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On the cardinality of functionally Hausdorff spaces

Alessandro Fedeli

Abstract. In this paper two new cardinal functions are introduced and investigated. In
particular the following two theorems are proved:
(i) If X is a functionally Hausdorff space then |X| ≤ 2fs(X)ψτ (X);
(ii) Let X be a functionally Hausdorff space with fs(X) ≤ κ. Then there is a subset S
of X such that |S| ≤ 2κ and X =

S
{clτθ(A) : A ∈ [S]≤κ}.
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A spaceX is said to be functionally Hausdorff if whenever x 6= y in X there is a
continuous real valued function f defined on X such that f(x) = 0 and f(y) = 1.
In the last years many results involving cardinal functions related to s (spread)

have been obtained by several authors (see e.g. [8], [9], [10], [12]).
In this paper we give a result on the bound of the cardinality of functionally

Hausdorff spaces using two new cardinal functions fs and ψτ related to s and
ψ respectively. Moreover we prove, for functionally Hausdorff spaces, a variant
of a well-known result on spread due to Shapirovskii ([11, Theorem 3], [4, Theo-
rem 5.1]).
We refer the reader to [1], [4] and [7] for notations and definitions not explicitly

given. χ(X), s(X) and ψ(X) denote respectively the character, the spread and
the pseudocharacter of a space X .
Let A be a subset of a space X :

(i) ([5], [6]) The τ -closure of A, denoted by clτ (A), is the set of all points x ∈ X
such that any cozero-set neighbourhood of x intersects A.

(ii) ([2]) The τθ-closure of A, denoted by clτθ(A), is the set of all points x ∈ X
such that clτ (V ) ∩A 6= ∅ for every open neighbourhood V of x.
For every X and every A ⊂ X we have A ⊂ clτθ(A) ⊂ clτ (A). It is clear that

if X is completely regular then A = clτθ(A) = clτ (A) for every A ⊂ X .

Definition 1. Let X be a space. The functional spread of X , denoted by fs(X),
is the smallest infinite cardinal number κ such that for every open family U of
X and every A ⊂

⋃
U there exist a V ∈ [U ]≤κ and a B ∈ [A]≤κ such that

A ⊂ clτθ(B) ∪
⋃
{clτ (V ) : V ∈ V}.
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Remark 2. Let U be an open cover of a space X , let s(X) ≤ κ. By a well-known

result of Shapirovskii it follows that there are a V ∈ [U ]≤κ and a A ∈ [X ]≤κ such
that X = A∪

⋃
V . Since s(Y ) ≤ s(X) for every subspace Y of X it easily follows

that fs(X) ≤ s(X). However the above inequality can be proper as the following

example shows. For every x ∈ R let Bx = {{x}∪B(x, 1n )∩Q : n ∈ N} and let X
be R with the topology generated by the neighbourhood system {Bx}x∈R. Then
X is a functionally Hausdorff space such that fs(X) = ω < s(X).

Definition 3. Let X be a functionally Hausdorff space and let x ∈ X . A family
of open neighbourhoods of x is said to be a τ -pseudobase for x if

⋂
{clτ (U) :

U ∈ U} = {x}. Let ψτ (x,X)= min {|U| : U is a τ -pseudobase for x} + ω, the
τ -pseudocharacter of X is defined as follows: ψτ (X)= sup {ψτ (x,X) : x ∈ X}.

Remark 4. It is obvious that for every Tychonoff space X we have ψτ (X) =
ψ(X). Moreover ψτ (X) ≤ χ(X) for every functionally Hausdorff space X . In fact
let x ∈ X and let Bx be a local base at x, we claim that

⋂
{clτ (B) : B ∈ Bx} = {x}.

Let us consider a point y ∈ X \ {x}, since X is functionally Hausdorff there is a
continuous mapping f : X → I such that f(x) = 0 and f(y) = 1. Let B ∈ Bx
such that B ⊂ f−1([0, 12 )), then clτ (B) ⊂ f−1([0, 12 ]). Hence y /∈ clτ (B).
The above inequality can be proper. Let τ be the euclidean topology on R and

let X be R with the topology σ = {V \ C : V ∈ τ, C ⊂ R and |C| ≤ ω}. Then X
is a functionally Hausdorff space such that ψτ (X) = ω < χ(X).

A relation between ψτ and fs is given in the following

Proposition 5. If X is a functionally Hausdorff space then ψτ (X) ≤ 2fs(X).

Proof: Let fs(X) = κ and x ∈ X . Since X is functionally Hausdorff then for
every y ∈ X \ {x} there are open sets Uy and Vy such that x ∈ Uy, y ∈ Vy and

clτ (Uy) ∩ clτ (Vy) = ∅. Since fs(X) = κ we can find A,B ∈ [X \ {x}]≤κ such
that X \ {x} ⊂ clτθ(A) ∪

⋃
{clτ (Vy) : y ∈ B}. Let C = {C ⊂ A : x /∈ clτ (C)},

for every C ∈ C take a cozero-set G(C) such that x ∈ G(C) and clτ (G(C)) ⊂
X \ clτ (C). Set A = {G(C) : C ∈ C}, B = {Uy : y ∈ B} and U = A ∪ B.
Clearly |U| ≤ 2κ. We claim that the family U of open neighbourhoods of x is a
τ -pseudobase for x. Let us take z ∈ X \ {x}. If z ∈

⋃
{clτ (Vy) : y ∈ B} then

there is an y ∈ B such that z /∈ clτ (Uy) ⊃
⋂
{clτ (U) : U ∈ U}. If z ∈ clτθ(A)

let Bz = {Bλ : λ ∈ Λ} be the family of all open neighbourhoods of z, choose a
point xλ ∈ clτ (Bλ ∩Vz)∩A for every Bλ ∈ Bz and set C = {xλ : λ ∈ Λ}. Clearly
C ⊂ A, z ∈ clτθ(C) ⊂ clτ (C) ⊂ clτ (Vz) and x /∈ clτ (C). Therefore C ∈ C and
z /∈ clτ (G(C)) ⊃

⋂
{clτ (U) : U ∈ U}. Hence

⋂
{clτ (U) : U ∈ U} = {x}. �

Theorem 6. If X is a functionally Hausdorff space then |X | ≤ 2fs(X)ψτ (X).

Proof: Let fs(X)ψτ (X) = κ, and for each x ∈ X let Vx be a τ -pseudobase for
x with |Vx| ≤ κ. Construct a sequence {Aα : α < κ+} of subsets of X and a
sequence of open collections {Vα : 0 < α < κ+} such that:
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(i) |Aα| ≤ 2κ for every α < κ+;
(ii) Vα = {V : V ∈ Vx, x ∈

⋃
β<αAβ}, 0 < α < κ+;

(iii) If W is a family of ≤ κ elements of Vα and Kλ, λ < κ, are subsets of⋃
β<α Aβ with |Kλ| ≤ κ and X 6=

⋃
λ<κ clτθ(Kλ) ∪

⋃
{clτ (W ) : W ∈ W}

then Aα \ (
⋃
clτθ(Kλ) ∪

⋃
{clτ (W ) :W ∈ W}) 6= ∅.

Let A =
⋃
α<κ+ Aα. It is enough to show that A = X . Suppose not and let

z ∈ X \ A. Let Vz = {Vλ : λ ∈ Λ}, |Λ| ≤ κ, since {z} =
⋂
{clτ (Vλ) : λ ∈ Λ} it

follows that X \ {z} =
⋃
{X \ clτ (V ) : λ ∈ Λ}.

For every λ ∈ Λ let Sλ = A ∩ (X \ clτ (Vλ)), and for every y ∈ Sλ let Uy ∈ Vy
such that z /∈ clτ (Uy). Since fs(X) ≤ κ there are Bλ, Cλ ∈ [Sλ]

≤κ such that
Sλ ⊂ clτθ(Cλ) ∪

⋃
{clτ (Uy) : y ∈ Bλ}.

Let B =
⋃
{Bλ : λ ∈ Λ}, hence A =

⋃
{Sλ : λ ∈ Λ} ⊂

⋃
{clτθ(Cλ) : λ ∈

Λ} ∪
⋃
{clτ (Uy) : y ∈ B} and z /∈

⋃
{clτθ(Cλ) : λ ∈ Λ} ∪

⋃
{clτ (Uy) : y ∈ B}

( clearly z /∈
⋃
{clτ (Uy) : y ∈ B}, moreover for every λ ∈ Λ Vλ is an open

neighbourhood of z such that clτ (Vλ) ∩ Cλ = ∅, so z /∈
⋃
{clτθ(Cλ) : λ ∈ Λ} ).

Choose α ∈ κ+ such that B ∪
⋃
{Cλ : λ ∈ Λ} ⊂

⋃
{Aβ : β ∈ α}. Now

X 6=
⋃
{clτθ(Cλ) : λ ∈ Λ} ∪

⋃
{clτ (Uy) : y ∈ B}, so by (iii) Aα \ (

⋃
{clτθ(Cλ) :

λ ∈ Λ} ∪
⋃
{clτ (Uy) : y ∈ B}) 6= ∅. Since A ⊂

⋃
{clτθ(Cλ) : λ ∈ Λ} ∪

⋃
{clτ (Uy) :

y ∈ B} we have a contradiction. �

Remark 7. The above theorem can be proved using elementary submodels (our
approach follows that of [13], [14], [3]). Let κ = fs(X)ψτ (X) and let τ and G be
the topology on X and the family of all cozero sets of X respectively. For every
x ∈ X let Bx be a τ -pseudobase for x such that |Bx| ≤ κ and let ψ : X → P(τ)
be the map defined by ψ(x) = Bx for every x ∈ X . Let M be an elementary
submodel such that |M| = 2κ, X, τ,G, ψ ∈ M andM is closed under κ-sequences.
Observe that for every x ∈ X ∩ M it follows that Bx ⊂ M. We claim that
X ⊂ M (and hence |X | ≤ 2κ). Suppose not, choose a point z ∈ X \ M and
let Bz = {Bλ : λ ∈ Λ}, |Λ| ≤ κ. Since {z} =

⋂
{clτ (Bλ) : λ ∈ Λ} it follows

that X \ {z} =
⋃
{X \ clτ (Bλ) : λ ∈ Λ}. Let Sλ = X ∩ M ∩ (X \ clτ (Bλ))

for every λ ∈ Λ. For every y ∈ Sλ let Uy ∈ M such that y ∈ Uy and z /∈
clτ (Uy). {Uy : y ∈ Sλ} is a family of open subsets of X such that Sλ ⊂

⋃
{Uy :

y ∈ Sλ}. Since fs(X) ≤ κ there are Aλ ∈ [Sλ]
≤κ and Vλ ∈ [Uλ]

≤κ such that
Sλ ⊂ clτθ(Aλ) ∪

⋃
{clτ (V ) : V ∈ Vλ}. Let Vλ =

⋃
{clτ (V ) : V ∈ Vλ}, observe

that V = {Vλ : λ ∈ Λ},A = {clτθ(Aλ) : λ ∈ Λ} ⊂ M and M is closed under
κ-sequences so V ,A ∈ M. Set V =

⋃
V and A =

⋃
A, by elementarity it follows

that A∪V ∈ M. Now z ∈ X \(A∪V ) so by elementarity there is some x ∈ X∩M
such that x /∈ A ∪ V . Since X ∩M ⊂ A ∪ V we have a contradiction.

Remark 8. The w-compactness degree of a space X , denoted by wcd(X), is
the smallest infinite cardinal κ such that for every open cover U of X there
is a V ∈ [U ]≤κ such that X =

⋃
{clτ (V ) : V ∈ V}. In [2] it is shown that

|X | ≤ 2wcd(X)χ(X) for every functionally Hausdorff space X . It is worth noting
that Theorem 6 can give a better bound than the above result. The space X
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in Remark 4 is a functionally Hausdorff space such that |X | = 2fs(X)ψτ (X) <

2wcd(X)χ(X).

A fundamental result of Shapirovskii on spread says that if X is a Hausdorff
space with s(X) ≤ κ then there is a subset S of X such that |S| ≤ 2κ and
X =

⋃
{A : A ∈ [S]≤κ}.

We conclude this paper with the following

Theorem 9. Let X be a functionally Hausdorff space with fs(X) ≤ κ. Then

there is a subset S of X such that |S| ≤ 2κ and X =
⋃
{clτθ(A) : A ∈ [S]≤κ}.

Proof: By Proposition 5 it follows that ψτ (X) ≤ 2
κ, so for every x ∈ X there

is a τ -pseudobase Bx for x such that Bx ≤ 2κ. Let τ and G be the topology on X
and the family of all cozero-sets of X respectively. Moreover let ψ : X → P(τ) be
the map defined by ψ(x) = Bx for every x ∈ X . Take an elementary submodelM
of cardinality 2κ such that X, τ,G, ψ ∈ M and which is closed under κ-sequences.
X ∩M is a subset of X with the required properties. Let x ∈ X , we may assume
that x /∈ X ∩M. We claim that there is a subset A of X such that |A| ≤ κ and
x ∈ clτθ(A). Observe that By ⊂ M for every y ∈ X∩M. Now for every y ∈ X∩M
take a By ∈ By (so By ∈ M) such that x /∈ clτ (By). Since fs(X) ≤ κ it follows

that there areA,B ∈ [X∩M]≤κ such thatX∩M ⊂ clτθ(A)∪
⋃
{clτ (By) : y ∈ B}.

Since A ∈ [M]≤κ and M is closed under κ-sequences it follows that A ∈ M
and hence clτθ(A) ∈ M. Moreover {clτ (By) : y ∈ B} ∈ [M]≤κ and again
{clτ (By) : y ∈ B} ∈ M. Therefore clτθ(A) ∪

⋃
{clτ (By) : y ∈ B} ∈ M, hence

X = clτθ(A) ∪
⋃
{clτ (By) : y ∈ B} and x ∈ clτθ(A). �
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