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Complete Np-bounded groups need not be R-factorizable

M.G. TKACHENKO

Abstract. We present an example of a complete RXg-bounded topological group H which
is not R-factorizable. In addition, every Gg-set in the group H is open, but H is not
Lindelof.
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1. Introduction

A topological group G is called R-factorizable ([5], [6]) if for every continuous
function g: G — R, one can find a continuous homomorphism p: G — H onto a
second countable topological group H and a continuous function h: H — R such
that ¢ = h op. The class of R-factorizable groups includes all totally bounded
groups, all Lindel6f groups, arbitrary subgroups of Lindelof X-groups ([5]), and
many more.

By [6, Proposition 5.3], every R-factorizable group G is Wg-bounded, i.e., G
can be covered by countably many translates of any neighborhood of the identity.
The notion of an Rg-bounded group was introduced in [1] and since then it has
been intensively studied. It is known that Ng-bounded groups need not be R-
factorizable ([4]). However, all examples of Rg-bounded not R-factorizable groups
constructed so far are essentially incomplete, being proper dense subgroups of
special Ng-bounded groups.

In this note we present an example of a complete Ng-bounded group H which
fails to be R-factorizable. In addition, H is a P-group, i.e., every countable
intersection of open sets in H is open.

1.1 Notation and terminology. If A is a subset of a group G, we use (A) to
denote the subgroup of G generated by A. We say that A is independent in an

Abelian group G if a linear combination kiay + - -+ + kpan with k1,... ,kn € Z
and pairwise distinct ay,...,an € A is equal to the neutral element of G iff
ki =-=kp=0.

2. The example

Given a topological group L, we denote by (L), the topological group with
the underlying group L (and the same group operation) whose base consists of
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Gg-sets in L. It clear that the identity map idy: (L), — L is continuous, and idj,
is a homeomorphism iff L is a P-group.
Our construction is based on three simple lemmas.

Lemma 2.1. Let H be an R-factorizable P-group. Then the image f(H) is
countable for each continuous real-valued function f on H.

PRrOOF: Consider a continuous function f: H — R. Since H is R-factorizable,
one can find a continuous homomorphism 7: H — K onto a second countable
topological group K and a continuous function g: K — R such that f = g o 7.
Denote by K, the group K endowed with the discrete topology. Since H is a P-
group, the homomorphism 7: H — K, remains continuous. In addition, the group
H is Ng-bounded by [6, Proposition 5.3]. Therefore, K is Rg-bounded being a
continuous homomorphic image of H. It is easy to see that every Ng-bounded
discrete group is countable, so f(H) = g(Ky) is also countable. (Il

Lemma 2.2. The following conditions are equivalent for a P-group H with
w(H) < Nyp:

(1) H is R-factorizable;

(2) H is Lindeldf.

PRrROOF: It is well known that (2) implies (1) for an arbitrary topological group
(see [5, Assertion 1.1] or [3, Assertion 10]). Let H be a P-group of weight N1. Then
H is zero-dimensional and paracompact ([7]). Suppose that H is not Lindeldf.
Then there exists a disjoint cover v = {Uy : @ < w1} of H by non-empty open
sets Uy. Let {ro : @ < wi} be a sequence of pairwise distinct real numbers. Define
a function f: H — R by f(z) = rq if # € Uy, @ < w1. Then f is continuous and
|f(H)| > w, so Lemma 2.1 implies that H is not R-factorizable. O

Lemma 2.3. Let G = [];c; G; be the direct product of discrete groups endowed
with the Tychonoff topology. Then the group (G). is complete.

ProOOF: For every countable subset J of I, put Gj = HjeJ G. Then the projec-
tion 7 5: (G)w — Gy onto the discrete group G ; is continuous and open. Denote
by e the neutral element of G ;.

Let ¢ be a Cauchy filter in (G),. If J is a countable subset of I, then there
exists an element Fy € £ such that FJ_1 -Fy C 71';1(8]). Pick a point ay € Fj.
Clearly, 7 j(z) = ay for each € Fj. In addition, if K is a countable subset of T
and J C K, then the corresponding point ay € F satisfies 7r§<(aK) = aj, where
7TJK: G — G is the projection. Indeed, if F € £ and Flzl Fg C wf}l (ex), then
i () = ap for each z € F. Choose a point z € Fj N Fg. Then 75(2) = ay
and 7 (2) = ag, whence it follows that

ay=my(z) = (r(2) = 7 (ax)-
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We conclude, therefore, that there exists a point a € G such that 7;(a) = ay for
every countable set J C I. It remains to verify that the filter £ converges to a
in (@)w.

Let U be a neighborhood of a in (G),,. Then there exists a countable set J C I
such that V = 7T;17TJ(CL) C U. Note that my(z) = ay = wy(a) for each x € Fy,
so F; CV C U. This proves that £ converges to a. Thus, the group (G), is
complete. ([

Let Q be the set of rationals. Denote by K the free Abelian group A(Q)
endowed with the discrete topology. It is clear that the group K is countable. We
shall use the additive notation for the group operations in K and K“*.

Theorem 2.4. There exists a closed Rg-bounded subgroup H of (K“!),, which
fails to be Lindel6f. In particular, H is a complete Rg-bounded P-group which is
not R-factorizable.

PROOF: Our aim is to define a subgroup H of G = (K“!),, satisfying the following
conditions:

(a) H is closed in Gj
(b) H is not Lindelof;
(¢) |ma(H)| < w for each o < wy, where mo: K“1 — K is the projection.

Suppose that the subgroup H of G satisfying (a)—(c) has been defined. Note
that G is a P-group, and so is H. The group G is complete by Lemma 2.3, so (a)
implies that H is also complete. Let us verify that Ng-boundedness of H follows
from (c). Suppose that U is a neighborhood of the neutral element of H. Then
there exists a < wy such that H N7, 1(0,) C U, where 0, is the neutral element
of K. By (c), there exists a countable subset A of H such that 7 (A) = 7o (H).
Then U + A = H, and hence H is Rp-bounded. In addition, (c) implies that
w(H) < Nj. Indeed, the family

B={Hnn'(y):y€nma(H), a <w}

is a base for H and |B| < X;. Finally, H is P-group with w(H) < X1, so (b) and
Lemma 2.2 together imply that H is not R-factorizable.

Our first step is to define a closed non-Lindel6f subset X of Q“! which generates
a closed subgroup H = (X) of G once Q“* is identified with the corresponding
subset of K“1. Our method of defining X is a “reminiscence” of the construction
of an Aronszain tree given in [2]. In what follows we use the symbol < to denote
the usual linear order on Q. For every a < w1, denote by In(«) the subset of Q%
consisting of all strictly increasing functions, that is,

In(a) ={z e Q%:z(v) <z(p) if v <p<a}l.
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Let us construct a family {X, : 0 < o < wy} satisfying the following conditions
for all o, 8,7 € w1 \ {0}:

(1) Xo € Q% and | Xy| = w;

(2) X, is an independent subset of K under the natural embedding

Q@ K

wg(Xg) = X, whenever a < 3, where wg: KB — K% is the projection;

z(a) < x(f) whenever x € Xy and a < 8 < 7;

if x € Xq41 and z(«) = q, then (z,q) € Xqt2;

ifa+1<7,2e€ Xy and z(a) = z(a+ 1), then 2(3) = z(a) for each

satisfying a < 8 < 7;

(MNifa< P, ze Xqr1NIn(a+1), ¢,r € Q and z(a) < g < r, then there
exists y € Xgq1 NIn(B + 1) such that ylo11 =2 and ¢ < y(B) < r;

(8) if & < v and +y is limit, then for every x € Xo41 NIn(av+1) and ¢ € Q
satisfying z(a) < ¢, there exists y € X, NIn(y) such that y|o4+1 = = and
y(B) < ¢ for each 3 < ~;

(9) if v > 0 is limit, then every € X is bounded, i.e., there exists ¢ € Q
such that x(a) < ¢ for each a < 7.

NSNS S
O O s W
D —

Note that if z € Q“ and ¢ € Q, then we write y = (z, ¢) instead of the usual 2 ¢
to denote the element y € Q**+! defined by y|o = 2 and y(a) = q.

Put X3 = Q. Clearly (1)-(9) are fulfilled. Suppose that for some v with
1 < v < wi, we have defined a sequence {X, : 0 < a < 7} satisfying (1)—(9). Let
us consider the following three cases.

I. Suppose that v = o +2 for some a < wy. Put 8 = a+1. By (1), the set X
is countable, so we can find a disjoint family {S; : x € X} of subsets of Q such
that each Sy is dense in Q with respect to the interval topology on Q. Then we
put Zg = XgNIn(3) and

X1 =A{(z,2(a)) : v € Xg} U{(z,q) : v € Z, q € Sz, x(a) <q}.
It is easy to see that the sequence {X, : a < 4+ 1} satisfies (1) and (3)—(9),

so it remains to verify (2). Assume to the contrary that the set X, contains
elements satisfying a non-trivial linear relation in K ptL say,

(2.1) k1(w1,q1) + ka(w2,q2) + -+ + kn(2n, gn) = O0g41,

where k1,... ,kp € Z\{0} and (21,q1), .. , (Tn, gn) are distinct elements of X g ¢
(so that z1,...,zy, € Xg and q1,...,qn € Q). We can assume without loss of
generality that ¢ is minimal among q1,... ,qn. It is easy to see that (2.1) must

contain an expression

(2.2)  (y1,71) — (y2,72) + (y3,73) — (Y4, 74) + .. + (Y25—1,725—1) — (Y25, 72s)
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with (y;,7;) € {(z1,q1),-..,(Tn,qn)} for each j < 2s, such that (y1,r1) =
(Ilaql)v (y]aT]) 7£ (yj-i-lvrj-i-l) for J=1..,2s -1, and 71 = 7o, Y2 = Y3,
T3 =T4, ..., T25—1 = T2s, Y25 = y1. In particular, the sum (2.2) is equal to the
neutral element of KA1,

Clearly, (y;,7i) € Xg41, so y;(a) < for each i =1,...,2s. Since (y1,71) #
(y2,7r2) and r1 = ro, we have y1 # y2. From Sy, N Sy, = 0 and our definition of
Xpg41 it follows that either y;(a) = ry or y2(a) = ra. It suffices to consider the
case ya(a) = r2 (one reduces the first case to the second one by changing the signs
in (2.2) and the enumeration of summands). Then y1(a) < r; =192 = ya(a). We
claim that

(2.3) r9; = ygi(a) = y2i+1(a) < T2i41 fori=1,...,s—1.

Indeed, from yo = y3 it follows that ro # 73, and by the minimality of r; = ro,
r9 < r3. So, ro = ya(a) = y3(a) < r3, which implies (2.3) for ¢ = 1. Further,
from rg = r4 it follows that y3 # ya, and since Sy; N Sy, = 0, we conclude
that either y3(a) = r3 or y4(a) = r4. The first case is impossible, so we have
y4(a) = rq4. Again, from y4 = y5 it follows that r4 # r5. Combining this with
rg = ya(a) = ys(a) < r5, we infer that r4 < rs5, that is, (2.3) holds for i = 2.
Continuing this way, one proves (2.3) for each i < s — 1.

Finally, ros—1 = ros implies that yos—1 # y2s. Since Sy,,_; N Sy,, = 0, we
have either yos_1(a) = ros—1 or yas(a) = rog. The first case is impossible in
view of (2.3) with ¢ = s — 1, so yas(a) = r25. Then the equality yos = y1 implies
that yas(a) = y1() < 71, and hence rog < r1. However, (2.3) and the equalities

ro;_1 =r9; for i =1,... s together imply that
rp=rg <13 =74 <---<Trge_1] =125 <71,

which is a contradiction. This proves that the set X3¢ is independent.

II. Suppose that v = a+1, where « is a limit ordinal. In this case the definition
of X is a little bit more complicated. Let Y, = X4 \ In(a). If x € Yy, then
there exists u < a such that x(1) = z(u + 1). Then by (6), x(v) = z(u) for each
v satisfying u < v < . Denote this special value z(u) of x by ¢(x).

As in the previous case, there exists a disjoint family {S; : © € X4} of dense
subsets of the space Q endowed with the interval topology. We put Z, = X4 N
In(«) and

Xot1 ={(z,c(2)) :x € Yo} U{(z,q) : @ € Za, q € Sa,
x(v) < q for each v < a}.

A routine verification shows that the family {X, : v < o + 1} satisfies (1) and
(4)—(9). Since every xz € X, is bounded by (9), we also have (3) at the step a+ 1.
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Therefore, we only have to check (2). If (2) fails to hold at step o + 1, we can
find, as in case I, an expression

(2.4)  (y1,71) = (y2,72) + (y3,73) — (Ya,74) + ... + (Y25—-1,725—1) — (Y25, 725)

with (y;,7;) € Xq41 for each i < 2s, such that (y;,7;) # (Yir1,7i41) if 1 <@ <
2s—land ry =19, y2 =Yy3, r3 =714, ..., T2s—1 = T2s, Y25 = Yy1. In particular,
the sum in (2.4) is equal to the neutral element of K+, Again, we can assume
that r; < r; for each i < 2s.

If i« < 2s and y; ¢ In(a), there exists p; < « such that y;(1;) = yi(ps + 1),
and hence (6) implies that y;(u;) = ¢(y;) = r;. Choose an ordinal v < « such
that p; < v for each i < 2s with x; ¢ In(a) and 2; = 75, 1 () # 7y 1(y5) = 25
whenever y; # y;, 1 < i,j < 2s. Our choice of v implies that the following
conditions hold for each i < 2s:

(i) if z; ¢ In(v + 1), then z;(v) = ry;

(ii) if z; € In(v + 1), then z(v) < ry;

(iii) for every j < s, either z9;_1(v) = 11 or 295(v) = r2;.

Indeed, if z; ¢ In(v+ 1), then y; ¢ In(«), and hence z;(v) = y;(v) = ¢(y;) = r; by
the choice of v. This gives (i). Similarly, if z; € In(v +1), then y; € XoNIn(a) =
Zg. Since (y;,77) € Xa+1, our definition of X1 implies that z;(v) = y;(v) < ;.
This proves (ii). To verify (iii), assume that z9;_1(v) # 72;—1 and 29;(v) # ra;
for some j < s. Then (i) implies that z9;_1,22; € In(v 4 1), which in turn gives
Y2j—1,y2; € In(a) N Xoo = Zo. Since (y2j-1,72j—1) and (y25,72;) are elements
of Xq41, our definition of X1 implies that 7951 € Sy,; , and roj € Sy,;.
By assumption, 791 = 79 and (y2j-1,72j-1) # (y25,72;), SO Y2j-1 # Y2;-
However, r; € Sy,; ; NSy, # (), which is a contradiction. This proves (iii).

Finally, consider the sum

(21,71) — (22,72) + (23,73) — (24,74) + ... + (225-1,725—1) — (225, 72s)
and apply the same argument as in case I along with (i)—(iii) to show that
rp=re<r3 =714 < <T251=T25 ST

which gives a contradiction and finishes the verification of (2).

III. Suppose that v is a limit ordinal. Consider the family
Fy=A{(z.q) 17 € Xoqy1 NIn(a+1), ¢€ Q, a <7, z(a) <q}.
For every pair (z,q) € Fy with € X441, we shall define a function y € Q7
satisfying the following conditions for each 8 < ~:
(iv) y € In(y) and 7, (y) = o
(v) () € X
(vi) y(B) <q.
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For a given pair (z,q) € F, choose a strictly increasing sequence {3, : n € w} C v
such that 8y = o and v = limpey, Bn. Let also {gn : n € w} be a strictly increasing
sequence in Q such that gg = z(«) and gy, < g for each n € w. Using (7), we define
by induction a sequence {y, : n € w} such that yo = x, yn € Xg,4+1 NIn(Bp +1),

an < yn(Bn) < qn+1 and wg::_ll(yn) = ym;m whenever m < n < w. Then there

exists a unique element y € Q7 such that wgn +1(y) = yp, for each n € w. An easy
verification shows that y satisfies (iv)—(vi). Denote this element y € Q7 by y(z, q).

In addition, if & < v and € X441, denote by Z the element of Q7 defined by
Zla+1 = = and Z(v) = z(«) for each v satisfying o < v < . It remains to put

Xy ={y(z,q) : (x,q) € Fy} U{Z : v € X441 for some o < 7}.

A direct verification that the family {Xg : 3 < v} satisfies (1)—(9) is left to the
reader. This finishes our recursive construction of the family {Xq : oo < w1}

Let X be the inverse limit of the system {X4, wg ta < f < wi} In other
words, X consists of all z € Q“? such that mq(z) € Xq for each o < wy. From (4)
it follows that every x € X is a non-decreasing function from wj to Q. Since
Q is countable, (6) implies that x is eventually constant, that is, there exists an
ordinal @ < wy such that z(8) = z(«a) for each § with o < f < wy. In what
follows we identify Q“! with the corresponding subspace of K“!. We claim that
X has the following properties:

(d) mg(X) = Xz for each 3 < wy;

(e) X is a linearly independent subset of K“*;

(f) X is closed in (K“')y;

(g) X is not Lindel6f.

First, we check (d). Suppose that 3 < w; and x € Xg. By (3), 70 (Xor1) = Xa
for each o < wy, so we can assume that 8 = o + 1. Use (5) and (6) to conclude
that the function y € Q“1 defined by y(v) = z(v) if v < « and y(v) = z(a) if
a < v < wi, belongs to X. Clearly, 73(y) = x, which gives (d).

If z1,...,xy is a finite subset of pairwise distinct elements of X, one can
find o < wy such that the elements 7 (21),... ,ma(2n) of X4 are also pairwise
distinct. By (2), the set X is independent, so (e) is immediate.

Since Q! is closed in (K“1),, (f) will follow if we show that X is closed in
(Q“1),,, where Q carries the discrete topology. Suppose that x € X for some
z € (Q“1),. Note that the projection mo: (Q“!), — (Q%), onto the discrete
space (Q%),, is continuous for each a < wy. Therefore, 7 (7) € Xo = X4 for all
a < wip. Since X is the inverse limit of the sets X, ’s, we conclude that = € X.
This proves (f).

Finally, for every € X take the minimal ordinal & = a(x) < w; such that
z(a) = z(a + 1), and define

Uz ={y € Q"' 1 y(a) = y(a+1)}.
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Then U, is an open neighborhood of z in the Tychonoff topology on Q“! (we
recall that Q is discrete). Clearly, Y = {U; : © € X} is an open cover of X in
(Q*1)y, but no countable subfamily of I covers X. Indeed, let V = {U, : x € C}
be a subfamily of U/, where C' C X is countable. Then there exists a limit ordinal
v < wy such that a(z) < ~ for each 2 € C. By (8), we can find y € Xy NIn(y),
and (d) implies the existence of an element z € X such that m(z) = y. It is clear
that z € X \ JV, so (g) holds.

Our final step is to show that the subgroup H of K“! generated by X is
closed in (K“!),. Suppose that y € H for some y € K“! \ {0}. Since the
projection mq: (K“1),, — (K%), onto the discrete group (K¢),, is continuous, we
have 7o (y) € mo(H) = o (H) = (Xq) for each o < wy. Therefore, if o < wy and

Ta(y) # O, we can find non-zero integers kq 1, ... ,ka,n, and pairwise distinct
elements 741,... ,Tan, € Xo such that
(2.5) Ta(y) = ka1Ta1 + -+ kanaTa,ng -

Suppose that a < § < w; and let
(2.6) m3(y) = kparp 1+ kg nsTng

be the representation of mg(y) corresponding to the ordinal 3. Then
(27) ka,lxa,l + 4+ ka,naxa,na = kﬁﬂﬂ-g(‘rﬁ,l) +- kﬁ,ngﬂ—g(‘rﬁ,ng)'

Since z; and ﬂ'g (rg,;) with i <nq and j < ng are elements of the independent

set X, we conclude that some of b (zg,5) are equal to O while the non-trivial
part on the right-hand part of (2.7) coincides (after possible cancellations) with
its left-hand part up to a permutation. This implies, in particular, that ko, =

e kol < Z;Lil |kg ;| = kg. Therefore, the sequence {kq : @ < w1} stabilizes,
i.e., there exist an ordinal ¥ < wj and a positive integer k such that ko, = k for
each a with v < a < wq.

Suppose now that the ordinals « and § in (2.7) satisfy v < a < 8 < wy. Then
ko = k = kg. Since X, is independent, we have no = ng = n and, in addition,
there exists a permutation o = o, of the set {1,...,n} such that ﬂ'g(:c@i) =
Too() and kg = kg o(;) for each i = 1,... n. Since the representation (2.5) is
unique for each a < w1, we must have

(2.8) 08,0 00y 3 = 0y,a Whenever v < a <3<y <wi.

For every a > v, use 04, to renumerate the elements x4 1,... ,Zqn in order to
b b b
G . - ) - : :
have x,; = 7y (2q,;) and k,; = ko for each i = 1,... ,n. Then (2.8) implies
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that z,,; = wg(:vg,i) and ky; = kg; = k; whenever v < a < < wp and
1 <4 < n. Since X is the inverse limit of X,,’s, for every ¢ = 1,... ,n there exists
r; € X such that 7o (2;) = 2o, for all o < wi. We conclude, therefore, that
y = kix1 + -+ + knzy, € H. This proves that H is closed in (K“!),. In other
words, H satisfies (a) announced in the beginning of the proof.

From (f) it follows that X is closed in H and by (g), the group H is not
Lindel6f. This implies (b). In addition, by (d) and (1), the group

Ta(H) = 1 ((X)) = (1a(X)) = (Xa)

is countable for each o < w1, which gives (c). So, H satisfies (a)—(c), and hence
it is a complete Ng-bounded P-group which fails to be R-factorizable. O

Note that the complete group H in Theorem 2.4 cannot be embedded as a
subgroup into a Lindeldf topological group — otherwise H would be closed in
such a group, hence Lindel6f. We conjecture that R-factorizability has a stronger
impact on topological groups:

Problem 1. Is every R-factorizable P-group G topologically isomorphic to a
subgroup of a Lindelof group?

The combination of R-factorizability and completeness looks even more promis-
ing:
Problem 2. Must every complete R-factorizable P-group be Lindel6f?

We do not know the answer to the following question related to Lemma 2.3:

Problem 3. Let G be a complete topological group. Is then the group (G)u
necessarily complete?
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