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A compact ccc non-separable space from

a Hausdorff gap and Martin’s Axiom

Murray Bell

Abstract. We answer a question of I. Juhasz by showing that MA +¬ CH does not
imply that every compact ccc space of countable π-character is separable. The space
constructed has the additional property that it does not map continuously onto Iω1 .
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1. Introduction

I. Juhasz [Ju71] has proven that MA(ω1) implies that every first countable
compact ccc space is separable. This has been extended by Shapirovskii [Sh72] by
replacing first countable with countable tightness. In Juhasz [Ju77], the question
is raised whether tightness can be replaced by π-character, i.e., whether MA(ω1)
implies that every compact ccc space of countable π-character is separable. We
will show not. We present our space as a space whose points are certain ideals
because this is the way that we found it; although the inclined reader should
easily be able to identify the base set as a rather simple subset of 2ω × κ (where
κ is a certain regular cardinal > ω1) using a Hausdorff gap as a parameter.

2. General theory of total ideal spaces

Let P =
⋃

A⊂ω

2A and put p � q if q extends p. Then (P,�) is a Dedekind

complete partially ordered set. A subset F of P is compatible if
⋃

F ∈ P . We
write p ‖ q if {p, q} is compatible and we write p ⊥ q if {p, q} is not compatible.
A subset Q of P is closed in P if whenever F is a finite compatible subset of Q,
then

⋃
F ∈ Q. For Q closed in P , a compatible and closed subset I of Q is called

a total ideal of Q if

(a)
⋃

I has domain all of ω and
(b) p ∈ I and q ∈ Q with q � p implies q ∈ I.

Let Fin = {p ∈ P : dom(p) is finite}. The parameter for these ideal spaces will
be a closed subset Q of P with Fin ⊂ Q. For such a Q, put X(Q) = {I ⊂ Q : I

is a total ideal of Q}. It is seen that X(Q) is a closed subspace of 2Q (where
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2 = {0, 1} has the discrete topology, 2Q has the product topology, and points
of X(Q) are identified with their characteristic functions). For B ⊂ Q, put
B+ = {I ∈ X(Q) : B ⊂ I} and B− = {I ∈ X(Q) : B ∩ I = ∅}. If B = {q}, then
we simply write q+ and q−. Then, since Q is closed, a base for X(Q) consists of
the clopen sets q+ ∩ B− where q ∈ Q and B is a finite subset of {r ∈ Q : q ≺ r}.
We note the helpful facts that

(a) q+ ⊂ r+ iff r � q,
(b) q+ ∩ r+ 6= ∅ iff q ‖ r iff [q−1(1) ∪ r−1(1)] ∩ [q−1(0) ∪ r−1(0)] = ∅,
(c) λ : X(Q) −→ 2ω given by λ(I) =

⋃
I is a continuous surjection.

Put Q = {q+ : q ∈ Q} and for each f ∈ 2ω, let Mf be the maximal total ideal
{q ∈ Q : q � f}.

Fact 2.1. Q is a T0-separating, binary π-base of X(Q). Hence, πw(X(Q)) =
cf(Q,�) = min{|D| : D ⊂ Q and ∀ q ∈ Q : ∃ d ∈ D : (q � d)}.
This was proved in [Be88] and [Be89]. T0-separating and binary are straight-

forward. The fact that Q is a π-base is crucial. The reader will see a proof of this
in Lemma 3.2 where we must prove a little bit more in order to achieve countable
π-character.
Now we show two facts which delineate the kinds of Souslinean examples that

we can get from these ideal spaces.

Fact 2.2. If X(Q) is σ-linked, then X(Q) is separable.
If X(Q) is σ-linked, then Q =

⋃

n<ω
Qn where for each n < ω, Qn is linked.

Since Q is binary, by choosing In ∈
⋂
Qn for each n < ω, we get that {In : n < ω}

is dense in X(Q).
We refer the reader to Todorcevic [To89] for the definition of the Open Colour-

ing Axiom OCA.

Fact 2.3 (OCA). If X(Q) is ccc, then X(Q) is separable.

For each q ∈ Q put Aq = q−1(1) and Bq = q−1(0). Then Aq and Bq are
disjoint subsets of ω. For each q ∈ Q let aq, bq be the characteristic functions of
Aq , Bq respectively. Let S = {(aq, bq) : q ∈ Q} have the subspace topology from

2ω × 2ω. Define a partition of [S]2 by {(aq, bq), (ar , br)} ∈ K0 iff q+ ∩ r+ = ∅
iff (Aq ∪ Ar) ∩ (Bq ∪ Br) 6= ∅. K0 is open in [S]

2. Since X(Q) is ccc, there
does not exist a K0-homogeneous subset of S which has cardinality ω1. Hence,
by OCA, Q =

⋃

n<ω
Qn where for every n and for every q,r in Qn, q

+ ∩ r+ 6= ∅,

i.e., {q+ : q ∈ Qn} is linked. We get that Q is σ-linked, hence Fact 2.2 implies
that X(Q) is separable.

Remarks: We have learned that Fact 2.3 follows from a more general result
Theorem 10.3∗ in Todorcevic and Farah [TF95]. We see from Fact 2.3, that if
we want a ccc but not separable space X(Q), then we must be in a model of
set theory contradicting OCA. We did this in [Be89] under CH producing a first
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countable Corson compact space which was ccc but did not have PropertyK. We
also point out that interesting separable spacesX(Q) of uncountable π-weight can
be achieved in every model of set theory. In [Be88], for each regular cardinal κ
for which there exists a κ-chain of clopen sets in βω \ω, we produced a separable
space X(Q) of π-weight κ that did not continuously map onto Iω1 . So Problem 2
in Shapirovskii [Sh93] has a negative answer. Referring to the last comment in
this paper, it seems that the “last word” in a large part of the theory of compact
spaces has not yet been spoken.

3. The Hausdorff gap space

Our example will use a (κ, κ) Hausdorff gap where ω1 < κ = cf(κ) ≤ c. Let
(Aα, Bα)α<κ be such that

Q1: A0 = ∅ = B0 and Aα ∪ Bα ⊂ ω

Q2: α < β ⇒ (Aα ⊂∗ Aβ and Bα ⊂∗ Bβ) (strict almost inclusion)

Q3: Aα ∩ Bα = ∅
Q4: ∄ A ⊂ ω such that ∀α < κ(Aα ⊂∗ A and Bα ⊂∗ ω \ A).

Put Q = {p ∈ P : ∃α < κ with dom(p) =∗ Aα ∪ Bα and p−1(1) =∗ Aα}
and let X = X(Q). For each q ∈ Q define δ(q) = the unique α < κ with
dom(q) =∗ Aα∪Bα and extend δ so that δ : X −→ κ by δ(I) = sup{δ(q) : q ∈ I}.
This definition of δ is well-defined because if I ∈ X , then by Q4, ∃α < κ such
that either Aα 6⊂∗ λ(I)−1(1) or Bα 6⊂∗ λ(I)−1(0), hence if δ(q) > α, then q /∈ I.

Lemma 3.1. X can be partitioned into c many closed Gδ subspaces each of

which is homeomorphic to an ordinal space [0, α] where |α| < κ. Thus, X is

Gδ-scattered (i.e., scattered in the Gδ topology) and so cannot map continuously
onto Iω1 .

Proof: Q1–Q4 allows us to easily identify, for each f ∈ 2ω, the closed Gδ sub-
space λ−1(f). If δ(Mf ) is an isolated ordinal or if δ(Mf ) is a limit ordinal which

is not attained (i.e., δ(Mf ) /∈ Mf ), then λ−1(f) ≈ the ordinal space [0, δ(Mf )].

If δ(Mf ) is a limit ordinal which is attained, then λ−1(f) ≈ [0, δ(Mf )+1]. Thus,
X is partitioned into c many closed Gδ ordinal subspaces and so every non-empty
subspace of X contains a relative Gδ-point. By a result of Shapirovskii [Sh80], X
cannot map continuously onto Iω1 . �

We now partition Q into horizontal sections. For each α < κ put Qα = {q ∈
Q : δ(q) = α} and put Qα = {q+ : q ∈ Qα}.

Lemma 3.2. For each α < κ, Qα is a π-base for {q+ ∩ B− : δ(q) ≤ α}, i.e., for
every q and finite B with q+ ∩ B− 6= ∅ and δ(q) ≤ α there exists r ∈ Qα with

r+ ⊂ q+ ∩ B−.

Proof: Assume q+ ∩ B− 6= ∅ and let δ(q) ≤ α. Choose I ∈ q+ ∩ B− and put
f = λ(I). Put A = {p ∈ B : p � f} and C = {p ∈ B : p � f}. For each
p ∈ A choose np ∈ dom(p) with p(np) 6= f(np). Put R = dom(q) ∪ {np : p ∈ A}
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and put r = f ↾ R. Since B ∩ I = ∅, for each p ∈ C and for each finite
H ⊂ ω we have that dom(p) 6⊂ R ∪ H . This implies that we can choose, for each
p ∈ C, an mp ∈ dom(p) \ R such that distinct p’s yield distinct mp’s. Let s have
domain {mp : p ∈ C} and satisfy that for each p ∈ C, s(mp) 6= p(mp). Then,

δ(r ∪ s) = δ(r) = δ(q) ≤ α and ∅ 6= (r ∪ s)+ ⊂ q+ ∩ B−. �

Lemma 3.3. X is ccc.

Proof: Assume not and choose an uncountable (meaning of cardinality ω1
throughout this proof) R ⊂ Q such that r 6= s in R ⇒ r ⊥ s. Since δ : Q −→ κ
is ≤ ω–to–1, choose an uncountable R′ ⊂ R such that δ ↾ R′ is 1–1. Since
there exist only countably many finite collections of finite subsets of ω, choose
an uncountable R′′ ⊂ R′ and finite F, A, G, B, H, C ⊂ ω such that p ∈ R′′ and
δ(p) = α ⇒ dom(p) = (Aα \ F ) ∪ (Bα \ G) ∪ H and p−1(1) = (Aα \ A) ∪ B ∪ C
where F and A are disjoint subsets of Aα, G and B are disjoint subsets of Bα,
and H and C are disjoint subsets of ω \ (Aα ∪ Bα). Let E = {δ(p) : p ∈ R′′}.
Since R′′ consists of pairwise incompatible elements, we see that for α 6= β in
E, (Aα ∪ Aβ) ∩ (Bα ∪ Bβ) 6= ∅. Since cf(κ) > ω1, choose γ < κ such that
γ > sup(E). Choose n < ω and an uncountable K ⊂ E such that for each
α ∈ K, Aα \ n ⊂ Aγ and Bα \ n ⊂ Bγ . Since Aγ ∩ Bγ = ∅, for every
α 6= β in K, (Aα ∪ Aβ) ∩ (Bα ∪ Bβ) ∩ n 6= ∅. So we have a finite partition
[K]2 =

⋃

i∈n

{{α, β} : i ∈ (Aα ∪ Aβ) ∩ (Bα ∪ Bβ)}. By Ramsey’s Theorem, get

j < n and α < β < η in K such that {α, β, η} is homogeneous for j. This contra-
dicts that Aι ∩ Bι = ∅ for ι = α, β, η. Lemma 3.3 is proved.

�

Lemma 3.4. Q is a point–< κ collection, i.e., if I ∈ X , then {q+ : I ∈ q+} has
cardinality < κ. Consequently, X does not have Property Kκ (Q is a collection of
κ many clopen sets which does not have a linked subcollection of cardinality κ).

Proof: If I ∈ q+ for κ many q’s, then λ(I)−1(1) would fill our Hausdorff gap
(Aα, Bα)α<κ contradicting Q4. �

The above lemma tells us that X is not separable and also that X is not the
support of a measure algebra (as these all have Property Kκ for every regular κ).

Lemma 3.5. X has countable π-character.
Proof: Let I ∈ X and put α = δ(I). Lemma 3.2 implies that for every neigh-
bourhood q+ ∩ B− of I, there exists r+ ∈ Qα such that r+ ⊂ q+ ∩ B−. Since
|Qα| = ω, we are done. �

So, we have shown

Theorem 3.6. If there exists a (κ, κ) Hausdorff gap where κ = cf(κ) > ω1,
then there exists a compact, ccc, non-separable space X which has countable π-
character, character = sup{λ : λ < κ}, and which does not continuously map
onto Iω1 .
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Corollary. MA(ω1) does not imply any of the following:

(a) Every compact ccc space of countable π-character is separable.
(b) Every compact ccc space of tightness (or even character) ≤ ω1
is separable.

(c) Every compact ccc non-separable space continuously maps onto Iω1 .

Proof: We can apply the theorem because Kunen (cf. Baumgartner [Ba84]) has
proved that Martin’s Axiom is consistent with c = ω2 + there exists a (ω2, ω2)
Hausdorff gap. �

The above (a) answers the question of Juhasz [Ju77] (this question was also
repeated on page 209 in Fremlin [Fr84]). The above (b) is a different kind of
example showing that the theorem of Shapirovskii [Sh72]:
MA(ω1)⇒ Every compact ccc space of tightness < ω1 is separable
cannot be improved in the tightness direction. It is quite different from the
first published example (Bell [Be80]); that one was covered by Cantor cubes of
uncountable weight. The above (c) is of interest because of the following: Let
A represent the axiom of Todorcevic “Every compact ccc non-separable space
maps onto Iω1”. One use of axiom A is that it resolves several problems in the
literature. S. Todorcevic has shown that A ⇒ MA(ω1). What we have shown is
that MA(ω1) ; A.
In conclusion, we mention that the question of whether every model of set

theory contains an example of a compact ccc non-separable space with countable
π-character remains open.
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