nα ∈ Xα such that

(2.5) πα(y) = kα,1xα,1 + · · ·+ kα,nαxα,nα .

Suppose that α < β < ω1 and let

(2.6) πβ(y) = kβ,1xβ,1 + · · ·+ kβ,nβ
xβ,nβ

be the representation of πβ(y) corresponding to the ordinal β. Then

(2.7) kα,1xα,1 + · · ·+ kα,nαxα,nα = kβ,1π
β
α(xβ,1) + · · ·+ kβ,nβ

πβ
α(xβ,nβ

).

Since xα,i and π
β
α(xβ,j) with i ≤ nα and j ≤ nβ are elements of the independent

set Xα, we conclude that some of π
β
α(xβ,j) are equal to 0α while the non-trivial

part on the right-hand part of (2.7) coincides (after possible cancellations) with
its left-hand part up to a permutation. This implies, in particular, that kα =∑nα

i=1 |kα,i| ≤
∑nβ

j=1 |kβ,j | = kβ . Therefore, the sequence {kα : α < ω1} stabilizes,

i.e., there exist an ordinal ν < ω1 and a positive integer k such that kα = k for
each α with ν ≤ α < ω1.
Suppose now that the ordinals α and β in (2.7) satisfy ν ≤ α < β < ω1. Then

kα = k = kβ . Since Xα is independent, we have nα = nβ = n and, in addition,

there exists a permutation σ = σβ,α of the set {1, . . . , n} such that πβ
α(xβ,i) =

xα,σ(i) and kβ,i = kα,σ(i) for each i = 1, . . . , n. Since the representation (2.5) is

unique for each α < ω1, we must have

(2.8) σβ,α ◦ σγ,β = σγ,α whenever ν ≤ α < β < γ < ω1.

For every α > ν, use σα,ν to renumerate the elements xα,1, . . . , xα,n in order to
have xν,i = πα

ν (xα,i) and kν,i = kα,i for each i = 1, . . . , n. Then (2.8) implies
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that xα,i = π
β
α(xβ,i) and kα,i = kβ,i = ki whenever ν ≤ α < β < ω1 and

1 ≤ i ≤ n. Since X is the inverse limit of Xα’s, for every i = 1, . . . , n there exists
xi ∈ X such that πα(xi) = xα,i for all α < ω1. We conclude, therefore, that
y = k1x1 + · · · + knxn ∈ H . This proves that H is closed in (Kω1)ω . In other
words, H satisfies (a) announced in the beginning of the proof.
From (f) it follows that X is closed in H and by (g), the group H is not

Lindelöf. This implies (b). In addition, by (d) and (1), the group

πα(H) = πα(〈X〉) = 〈πα(X)〉 = 〈Xα〉

is countable for each α < ω1, which gives (c). So, H satisfies (a)–(c), and hence
it is a complete ℵ0-bounded P -group which fails to be R-factorizable. �

Note that the complete group H in Theorem 2.4 cannot be embedded as a
subgroup into a Lindelöf topological group — otherwise H would be closed in
such a group, hence Lindelöf. We conjecture that R-factorizability has a stronger
impact on topological groups:

Problem 1. Is every R-factorizable P -group G topologically isomorphic to a
subgroup of a Lindelöf group?

The combination of R-factorizability and completeness looks even more promis-
ing:

Problem 2. Must every complete R-factorizable P -group be Lindelöf?

We do not know the answer to the following question related to Lemma 2.3:

Problem 3. Let G be a complete topological group. Is then the group (G)ω
necessarily complete?
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