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About steady transport equation I —
LP-approach in domains with smooth boundaries

ANTONIN NOVOTNY

Abstract. We investigate the steady transport equation
A+w-Vz4+az=f, A>0

in various domains (bounded or unbounded) with smooth noncompact boundaries. The
functions w, a are supposed to be small in appropriate norms. The solution is studied
in spaces of Sobolev type (classical Sobolev spaces, Sobolev spaces with weights, homo-
geneous Sobolev spaces, dual spaces to Sobolev spaces). The particular stress is put
onto the problem to extend the results to as less regular vector fields w, a, as possible
(conserving the requirement of smallness). The theory presented here is well adapted
for applications in various problems of compressible fluid dynamics.

Keywords: steady transport equation, bounded, unbounded, exterior domains, existence
of solutions, estimates

Classification: 35Q35, 35L, T6N

1. Introduction

In this paper we investigate the solvability of steady transport equation

A4+w-Vz4+az=f in
A >0, w-u|59:0

(1.1)
where @ C R™ (n = 2,3,...) is a domain (not necessarily bounded) with suffi-
ciently smooth boundary 92 (with outer normal v) and w = (w1, ws,...,wy), a,
f are given functions on Q.

Sometimes, when (1.1) seems to be too general in order to obtain good results,
we consider its special form when a = div w, namely

Az +div(wz) = f in Q,

1.2
(12) A>0, w-v|gg=0.

We restrict ourselves only to the case when w and a are small in appropriate
norms and thus, one can expect a global sufficiently regular solution (provided a,
w and f are smooth enough).
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We propose an efficient technique for studying steady transport equation in
general classes of domains with sufficiently smooth boundaries (which contain, in
particular, bounded and exterior domains, the whole space R™ or the half space
R™ , infinite pipes, etc.).

All results of the paper can be extended, practically without changes, to sys-
tems

(1.3) M+W -Vz+A-z=f in Q A>0

or

(1.4) Az+divW-z)=f in Q A>0

where z = (21,...,2m) is an unknown function while W = (wij)i‘=1,...,m7 A=
(Aij)i=1,...m> [ = (f1,..., fm) are known functions on 2. The det;izlégfrenleft to
the reader.”

The steady transport equation was already studied by many authors, namely
in © bounded or = R™. Recall the pioneer papers of Lax and Philips [LP],
Fridrichs [F], Kohn, Nirenberg [KN] and various articles studying (1.1) in more
general context as e.g. Fichera [Fil], [Fi2], Oleinik [O], Oleinik, Radekevic [OR]. It
is usually not very difficult to prove existence theorems when the coefficients a, w
are sufficiently smooth and small. It has been a permanent question to extend
any part of the theory to less regular vector fields w and a, and to various types
of domains. Such questions are pertinent in many applications from compressible
fluid dynamics to kinetic theory.

For nonstationary equations various extensions and applications were done by
Di Perna and Lions [DL], and B. da Veiga [BV1]. As far as steady equations are
concerned, there are the important contributions by B. da Veiga [BV1], [BV2],
handling (1.1) in bounded domains, with successive applications to compressible
Navier-Stokes and Euler equations (see [BV1], [BV3]).

Here we use B. da Veiga’s results for bounded domains as a staring point
and extend them in the following sense (see Theorem 2.1 and 2.1* in [BV1] and
Theorem 1.1, 2.1, 2.2, 2.3, 2.6 in [BV2]).

(a) For © bounded, we need less regularity of the boundary (see Theorem 5.2),
and moreover, in Theorem 5.3, even slightly less assumptions on w, a. Namely
this (slight) modification is important for several applications in compressible
fluids, see Novotny [N1]. As a consequence of presented results we get, similarly
as B. da Veiga [BV2], only by duality arguments, existence and estimates for weak
solutions in negative Sobolev spaces, see Theorem 6.4. (The latter results were
applied to compressible fluids by B. da Veiga [BV3].)

(b) For Q being of certain (general) class (which contains in particular R", R"},
bounded and exterior domains in R™, infinite pipes with bounded cross sections)
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we prove existence (and uniqueness) of solutions in Sobolev spaces (Theorems 5.1
5.3). Moreover, we also prove, by duality method, existence of weak solutions
in negative Sobolev spaces, see Theorem 6.4. Existence of weak solutions in
Lebesgue spaces is given in Theorem 5.7. For applications of such results, see
Novotny, Padula [NP1], Novotny [N1], [N2], [N3], Padula [P1], Padula, Pileckas
[PP], Novotny, Penel [NPe].

(c) In particular for Q exterior domain, 2 = R", Q = R’} , we show existence (and
uniqueness) in homogeneous Sobolev spaces (Theorems 6.1, 6.2) and in their duals
(Theorems 6.4, 6.5). For possible applications see Novotny [N3].

(d) In some particular cases, we investigate a special regularity. This is usu-
ally motivated by applications in compressible fluids. Thus, Theorem 7.1 gives
estimates for A of solutions in Sobolev spaces and eventually in their duals; The-
orem 7.2 investigates estimates of A of solutions in duals to homogeneous Sobolev
spaces for (2 exterior or 2 = R" or Q = R"}.

(e) Some applications require estimates and existence results in intersections of
various Sobolev and/or homogeneous Sobolev spaces. Such results, in general do-
mains, require uniqueness arguments; see Theorem 5.6 for intersections of Sobolev
spaces and Theorem 6.3 for intersection of Sobolev and homogeneous Sobolev
spaces; see [NP1], [NPe] and [GNP].

(f) Some particular results in weighted Sobolev spaces are given in Theorems 5.4,
5.5 and 5.7. They are useful both as auxiliary results for proving (e) and, in
applications, as an important tool for studying decay properties of solutions to
compressible Navier-Stokes equations; see Novotny, Padula [NP3], Novotny, Penel
[NPe], Novotny [N2], Padula, Pileckas [PP]. The decay of solutions, for arbitrary
size of coefficients w, a is investigated in Theorem 5.8.

The technique of proofs is standard. The most novelty (and the main goal)
of the paper is to give results fully conform with the requirements of the theory
of compressible fluids, especially in unbounded domains. These achievements
are very often of a rather subtle nature, and although they seem almost obvious
a lot of work is needed to prove them. As far as the author knows, such results
have been missing in the mathematical literature about the subject. The various
applications justify their importance.

Acknowledgement. The need of such paper appeared during our studies of
compressible Navier-Stokes equations in the last two years. Most of the problems
have arisen in this process and a lot of ideas were proposed to solve them. For
this I am indebted namely to my close collaborator M. Padula (who should be
considered, in this respect, as a coauthor of the paper) and to K. Pileckas. I also
appreciate fruitful discussions with B. da Veiga (whose papers were the main
inspiration for these studies) during my short stay in Pisa. I thank P. Civi§ and

M. Novotny (Ceské Budéjovice) for helpful suggestions.
The work was initiated during the author’s stay at the University of Ferrara

and finished during his stay at the University of Toulon under the support of
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C.N.R. and Centro Ricerche Himont Ferrara (in Italy) and the contract of the

French Ministry of Higher Education at the University of Toulon (in France).
Last but not least, the author wishes to thank Professors G.P. Galdi (Ferrara)

and P. Penel (Toulon) for their steady support and encouraging of his work.

2. Notation and basic considerations

Denote by Bpr the sphere in R™ with center in 0 and radius R > 0; let BR =
R™ — BE. Let Q be a domain in R", Qp = QN B and QF = QN BE. We use
the following functional spaces:

0 C§°(Q) is a set of smooth functions with compact support in ©; C5°(Q) is the set
of smooth functions with compact support in Q; C*(Q) (s =0,1,...) is a Banach
space of bounded continuous functions with bounded and continuous (up to the

boundary) derivatives up to the order s. The corresponding norm in
ules = Y max [V,
0<a<s €N
while C*(Q) is a set of continuously differentiable functions (up to the order s)
in Q.
O WkP(Q) (k=0,1,...,1 <p < 400) are usual Sobolev spaces of distributions

with finite norms
1/p

ey = 3 [ vupar ] (@ <p< o0, - fo = ess uplul;
0<a<k €0
in particular WOP(Q) is usual Lebesgue space LP(Q); Wok’p(Q) is completion of
C3°() in || ||, norm. For Q = R", WEP(R") = WhP(R™). The dual space to
Wol’p/(Q) (1 <p' < +o0, 1/p+1/p’ = 1) is denoted W ~1P(Q) and equipped with
standard duality norm || - [|_1 p.

O In this paper, we also use, in some particular situations, weighted Sobolev
spaces and homogeneous Sobolev spaces together with their duals. They will be
defined on corresponding places in the text.

O Further introduce for 0 < s <k, 1 < py,...,ps < 400 auxiliary Banach spaces

—s/e k.pi .
X @ =@ n{oive i@ (=19,

Vk=stLly e LP(Q), VE=5+2y € P2(Q),... VFu € Lps(sz)}
equipped with norm
S
k k—
45 Xy, ..ol = ltlen—e D IVE=* llo
=1
(If s = 0, then we have C*(Q).)



About the steady transport equation I

Remark 2.1. In the estimates, we use generic positive constants ag, ag, asg, ¢,
d,c; (i=1,2,...). If not stated explicitly, they depend only of k, g, n (and they
do not depend of w, a, f, A, and on the domain). The only dependence which
can occur is the one of coefficients ¢, of imbedding |blcs < c||b]lr.q, (r — 8)g > n.

The coeflicients in estimates that can depend on the size of the domain are
always denoted by k, k;.

If not stated explicitly, the norms refer always to domain 2. Otherwise we
use the domain as a further index; e.g. || - ||, means a norm in WkP(Q) while
| - [|,p, @ norm in WkP(@), G € R". We consider the following class of domains
in R"® (n>2).

Definition 2.1. Let © be a domain in R”. We say that it is of class B,
k=1,2,...,if and only if
(i) 0 eCk (if Q #R");

(ii) foranyi (1 <i<k)andp; (1 <p; <p;j—1 <+ < p2 <p1 < +00) there

exists a continuous extension

(1) € Xy, (@) = Xpp (RY).

Example 2.1.

() Q=R" e B®) 1<k < +oc0.

(i) Q=R? € B, 1 <k < +o0.

(iii) Let @ C R™ be a bounded domain with dQ € C*¥, 1 < k < 400, then
Qe Bk,

(iv) Let © C R™ be an exterior domain to a compact region . (suppose
without loss of generality that By C Q.), 90 € C¥ (1 < k < +00), then
Qe Bk,

(v) Let

0= = {gc = (2 2n) 2" = (21,...,Tpn_1),2n € R!,
(22) 0 < <a/] < p(zn), ¢ € CFRY), [pler g1 < +00},
1<k< 4+

be a pipe with bounded cross section. Then it belongs to Bk,
(vi) Let Q = R™ — €, where € is the set from (v), then it belongs to BK¥).
PROOF: Statement (i) is obvious.
Proof of (ii) (see Galdi [G]). Let
Q= Qn = {I = ($,7$n) : ZZTI = (1171, e ,In_l) S Rn_l,iEn Z 0},

then put
u(x) if z, >0
eue) = { Sy |
D oeti Asu(x’, —sxp) if zp, <0

47
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where \s; € R! are such that

k+1
Z)\S(—s)e =1 forany £=0,...,k.
s=1

We find
vg,vﬁnu(x) Tn >0

VOVE (Eu)(z) =
v le—:i_ll (—1)5/\ssﬁ(vg, Vgnu)(:zrl, —STp).

Hence vg,vﬁnsu e COR") (¢ LI(R™)) if and only if vg,vﬁnu € CORY)
(€ LYRY)). It is easily seen that the extension is continuous from C*(Q) —
Ct@R™) (£=0,...,k) and moreover

HVZ(EU)H Sc’Viu
0,q,R™

’041,9

with ¢ dependent of i, ¢ (provided Viu € LI(f)).

Proof of (iii) and (iv). We prove only (iv), the statement (iii) (€ bounded) is
even easier. Let A; = (—¢,&)" ! (cartesian product), ¢ > 0 sufficiently small.
Let {Uy, wr}m(g) be such that

r=

Uy = B(0) (Ro > 0,0 C By j2), v0 = {1 in [0

0 in Bg,
or = (1 —@o)¢r (r=1,...,m) where {U, 1}, is a partition of unity of
Qar, such that (J;L, Ur D 0Q and Uy NOQ # O (r =r9,...,m), ro being fixed,
2<rg <m.

There exist orthogonal maps A, : R — R"™ (r = rg,...,m) and functions
ar: Ae >R ap € Ck(Ag) (r=rg,...,m), € € (0,e9), €0 >0,

such that
oNU, = {Z 7= Ar_l(y/,ar(y/)),y/ € AE}.

Moreover, the maps

my iUy — Bey, Be= A x(—g,2), 19 <r<m,
y/ = (y17 ce 7yn—1) = (AT‘T)/a Yn = (Arx)n - ar((Arx)/)

are one to one and map U, onto B, Ur N Q onto B 1 and U, N (R™ — Q) onto
Be,_, where B; = A x(0,4¢), B — = A x(—¢,0). The determinant of Jacobi
matrix J = (9y;/0x},) of such map reads J = detJ = 1. Clearly m, € C¥(,) and
therefore m; 1 € CF(B.).
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Let u € X;fl___ps(Q), 1 <s <k Putug) =upr (r=0,...,m). We define

(T =705 7m) ﬂ‘(r) (y) = u(r)(mr_l(y))v hence ’a’(r) € leyfi...ps (R:L-) (since Ds <
ps—1 < -+ < p1 and u(,y has compact support in Uy) Supp gy C Uy (hence
supp U,y C Be). According to (ii) there exists a continuous extension (say v(,))
V) € X;fl___ps (R™). Let n, € Cg°(R™) such that n(y) = 1 for y € supp ),
nr(y) = 0 for y € R™ — Bae,. Then obviously 9,y = ?(,)nr is also a continuous

extension 7,y € X k (R™). It is worth noting that

P1.--Ps

Oy (mr(z))  for z €Uy

vy (z) = (€ X, p (R™))
0 otherwise
is a continuous extension of u(.) € X;fl___ps R%Y) (r = 79,...,m). For r =
0,1,...,70 — 1, define
up(x) in Uy
vy (T) = (e Xk . .(R")
0 otherwise.

Since u = ;' j ur, one easily verifies that

m
E:Eu= Z EU(T)
r=0

where
Eugyy = v(r)(x) ?f r=0,1,...,79g—1
vy (mr(2)) i r=r0,...,m

is continuous extension X;fl___ps Q) — X1]u€1...ps (R™).

Proof of (v), (vi). For clarity, we restrict ourselves to the case n < 3, letting
the general case to interested reader. The set Q' in cylindrical coordinates reads

O ={(0,r,2):r=2"],z2=xn, 0€[0,27),0 <1 < p(xn), 2y € (—00,+00)}.
The map m = (0,7, zp) — (¥, R, 2)
1/):97 R:T/<P($n)a zZ=1Tn

maps ' onto a cylinder with cross section Y a circle with unit radius. The
determinant of Jacobi matrix for m reads J = go(:vn)_> 4 > 0. Now, we apply the

method of (iii), (iv) on each cross section » . Since g;% (i=1,...,k) is bounded,



50

A. Novotny

we get easily the desired result. The other is obvious. The statements (i)—(vi) of
Example 2.1 are thus proved. O

An important technical tool in our investigations are cut-off functions and
mollifiers. In order to have a control of functions at large distance, we use Sobolev
cut-off function

In In |x| oo
= R"™ <y <1
N on(o) =0 (B ) v e GEED, 0< v <
(2:4) (=) 1 r € By
* 0 z € B
we easily find
sup Yg C By gy, where k(R)= e(ln R)2,
TER™
sup VP9r C Qr = Byg) — Bur (8> 1),
(2.5) z€R™
Yr(x) =1 in Bg,
1
Vgl < —= .
H UJRH ~ (In InR)A |z|1In|z|

Due to Galdi, Simader [GS], we have the following statement:
Let u € LI (R"), Vu € LY(R"?) (n < q < +o0) or u € L{ (R™) N L5(R™) for

loc loc

some 1 < s < +00 and Vu € LI(R™) (1 < g < n). Then

. —0 as R—4o0, k=1,2,....
07q7QR

(2.6) Huv’wr

Last but not least recall a definition of a mollifier

@7 o) = 0(2). 0 CE®Y), supp olx) C B, / ofx)dz = 1.

n

For a function f, we denote shortly by f. the convolution

(28) fe@)=oex s = [ ola- 1))y
Rn
It is worth noting that

f- € Cg°(R™) provided f e LL (R") (1<q < +4o0),

(29)  Vife(a)=(Vf):(2), i=0,...,k provided fe WFPRM),
fe € CF(R™) provided f e WKI(R")
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and
[fe = fllgp, — 0 as e — 0 provided fe€ WhP(R"),

(2.10) _
|fe = flcs = 0 as € — 0 provided f e C*(R").

In order to avoid cumbersome expressions in theorems, we denote
(k=0,1,2,...,1 < g < c0)
(k,q) _
Uy " (w,a) = [w]er + |aler

k7
9D (w,a) = |wler + laler-1 + [ V¥allo,

k?
IED (1w, a) = ] e

kv
98D (w,a) = |wler + lalgr-1 + [|VEa]on

93D (w, a) = |wler + lalgrr + | Vallx—1,n
95D (w, 0) = |wlex-1 + laler-2 + [TEwllon + IV*Lallon+
+[V*allog

CAD 0 95 w,0) = fwlgeos + lalgios + [VEullon + (74 alln
9D (w,0) = [wler-1 + [aler—2 + | VFuwllom + V¥ allq
95 (w,0) = Jwler-1 + [algr—2 + | VFuwllog + V¥ al 1
9D (w, a) = |wler-1 + [aler- + [[TFw]oq + [ VEall1n
9§D (w,a) = fwler + laleo + [V (a — divw)llo g (1 + 3 = 1)
955 (w, a) = |wler + laleo + [V (a — div w)lo.n
967 (w, a) = |wler + Jalo

If not confusing, the variables w, a (or even index (k,q)) are omitted in the

notation and 9(¥:9) (or even ;) means ﬁgk’q)(w, a).
Next important auxiliary result is due to Lax and Philips [LP], see also Miso-
hata [Mi, VL.6.1].

Corollary 2.1. Let 1 < ¢ < +o0, w € CY(R") (jw|pr < +00), z € LIY(R"),
w-Vze LYR™). Then

[(w-Vz)e —w-Vzellggrr — 0 as € — 0

and
w-Vze = w-Vz as ¢ =0 in LYR").

An easy consequence of this fundamental statement reads.
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Corollary 2.2. Let 1< q< +oo0, k=1,2,...,9¢eB® we Cl ), w-v|ga =
0, z€ LI(Q), w-Vz e LYN). Then

and
w-Vze —w-Vz in LI(Q).

z(z) if zeQ

~ . . . . ~ o —
Here b is a continuous extension of w (i.e. w € CY(R")) and Z(z) = {0 it 2¢0

PRrROOF: First, we define the distribution w - VZ:
(w-VzZ, ) = / zdiv(wyp)dx, Yo € CP(RM).
We have

/ Ediv(i}cp)d:v:/zdiv(wcp)dm:/w-v,zgodx, YV e CC(R™).
n Q Q

From the last identity we conclude that
w-Vz e LY(R™).
Corollary 2.2 thus follows directly from Corollary 2.1. O

3. Some estimates independent of the domain and auxiliary theorems

Lemma 3.1. Letk=1,2,...,s:1,...,k,1<q<+oo,Q€B(k) and
(3.1) a,weCF@Q), w-v|gg =0, feWrI(Q).

Then there exists a constant oy > 0 (see Remark 2.1) such that we have: Let
z € Wk4(Q) be a solution of problem (1.1); then

(3-2) Alzlls,q < [1flls.q + a0doll2]s,q

(for definition of ¥y see (2.11)).

Lemma 3.2. Let k=1,2,...,s=1,...,k, 1<q<+oo,Q€B(k) and
(3.3) we k@), w-v|gg=0, acctFLQ), feWkiQ).

There exists a constant ag > 0 (see Remark 2.1) such that we have:
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(a) Let z € W54(Q) be a solution of problem (1.1). If

(3.4); kq>n, VFaeLi(Q)
or if

(3.4)2 l1<g<n, VFaeL'Q),
then

(35) Mzlls,g < 1 flls,g + adillzls,q

where i = 1,2 corresponds to (3.4); and 9; is defined by (2.11).
(b) Let z € W2(2), Vz € Ws=149(Q) be a solution of problem (1.1). If

(3.6)1 a=0

or if

(3.6)2 1<qg<mn, VaeWrF1mnQ),

then

(37) MV2lls—1.g < IV flls-1q + @ Vells14

where i = 1,2 corresponds to (3.6);. For definition of ¥} see (2.11).
Lemma 3.3. Let k=2,3,...,s=1,....k, 1 <q< 400, kq > n, Qe B®). Let
(3.8) we k@), w-v|pg =0, a cC*2Q), feWhiQ).

There exists a constant oy > 0 (see Remark 2.1) such that we have: Let z €
Wk4(Q) be a solution of problem (1.1). If

(3.9)1 1<q<n, VFwe L™Q), VFla e LMQ), VFa € LI(Q)
or

(3.9)2 1<q<n, VFweL™Q), VFla e Whn(Q),
or

(3.9)3 1< q<n, VFwe LMQ), VF 1o e Whi(Q),
or

(3.9)4 (k—1)g >n, VFwe LI(Q), VFla e whi(Q),
or

(3.9)5 (k—1)g >n, VFw e LI(Q), VF 1o e WI™(Q),
then

(3.10) Mzlls,g < [1flls.q + adigallzlls,g

(here index i corresponds to (3.9);, i = 1,...5 and ¥; 1o are defined in (2.11)).
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PROOF OF LEMMA 3.1, 3.2 AND 3.3: Multiply (1.1) by |2|9722 and integrate
over €). We have, only using obvious integration by parts,

1
)\Hz||gq:/ |z|q_22fd33——/ |z|qdivwd:c—|—/ |z|%a dx
’ Q qJQ Q

which yields, by the Hélder and Young inequalities applied to the first integral
(3.11) NIzl1g,q < I1F1IE 4 + c(lwler + laleo) 12118 4-

Differentiate (1.1) by taking V", » = 1,2,...k, to obtain

(3.12) AWz =-wVV'2— Y VwVV/:-Vaz— > VaViz4+V'y

i+j=r i+j=r
0<j<r—-1 0<i<r—1

Multiplying (3.12), scalarly by |V" 2|92V z and integrating over Q, we obtain

5
(3.13) MV 2llog = D I,

m=1
where the integrals 7, are defined and estimated as follows:
I = —/[w : VVTZ} : [|VTz|q_2Vrz} dr =
(3.14) L .
_ __/ w- V(Y 2|7 de = _/ div | V" 2|7 dz < cfuwler [V721I3 .
qJQ qJQ ’

(The process above needs some explanation, especially for r = k, see the last part

of this proof.)

5 = Z {Viw . Vij} : [|Vrz|q_2vrz dx <
i+j=r Q@

0<j<r—1
cwler|Vellf_y, A <r<k)
cwler-1[|V2IE,, (A<r<k-1)
< ’ ‘
TS e Jal Vil [V VR0 e+ [y [VRu| V2] TRz de
1<j<k~-1
i<k

V’“w n Vz e ” Vz
< clwlper | V29 1q+{” o190/ 0o 1941 1q}

IVFwlo,ql V2ol V21775,

k 2 \vJ =k, 1
< clul k—lequ IVFwllo,n IV22]l0,ql ZIIk 1.q (r=k, 1<q<n)
- ¢ k=14 IVEwllo,ql VI, , (r=k, (k=1)g>n)
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(3.16)
5 = — / (V'z): (|V 297 2V"2) dz <
Q
laler|I21I7.q (r<k)
1
laler-1l12ll0,q V721G, < laler—1ll2]17q (r<k-1)
7q
1
- lalck—2lzllo,g V721§, < laler—2]l2]l7q (r<k-2)
- 1 -1
IV"allonll2ll0,ng/(n-g) IV 2M65 < V7 allonlV2llogl V26,
(I<g<n, r<k)
-1
IV7allo,glzleoIV72lI5, < IV allogllzllfg  (r=Fk.k—1, kg >n)

(ViaViz) : (V" 2|97V 2) da <

hel
[
]

lales-1 112114
lalgs2llzl%q  (r< k1)

> o Via|| V2| V72|97 da
(3.17) [ it

IN

IN

0<i<k—2
q ”vk 1a|‘0nl|vzl|0nq/(n q) HVZ”k 1,q
sl oy + 4 :
v al\o,q|VZ|c0HV i,
IV*2allo,nlI V22,4l V2111, (r=k, 1<qg<n)

IV allo g V201E_, , (r="k, (k—1)g>n)

— —1
(3.18) g:/ﬂv"f:w"zr] 2V zdz < ||V fllogl V' 2IIg

Taking into account (3.11), (3.13) and (3.14)—(3.18), we verify the statements of
Lemmas 3.1-3.3.
The only thing desiring an explanation is the calculation in (3.14) for r = k.
Put
B { vk if xeQ)
YZ o it z¢0

and extend w continuously to R (hence w € C*(R")). By Corollary 2.2

(3.19) w-Vye —w-Vy in LI(Q)
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(for definition of ye see (2.8)). We have

(320) - /Q (w0 V)l ) do =

1 1
= —/ div w|y5|qd:v——/ w - v|ye|?dS.
4 JONBg 4 JoBr
Since R? faBl lye|? dw € L1(0,+o0) uniformly with respect to & (dw is an infini-

tesimal element on the unit sphere), there exists a sequence {R;};"°° 7, Ry — +o0
such that RZZ Jop lvel?dw — 0. Writing (3.20) with R = R; and passing to the
limit ¢ — +o00, we get

_ 1 :
620 = [ V5 (el P de = T [ dvulueft i
By ¢ — 0, we get, due to (3.19) and (2.10), estimate (3.14). The proofs of
Lemmas 3.1-3.3 are thus complete. (I

Remark 3.1. The reader easily sees that the constant ag in Lemma 3.1 is, in
fact, independent of ¢ (this is not the case in Lemmas 3.2 and 3.3). The above
fact is seen from the proofs; we find from (3.11), (3.14), (3.15), (3.16), (3.17) and
(3.18) that

1
Alllig < { [(1 n 5) ] + |a|4 Er ||f||k,q}

with ¢ > 0 independent of ¢q. This remark is very important in the part II of the
paper (forthcoming [N4]), for deriving estimates in Holder spaces.
4. Auxiliary existence theorems in R"

We begin this section by recalling one well known existence result of B. da
Veiga [BV1, Theorem 2.1], which holds for bounded domains.

Lemma 4.1. Letk=1,2,...,4=1,...,k, 1 < g < +00, A >0, G be a bounded
domain in R™ with 0G € C**2. Let

a,we CH@), feWrI(G)NWIUG), w-v]sg =0.

Then there exists a constant ag (depending of k, q, G and independent of \)
such that if agg < A, then there exists just one solution

2 e WhI(G) NnW(G)
of problem (1.1) s which satisfies estimate

(1) 2l < Tl
(For definition of ¥y see (2.11).)

In the next step, we extend this lemma to the whole space R™. The following
statement is the starting point of all proofs of existence theorems (see the following
sections).
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Lemma 4.2. Let k=1,2,..., Q=R" and
a,we CFR™), fe WhIR™).

Then there exists a constant ag > 0 (see Remark 2.1)(1), such that if asdg < 1,
then there exists just one solution of problem (1.1) z € W¥4(R™) satisfying
estimate

(4.2) I2llkg = 5 —gg 1 llka

(for definition of ¥y see (2.11)).
PRrOOF: Consider in gy = By (g) (see (2.5)) the following auxiliary problem for
unknown function zp:
(4.3) Azp + (wYR) - Vzp +azg = f.
(The cut off function ¢ g is defined in (2.4).) In virtue of Lemma 4.1, there exists
apr > 0 (dependent possibly of R) such that if

agdor < A, Yor = lalek + [wirlcr,

then there exists a (unique) solution of (4.3) zp € Wk’q(Q(R)). In virtue of
Lemma 3.1, there exists ag > 0 (independent of R and A (see Remark 2.1)) such
that
M zrllk,g.0m) < 1flk,q.00n T 20Y0rlZRlkq,0)

Let w,a be such that agdy < A; hence agdgr < A for R > Ry, Ry sufficiently
great (recall that in virtue of (2.5), Jgr — ¥p as R — +00). Suppose that
A < ap¥pr < X (in this case, Lemma 4.1 does not guarantee the existence of
a solution). Nevertheless, it guarantees existence of a solution 27, € Wk’q(Q( R))
of the problem

Aol + (WYR) - Ve + a2k = f+ (X = N,
where ¢ is an arbitrary element of W#:9(Q). This solution satisfies estimate
(A = artdor)12Rllk.g.00m < I1Flkg0m + O = NElkq0xm-

One easily verifies that the (linear) map T¢ = sz is, in virtue of the last inequality,
a contraction in Wk’q(Q(R)). As a consequence, it possesses a (unique) fixed point
(say zg) which obviously satisfies equation (4.3) and estimate

1
(4.4) 2RIk, < m“f”k,q,ﬂ(m-

(1) The constant as is independent of ¢, see Remark 3.1.

o7
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Further, we proceed by the method of invading domains (cf. Leray [L], or Heywood
[H]). We start with some R > 0 “sufficiently large” and denote R; = R + i
(i =1,2,...). Consider a sequence of solutions {zp, = zl}j_:of of the problem
(4.3) in Q(g,). For any fixed £ > 0 there exists a subsequence {zi(g)}é':f and
Z(0) € Wk’q(Q(R )) such that

S

ZZ(Z) — Z(Z) weakly in Wk’q(Q(Rs)),
Zj(e) = #(¢) strongly in Wk_l’q(Q(Rs)).
If s > ¢, one can choose a subsequence of {zi(g)}z:? which converges strongly

in Wk_l’q(Q(Rs)) and weakly in Wk’q(Q(Rs)) to z,) € Wk’q(Q(Rs)). Clearly
Z(s) (@) = 2(p)(2) for z € Q). We can thus define a function z in Q2

z(z) = 2(5)(z) provided z € Qp,).

We see that N
z € Wi (R™);

it satisfies equation

/ (ch—zV-Ugo—i—ach)d:v:/ggodx

for any ¢ € C5°(R™). Due to (4.4)

1
o) a2y = 17lkagin, € T=gmge 1Flkare
for a suitable g > 0. This yields, when s — 400,
z e WhI(RM)

and estimate (4.2). Moreover, equation (1.1) is satisfied a.e. in R™. Uniqueness
is obvious. The proof of Lemma 4.2 is thus complete. O
Lemma 4.3. Let
(i) k=1,2,...,1<qg< +o0, Q =R", f € Wha(R"),
a,we (3.1)N(3.4);, j =1 or 2 (see Lemma 3.2)
or
(i) k=2,3,...,1<q< 400, Q=R", f € Wha(R?),
a,we (3.1)N(3.9)j,j=1or2or3 or4orb (see Lemma 3.3).
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Then there exists a constant a3 > 0 (see Remark 2.1) such that if agd; < A (case
(i) for at least one j or if agijio < A (case (ii)) for at least one j (U; is defined
in (2.11)), then we have:

There exists just one solution of problem (1.1) z € W*4(R™) satisfying estimate

@ Plegen € g Wl (=12 —case ()

or

(@5 ellegrn < smmia— I lbgme (=15 — case (i)
AR = N g g R

PrROOF: We prove only Lemma 4.3 (). The proof of statement (ii) is similar.
Take ag > 0 from Lemma 4.2 and suppose asttg < A. Then there exists a solution
z € WFa(R™) of problem (1.1). Take ag from Lemma 3.2 and suppose ag(Jg +
¥;) < A, i=1,...,7. Then estimate (4.5); follows by Lemma 3.2. Suppose that
A < ag(Wo + ;) < X and asdg < A. Then, by the previous reasoning, for any
¢ € Wka(R™) there exists a solution 2’ € W#4(R") of problem

A 4w Vi 4ar =f+N=N)¢
which satisfies, by Lemma 3.2, estimate
(A = a093) |12 lk g < ([ fllk,grn + A= V€l g rn)-

The last inequality yields the contraction of the map 75 = 2, in kaq(R") and
existence of a fixed point z. It is easy to verify that z satisfies problem (1.1) and
estimate (4.5)1. O

5. Existence of solutions in Sobolev spaces for (2 € Bk,

Lemmas 4.2-4.3 give existence of solutions in Sobolev spaces in {2 = R™. Here
we prove existence and uniqueness of solutions for domains of class B*) (in par-
ticular for bounded and exterior domains with sufficiently smooth boundary, for
Q =R"or Q =R") for small a,w (in appropriate norms) under two different sets
of assumptions on the regularity of a,w. Theorem 5.1 is an easy consequence of
Lemma 4.2. Theorems 5.2, 5.3, for bounded domains, give practically the same
results as B. da Veiga’s Theorem 2.1* in [BV1], however, under less assumptions
on the regularity of the boundary. For another domains of class B*) (e.g. exte-
rior, etc.), as far as the author knows, the results are new. In the second part of
this section we investigate solutions in weighted Sobolev spaces (see Theorems 5.4
and 5.5). Third part of this section is devoted to the investigation of the regu-
larity of solutions (see Theorem 5.6). Finally, we investigate existence of weak
solutions in Lebesgue spaces (Theorem 5.7) and the decay of continuous solutions
(Theorem 5.8). All presented results are important in applications in the theory
of compressible fluids.
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5.1 Existence of solutions in Sobolev spaces
Theorem 5.1. Let k=1,2,...,1<qg<+o0,l=1,...k, Q e B*). Let
we @), w-v|gg =0, ac k@),
(5.1) L »
feWHQ) Ny (Q).
Then there exists a constant oy > 0 (see Remark 2.1)(1) such that if
a1y < A,
then there exists just one solution
2 e Wha(Q)n W)
satisfying estimate
2l < 7= 1k
For definition of ¥q see (2.11).
Theorem 5.2. Let k=1,2,...,1<g<+00,l{=1,...,k, Qe B®). Let
(5.2) we k@), w-v|gg =0, a et L@,
' fewkaQ)nwiiQ).

Then there exists a constant a; > 0 (see Remark 2.1) such that:
(a) If

(5.3)1 kq >n, VFa € LI(Q),
and

a1t < A
or if
(5.3)2 1<q<n, VFae L™Q),
and

a1192 < A,

then there exists just one solution of problem (1.1)
2 e Wha(Q) N W0
such that
(5.4) 2llka = x—o75: 1/ k.
(where i = 1,2, refers to (5.3); and ¥; is deﬁned in (2.11)).

(1) The constant a1 in Theorem 5.1 is, in fact, independent of ¢, see Remark 3.1.
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(b) If

a=0
and
(5.5)1 ) <1
or
(5.5)2 1<q<n, Vae Wk 1nQ)
and

04119/2 <A
then the solution satisfies estimate
1

5.6 g < — 1
(Here i = 1,2 refers to (5.5); and ¥} is defined in (2.11).)
Theorem 5.3. Let k = 2,3,..., 1 < ¢ < 400, kq > n, £ = 1,...,k, and
Qe B®). Let
(5.7) weCF1Q), w-v|pg =0, a2,

67
(5.8) fe wka@) nwyi(Q).

Then there exists a constant a; (see Remark 2.1) such that we have:
If

(5.9 1<q<n, VFwe L"(Q), VFla e L"(Q), VFa € LI(Q)
and
a1ty < A
or
(5.9)2 1<q<n, VFwe L"(Q), VFta e win(Q)
and
a1ty < A
or
(5.9)3 1<g<n, VFw e L™(Q), vk-14 e Wl,q(Q)
and

a1y < A
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or
(5.9)4 (k—1)g >n, VEw € L(Q), vk-1, e Wl,q(Q)
and

a1tdg < A
or
(5.9)5 (k—=1)g > n, vEw e LI(Q), vkl Wl’n(Q)
and

a1ty < A

then there exists just one solution of problem (1.1)
z e WhaQ) N W)

satisfying estimate

(5.10) I#lg < 5=y 1/l

(Here i =1,...,5 refers to (5.9);. For definition of ¥; see (2.11).)

ProOOF OF THEOREMS 5.1, 5.2 AND 5.3: We prove only Theorem 5.3 under
assumption (5.9);. The other cases and Theorems 5.1, 5.2 follow by the same
(even technically easier) arguments, and therefore are left to the reader.

By Definition 2.1 (since Q € B(k)), there exists a continuous extension of a, w,
f (denoted again a, w, f)

a e CF2R"™), VFla e L"(R"), VFa € LIRM),
w e CFYR™), VFw e L*(R™), f e WhIRM).

For the sequences of mollified functions (see (2.7)—(2.9))

{al/s}:jv {wl/s}+oo(a1/s EC ( )7 Wy/s Eck(Rn»

we have, in virtue of (2.10),
wy/s —w in ckHL®R™), kal/sﬁvkw in L"(R"),
ayys —a in cF2(R"), VA~ 1a1/ — V1l in LM(R™),

vF ay /s — VFa in LI(RM).
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Put 3 s = ¥3(wy /4, a1/5). In virtue of Lemma 4.3, there exists a constant o >0
(independent of A, s) such that if o/¥3 s < A, then we have a solution

zs € WRA(R™)
of problem
(5.11) Azs +wys - Vzs +ajzs = f in R?
satisfying estimate

1
lzsllk,qrn < m”f”k,q,R"-

Since Y3 s — 93 as s — +00, we have also for s sufficiently large

(512) el g < 5

T%Hfﬂk,q,w-

On the other hand, the difference z5 — z4 satisfies equation
(2s = 29) w15 - V(zs — 29) +a1/5(2s — 2) =
= Zs’(al/s’ - al/s) +Vzy - (wl/s’ - wl/s)'

We estimate

2o (a1 = a176) e -1,g < Nzsrllo e (957 (arpr = a1s) o
+ st’Hk—l,q‘al/s’ —ay /g
< Nzslliorg(lars = oaslens + 1V o170 = arys) o)
[Vzg - (w15 — wl/s)”k—l,q < Hvzs’Hk—l,q‘wl/s’ = wy/s|er-1-
This yields, by Lemma 3.3, that the sequence {||zs|\}::°i’ is a Cauchy sequence in
WE=L4(R™). Moreover, by (5.12), it is also bounded in W¥4(R™). Therefore
zs — z strongly in WF=LI(R™),
zs — 2z weakly in WH4(R™)
at least for a chosen subsequence. It is straightforward to show (by passing to
the limit s — 400 in (5.11)) that z solves problem (1.1) in R™. The restriction

2| q on Q (denoted again z) obviously satisfies (1.1) in . Estimate (5.10) follows
directly from (5.12).

The only thing left to be shown is z € Woé’q(Q). It is enough to do it in
the case ! = R'}. The general case of the “curved” boundary 0 can be trans-
formed to the previous one by the localisation technique explained in Example 2.1.
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First take £ = 1. Suppose, without loss of generality, that R’} = {2’ : 2/ =
(x1,...,0,_1) € R*1} = R*~1 Multiply the equation (1.1) by |z|972z and
integrate over R”~!. For the most complicated integral, we have, in particular,
Jrn-1 0 (V2)[2|9722da = [pn w-(V'2)|2/7722 dz, where V' = (%1, ey %), the
term containing the expression wy, - ?Wzn vanishes due to the condition w-v | g = 0.
Therefore, we get, after some calculation

1
[12]lo,q,n—1 < m”f”o,qﬁn*l-
This yields the proof for £ = 1. If ¢ > 1, we proceed by induction. (]

Remark 5.1. Here we give several sufficient conditions on a, w, to satisfy as-
sumptions of Theorems 5.2 or 5.3.

(i) Let  be a bounded domain (99 € C*) and

(5.13) w e WEHLIQ) n W 9(Q), a € WRI(Q).
(i) Un>2,9g>n,k=1,2,..., then a,w € (5.13) satisfy assumptions (5.2)
and (5.3);.
(i)2 If .25 < g <mn, k= (n—1),..., then a,w € (5.13) satisfy assumptions

(5.7) and (5.9)1, (5.9)3, (5.9)4.
For applications of (i) to compressible fluids, see B. da Veiga [BV3] (n = 3,
k=1,2,...,q¢>3), Novotny [N1] (n =3, k=23, ..., ¢=2).
(ii) Let Q be an exterior domain to some compact region Q. (9Q € C*).
(ii); Let a, w be such that

nt

(5.14) there exists woo € R" such that w — wee € L= (),

and

2, k 17
(5.15) wlog, we Wloz(m n Wloj (), Vw e Wl’t(Q) N WIWJ(Q)
a e WH(@) nwhi(g)

where
l<t<n,g>n, k=1,2,....
Then a, w satisfy assumptions (5.2) and (5.3)1.
(ii)2 Let a, w be such that

ng

(5.16) there exists weo € R"™ such that w — wee € Ln=1(Q),
and

(5.17) w] a0 =0, we WEM(Q), Vo e WFH(Q), a e WFI(Q)
where

L1<q<n, k=mn-1),n,....

Then a, w satisfy assumptions (5.7), (5.9)4.
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For applications of (ii) see Novotny, Padula [NP1] (n =3, k=1,2,...,3/2 <
t <3,q<3), Novotny [N1] (n =3, k=2,..., ¢ = 2), Novotny, Penel [NPe]. For
another applications for 2-D exterior domains see Galdi, Novotny, Padula [GNP].
Remark 5.2. We have the following consequence of the former proof. Let z be
a solution of problem (1.1) guaranteed by Theorem 5.1 or 5.2 or 5.3 (i.e. a, w,
f satisfy all assumptions of at least one of these theorems). Denote by a, 0, f
a continuous extension of a, w, f to R™ (i.e. in the case of assumptions (5.7),
(5.8), (5.9)1 a € CF-L(R"), VF1a e L"(R™), VFa € LY(R™), © € CF-L(R"),
Vkd € L™(R™), etc.). If a, w are sufficiently small in corresponding norms, then
(due to continuity of extension) @, @ are also sufficiently small in corresponding
norms, such that there exists (in virtue of Theorem 5.1 or 5.2 or 5.3 with Q = R"™)
a unique solution Z of the problem

M+@-Vitaz=f in R
Then obviously
z2=2Z | O

5.2 Existence of solutions in weighted Sobolev spaces

Let Q C R™ be an unbounded domain in at least one direction. We introduce
the weights
(5.18) geckQ), g(x) >0, gx) = +00 as = =te — +oo,
at least for one direction e € R", such that te € Q, t > tg. We define weighted
Sobolev spaces W(kg’)q(Q), k=1,2,...,1< g < o0, as follows

(5.19) u € W(kg’)q(Q) if and only if ug € WH9(Q).

The corresponding norm reads
(5.20) lull(g) kg < lugllk,q.0
Last but not least introduce

k, k, _
19(9()]2' =077+ 300 Yoo ‘VHS *IngVew

0
(i=0,1,2) ¢
I e

I B L
(j = 3,4,5)

o, = 0b + DA i [TH e mgveu
+ kL | ylth—a lngvaw‘co + vagvkaQq

(i = 6,7).
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The most usual weights in applications are e.g. g(z) = 511, 3 > 0 or g(z) =

(1+1z|)?, B > 0, in the case of R, R” or Q exterior and g(x) = ePVI+aT in the
case of the pipe (2.2). For application of the latter case to compressible fluids see
Padula, Pileckas [PP].

Theorem 5.4. Letk=1,2,...,1<g<+00, Q€ B*) be a domain unbounded
in at least one direction. Let g be a weight (5.18) and U(g); (i = 0,1,2,) be
defined in (5.21). Suppose that

we k@), VI gVew e C%(Q) (@=0,...,s; s=0,...,k)

w-vlgn =0, acCt@), feWiI(Q).

(5.22)

Then there exist a constant aq > 0 (see Remark 2.1) such that:
If

(5.23)1 kq>n, VFa e LI(Q)
and

alﬁ(g)l <A
or if
(5.23)5 1<q<n, VFae L™(Q)
and

04119(9)2 < /\,

then there exists just one solution of problem (1.1) z € W(IZ’)‘]Q such that

1

(5.24) 121l (g) kg < Wﬂf”(g),hq

(where i = 1,2 refers to (5.23); and ¥ ,); are defined by (5.21)).

If we replace in (5.22) the hypothesis a € C*~1(Q) by the hypothesis a € C*(Q),
we have: There exists oy > 0 (see Remark 2.1) such that if

04119(9)0 <A,

then there exists just one solution z € W(kg’)q(Q) which satisfies estimate (5.24)
with ¢ = 0.
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PROOF OF THEOREM 5.4: Define a map T : Wk4(Q) — W*4(Q) which maps
¢(—=¢

(5.25) A{—Fw-V{—Fa{zgf—w-%C;

this map exists by Theorem 5.2, provided ©¥; (see (2.11)) is sufficiently small.
We easily estimate

Hw-Vg

ks
1+s—a et
p CH’“"’SZ%)X%IV gVl , ICllq
s=0a=

Hence £ satisfies estimate

(A = a4 05) 1€l < 9. llkq +F(g)illCleg

with 0/1 > 0.
Therefore, if 19(9)1' < A — )V, T is a contraction and possess a (unique)
fixed point (say £). Set z = %; then one easily verifies that z (€ W(kg’)q(Q))

is a solution of problem (1.1) and satisfies estimate (5.24). The uniqueness is
obvious. Theorem 5.4 is thus proved. O

Similarly we have (the proof is left to the reader)
Theorem 5.5. Let k = 2,3,..., 1 < ¢ < 400 and ) € B®) be a domain
unbounded in at least one direction. Let g be a weight which satisfies requirements
(5.18) and let ¥(y); (i =3,...,7) be constants defined in (5.21). Suppose that
w e Ch @), VA= In gvew € cO@), VIR In gV w € O(@)
(5.26) (@ =0,....k—1, a=0,...,8 §=0,....,k—=1), w-v]|gq =0,
a€ChF2([Q), fewriQ).

Then there exists a constant a; (see Remark 2.1) such that we have:
If

(5.27)1 1<q<n, VFw,VingV¥Fw e L™Q), VF 1o € L™(Q), VFa € LI(Q)

and
alﬁ(g)g <A

or if

(5.27)2 1<q<n, VFw, VingVFw e L™(Q), VFta e Whn(Q)
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and

a1¥(g)s <A
or if
(5.27)3 1<q<n, VFw, VingVFuw e L"(Q), V¥ la e WHi(Q)
and

a1¥(g)s <A
or if
(5.27)4 (k —1)g >n, VFw, VingVFw e LI(Q), VF~la e Whi(Q)
and

04119(5])6 <A
or if
(5.27)5 (k—1)g>n, VFw, VingVFw e LI(Q), VF 1o e Wh™(Q)
and

alﬁ(g)7 <A
Then there exists just one solution of problem (1.1)

z € W(I;’)q(ﬂ)
satisfying estimate
(5.28) 12l gy 0 < A_%Wmug),k,q.

(Herei=1,...,5 corresponds to (5.27);. For definition of ¥ y); see (5.21)).

5.3 Regularity of solutions
In this subsection we prove a result about the regularity of solutions.

restrict ourselves only to the case a = div w (since it is most important in ap-
plications). The general case can be studied by the same method. Nevertheless,
the assumptions would be, due to the technical reasons, much more complicated.

Therefore, this case is omitted here.

The following theorem is very important in several applications to compressible
fluids, see e.g. Novotny, Padula [NP1], [NP3], Novotny [N1], Galdi, Novotny,

Padula [GNP] and Novotny, Penel [NPe].
Theorem 5.6. Let km=1,2,..., m<k, 1<qp<-+oo, e B®). Let
welrQ), w-v|gg =0, a=divw, feWhyQ)nWm™PQ).

Then there exists a constant a; > 0 (see Remark 2.1) such that:
If

(5.29); kq>n, m <k, VFa e LI(Q)
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and .
or if
(5.29), kq>n, m=k, VFa e LI(Q) N LP(Q)
and .

a1y < A, mg = 09 4 glmr)
or if
(5.29)3 l1<qg<n, m<k, VFaeL"Q)
and .

a1z < A, 3 = 959 4 g{mP)
or if
(5.29)4 1<qp<n, m=k VFae L"(Q)
and .

apng < A, g = 195 D 4 ﬁgm’p)
or if
(5.29)5 1<q<mn, mp>n, k=m, VFa e LI(Q) N L™(Q)
and

ains < A, 5 = ﬂék’Q) + ﬁﬁm’p),

then we have: There exists a unique solution of problem (1.2)
z € WhQ) N W™P(Q)

such that

1

5.30 < -
(5.30) l12llk,q + 12[lmp < p—— (1f g + 11 llmp)

(here i = 1,2,3,4,5 corresponds to (5.29); and ¥; are defined in (2.11)).

PROOF: We prove the theorem under assumption (5.29);. The other cases are
similar and are left to the reader. According to Remark 5.2, it is sufficient to
investigate only the case Q@ = R™. According to Theorems 5.1 and 5.2, there
exist solutions of problem (1.1), 21 € W54(R™), 2o € W™P(R™) (provided 7y is
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sufficiently small). Denote by Z the difference Z = z1 — 2. It obviously satisfies
equation

(5.31) M 4+w-VzZ+divwz=0 ae. in R".
Using mollifier, we get for mollified 2
(5.32) )\25 +w - VZE + div wgg =Te in Rn

where re = w - VZ — (w - VZ)e.
Obviously (cf. Corollary 2.1)

re — 0 in Lfgc(ﬂ), 1 < sp < min(p, q),
re — 0 ae.in R™.

Multiply (5.32) by ¥r ¢, where ¢g is cut-off function (2.4) (with R sufficiently

great) and € WHO(R™) (to > max(p,¢,9',¢'), o' = p/(p = 1), ¢ = q/(¢ - 1)).
We get, after integration by parts,

(5.34) / Zehr(Ap —w - Vo) dx = / retpr pdxr + / ViR - wzepdx.
R’!L R?’L R?’L

Let 7 € C3°(R™). Then Theorem 5.1 and Remark 3.1 guarantee, for 9Jo(w,0)
(< mq) sufficiently small, existence of a unique solution

p € WhHio(R™)

(5.33)

of the problem
Ap—w-Vo=F

which satisfies estimate

1
5.36 <1 r
(5.30) el € y—arge 17

with o7 independent of s for any 1 < s < tg. We estimate

| [ revm wda] < Rl gy, 900,
| [ Vi zepda] < ules lrclogI Vo elo + lz2elonl Vor cloy]

< [wleo (I1z1lloq + z2llop + ) [IV0R ¢lly 5, + 1968 ¢l 6,

for ¢ sufficiently small and certain & > 0 (for definition of x(R) and Q2 see (2.5)).
The r.h.s. of the first inequality tends to 0 (for R fixed) as ¢ — 0 due to (5.33).
The r.h.s. of the second inequality tends to 0 by (2.6) and (5.36), as R — +o0.
We therefore have, in virtue of (5 34)

lim hm‘/ zewada: < lim ’/Zi/}RdI —‘/ z]-'d:c =0

R—+o00 \e—0 R—+o00
for every F € C3°(£2). This yields Z = 0. The other is obvious. O
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5.4 Existence of weak solutions in L%-spaces
A function z € L1(Q) is called a weak solution of problem (1.1) if and only if
it satisfies integral identity

(5.37) /Qz()\go —w- Vo + (a—divw)p) de = /chp dx

for any ¢ € C§°(€). It is seen that this solution is, in fact, strong. Indeed, if
z € L1(), then the distribution w - Vz € LY(Q2) as a consequence of identity
(1.1), and thus (1.1) holds a.e. in Q. We have the following statement

Lemma 5.1. Let 1 < g < o0, 2 € BM) and
(5.38) aeC'), well@), w-v|gg =0, feLIQ).

Then there exists a positive constant oy > 0 (see Remark 2.1) such that we have:
Let z € L1(2) be a weak solution of problem (1.1), then

(5.39) Allzllo.g < [l llo,q + aod10ll2ll0,q-
Recall that (see (2.11))

(5.40) V10 = lalco + |wle1-

PROOF: is similar as that one of Lemma 3.1. We want to derive estimate (3.11).
Since z € L9(Q), also w - Vz € LI(Q) and equation (1.1) holds a.e. in 2. We
multiply it by |z|972z, integrate over Q. For estimating term Jow- Vz|2|9722 du,

we use the reasoning (3.19)—(3.21) with y = z. The rest of the proof is obvious.
O

Having Lemma 5.1, we can formulate the following theorem, which gives a
statement similar to Theorem 5.1, in the case of only L%-summable r.h.s.

Theorem 5.7. (a) Let 1 < ¢ < o0, @ € BY) and
(5.41) aeC@), wel@), w-v|gg =0, feLiQ).

Then there exists a positive constant ag > 0(1) (see Remark 2.1) such that we
have: If

(5.42) a1t < A,

then there exists just one solution z € LY(Q2) of problem (1.1) satistying estimate

1
5.43 <= .
(5.43) 1zllo.q < 5= o190 1/ 1l0,q

(1) The constant a1 in Theorem 8.1 is, in fact, independent of ¢, see Remark 3.1.
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(b) Let a, w satisfy (5.41) and let g be a weight (5.18). Suppose moreover that
w-Ving € C°(Q). Then the statement of the theorem holds true if we replace

L) by Ly () = W@ 1l b | g (500 (5:19)-(5.20)) and o by
1910(g) =d10+ |w- 79|Co.

PrOOF: We perform the proof only for Q = R™; the general case Q) € BM) can
be treated standardly by the extension method.
Firstly, consider equation

(5.44) Azey tw Ve +acze) = fe, >0

with ac, f- being mollified a and f, respectively (cf. (2.8)) and Z(¢) being the
unknown function. Let @y = max (g, a1), where ag, o are defined in Lemma 3.1
and Theorem 5.1, respectively. If

apP10e = ao(|acler + [wler) < A,

then, in virtue of Theorem 5.1, there exists just one solution Z(e) € Wl’q(Q)7
which satisfies estimate

(5.45) 2(e)ll0,g < /\7”#”0,(1

If
A > 50(|a5|c1 + |’LU|CI) > @0(|aa|co + |w|cl),

then for any £ € L9(12), there exists a (unique) solution Z,) € W14(Q) of problem
(5.46) Xi(a) +w-VZe) +aZe) = fe + (X — NE.

It satisfies estimate

(5.47) (X = ToY10e)lZ () lo.g < [lfellog + (A = VEllo,q-

Define z € L9(Q2) as a limit lim._,q Z(c)- Then 7 satisfies equation

(5.48) AN +w-VZ+az=f+ (A= NE

and estimate

(5.49) (A = @0Y10:)[Zllo.q < fllo,1 + (X = Ml€llo.q-

The operator
T :LYQ) — LI(Q)

which maps £ onto Z is, in virtue of (5.49), a contraction in L9(Q2). It possesses
therefore a (unique) fixed point z € L9(Q2), which obviously satisfies the integral
identity (5.37) and estimate (5.43). The proof is thus complete. O
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5.5 About the decay of continuous solutions

In this section we prove that continuous solutions of equation (1.1) conserve
the decay of r.h.s., whatever is the size of the coefficients w, a (the only condition
is that w, a have to be small at infinity).

Theorem 5.8. Let Q € BY) be an unbounded domain and let g € C1(Q) be
defined as in (5.18). Suppose that

divw € €°(Q), a € CO().
Let 1 < p < co. Then there exists constant o (see Remark 2.1) such that if
1 .
(550) Oéo(lw . vg/g | CO,QR + E|w|CO7QR + |le w|C07QR + |a|co7QR) < )\

for all R > Rg > 0, then we have: If z € C%(Q) is a solution of problem (1.1) with

(a) gf € LP(2),

(b) gf EL®Q)NL"(Q)Vr, 1 <71y <71 < 005
then

(a) gf € LP(Q),
B3 ) of € L),

Remark 5.3. Condition (5.50) is automatically satisfied, e.g. if w-Vg/g = o(1),
div w,a = o(1).

PROOF: For 0 < R < R, take ¢yp(z) = 1 — h(z/R) and ¢ (z) = ¢(z/R), see
(2.4); here ¥ € C3°(Q) is taken in such a way that

Y(x) =1 —exp(=1/(Jz[ = 1)%) (1 <|a] <3/2),
P(x) =0 (|2 = 2),
P(x) =1 ([ <1).

Put grr = g¥gYr and multiply (1.1) by gpr
(5.52) zgRrR = —w¥p/o¥ar - V(9rR?) — la — (w - VgrR/9rR)|IRR? = 9RR.S

Notice that VgrRr /grr is well defined also outside QN Qyz (due to the choice of
1, it can be continuously extended by 0 to R™). Equation (5.52) can be regarded
as a transport equation in Qf/2 0 Qor, for unknown function o (= grrz). We
realize that under the hypothesis of Theorem 5.8, assumptions of Theorem 5.7
(see also Remark 8.1) are satisfied (for R sufficiently great); we thus get existence
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of a solution o € LP(Q%/2 N Qyr) (provided grrf € LP(Q5/2 N Qyr), which,
due to uniqueness, is equal to gprz. Multiplying (5.52) by |grr 2P~ 'grr 2 and

integrating over Of/2 n Qor, we get (after some calculations — see proof of
Lemmas 3.1-3.3)

l9rR Mo p 07/ 2000, < c[P00rRI9RR 0 0R2000, + 19RR 0 p.0R/2005)

where
Yoorr = |V(WRrYIR)|co ar/2n00,
+ lalco grr2nq,, T 10 VIRR/IRRIc0 0Rr/200,y

and c is independent of p, R, R. Passing to the limit R — oo, we get (5.51)7; the
limit p — oo in the resulting estimate yields (5.51)2. The proof is thus complete.
O

6. Existence of solution in homogenous Sobolev spaces and their duals

Homogenous Sobolev spaces play essential role in studying namely elliptic
problems in Q exterior 2 = R™ R} (and also in various domains unbounded
in all directions). For applications to compressible fluids, it sometimes seems use-

ful to have existence theorems for transport equation in ﬁé Q) (and its duals

H~14(Q)). For such situation see e.g. B. da Veiga [BV1] and Novotny, Padula
[NP1]. In the first part of this section we therefore investigate existence and reg-
ularity in ﬁé’q(ﬂ), respectively I?Iééq(ﬂ) spaces (see subsections 6.1 and 6.2, The-
orems 6.1, 6.2, and 6.2') and their duals H~12(Q), W~14(Q) (see subsection 6.3,
Theorem 6.3). In the last part of this section (see subsection 6.4, Theorems 6.4,
6.5) we prove certain regularity of solutions connected with homogenous Sobolev
spaces.
6.1 Existence in homogenous Sobolev spaces

Let © be an exterior domain to a compact region {2, in R™ (suppose without
loss of generality B € ). Define the spaces

V-llo,q 1V-llo,q

o~ 1 D —~ 17 o —_—

Ht(Q2) = C5o(Q) , Hy?(Q) =C5°(9)
where the superposed bar with the norm denotes completion with respect to the
corresponding norm. These are Banach spaces with norm

(1<qg<+00)

|- 11.g = IV-llo,g-

The dual space to ﬁé’ql(ﬁ) is denoted by H~17 () and equipped with usual

duality norm |- |_1 4. Recall fundamental properties of spaces ﬁéc’,q(ﬂ), fl&’q(ﬂ),
see Simader [S], Galdi, Simader [GS], Simader, Sohr [SiSol], [SiS02].

() H2I(Q) = {u:ue Ll (Q), Vue LI} | g

loc
(n < ¢ < +00) where |1 denotes factorization with respect to the addi-

tion of a constant.
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(i) HX(Q) = {u:ue LM/ (=D (Q), Vue LI} (1< q<n).
For any u € Holéq(Q), we have [|ullg nq/(n—q) < cllVullog-

(i) Let 1 < g <mnandletu € {u:uc /Z\Li]OC(Q), Vu € L4(Q)}. Then there
exists oo € RY such that u — uso € Hééq(Q). Moreover,

[u(R,w) — too|?dw < ¢ Rq_"/ |Vul? dz
S1 BR

(where 87 is a unit sphere). As an easy consequence of this statement we
find

(iv) Let 1 <g<m,1 <p <400 and v € {u:u € LL (Q), Vue LIQ)} N
LP(Q). Then u € HX(Q).

Further we have
(v) ﬁéc’,q(Q) = {u : there exists a sequence up, € C3°(Q)
such that upm — u in L] () and YV, — Vu in LY(Q)}.
(vi) ﬁé’q(ﬂ) ={u:ue Ll (Q), Vue LIQ), ulpgg = 0} (n < g < +00),

loc
Q #R"
Hy(Q) = {u:u e Ln/(=a)(Q), Vu e LUQ), u|gg =0} (1 < q<n),
Q #£R".

If Q = R”, then Hy'(R™) = HYY(R™).

(vii) ﬁol’q(Q) = {u : there exists a sequence un, € C5°(Q2)
such that upy — u in L] () and Vuy, — Vu in LI()}.

Proofs of (i)—(iii), (v)—(vii) are in [S], [GS] and [SiSol], [SiSo2]. We prove only
(iv).
PROOF OF (iv): Let ¢ < p < 4o00. Since u € LP(Q), there exists a sequence R;,
i — 400, such that Ri2 f81 |u(R;,w)|P dw — 0, where S; is a unit sphere with
infinitesimal element dw and u(R;,w) is written in spherical coordinates. This
implies || 5, [u(Ri;w)|?dw — 0 (by Hélder inequality) and necessarily uoo = 0 (see
(iii)).

Let 1 < p < g. Then there exists us € RL such that u — use € Had(Q) C
L”LECI(Q) (see (iii)). Therefore, by similar arguments as before, f51 |u(Ri,w) —
Uoo|P dw — 0, and necessarily us, = 0.

O

First we prove

Theorem 6.1. Let Q be an exterior domain with 9Q € C or Q = RZL_ or Q =R"
and

6.1) wecl'@), w-viga=0, acC'®), fe HLI(Q) (1<q<+oo).
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Then there exists a constant oy > 0 (see Remark 2.1) such that we have:
If

(6.2')1 a=0
and
a119'1 <A
or if
(6.2")9 1<qg<n, Vae L"(Q)
and
04119/2 < )\,

then there exists just one solution of problem (1.1) z € H éc’,q(Q) satisfying estimate
1

6.3/ <

(63) I < 3

(where i = 1,2 corresponds to (6.2);; ¥} are defined in (2.11)).

PRrROOF: We prove Theorem 6.1 with assumptions (6.2');. The proof with as-
sumptions (6.2')2 can be established in the same way, and therefore is left to the

reader. Let f € ﬁééq(Q) Then there exists a sequence {f;}22;, f € C§°(€2) such
that

fr—f in L{ (@), Vfr = Vf in LI(Q),

fr—f in Li-a(Q) (if1<q<n)

(see (v)). By Theorem 5.2, there exists a solution z, of problem (1.1) with f,
(instead of f) such that

2 e WH(Q), 2 € Lna(Q) (f1<q<n)

which satisfies uniform estimates
1
IVzrllo,q.0 < m|f|l,q,ﬂa
1
V(zr — 2 o< ——lfr = fmlig0-
|| ( T m)”O,q, /\—a119’1| T m| 24,

Multiplying (1.1) (with f;-) by |2/ 12, and integrating over Qp (Qr = QN Bg),
with arbitrary R, we get

1
llloasn < 555 (15 logn + 03 Varlo.an)
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and similarly for the difference
1 /
I = mlon < 53— g7 (I = fmllon + fhVar = Vanllog).

Therefore z, is a Cauchy sequence in ﬁéc’,q(Q) (see (v)), for ¥} sufficiently small.
The other is obvious. g

The proof of the following theorem is an easy consequence of Theorem 6.1, and
therefore is left to the reader.

Theorem 6.2. Let 1 < ¢ < +00, Q be exterior domain with 9Q € C! or Q = R7
or Q = R" and

(6.1) we @), w-v|gg =0, acc’@), fe Hy' ).

Then there exists a constant oy > 0 (see Remark 2.1) such that we have:
If

a=0
and
(6.2)1 a1y < A
or if
(6.2)2 1<g<n, Vae L"(Q)
and
04119/2 <A,

then there exists just one solution of problem (1.1) z € ﬁé 9(Q) satistying estimate

1
6.3 < —
(63) R ALY

(where i = 1,2 corresponds to (6.2); and ¥ are defined in (2.11)).

[0 Define for  exterior domain

- —_ v, —
HEQ) = CF@) T (1< g < oo, k=1,2..0)
(completion in ||V.|[;_ norm). It is useful to have a more regular version of
Theorem 6.2:

7
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Theorem 6.2'. Let Q be an exterior domain with 9Q € C¥ or Q = R (or
Q =R") and

(6.1 we k@), w-v|gg =0, accF @), feHEIQ).

Then there exists a constant ag > 0 (see Remark 2.1) such that we have:
If

(6.2//)1 a=0
and
a119'1 <A
or if
(6.2")4 1<q<n, VaeWrF17(Q)
and
a119/2 <A,

then there exists just one solution of problem (1.1) z € H]éc’,q(Q) satisfying estimate

(6.3") IVzllk-1,4 <

— IV fllk=

(where i = 1,2 corresponds to (6.2");, ¥} are defined in (2.11)).

6.2 Regularity of solutions

With Theorems 6.2' and 5.3 at hand, we can prove (similarly as Theorem 5.6)
a theorem about the regularity. It finds application, in particular, in investigating
two dimensional exterior compressible flows, see [GNP].

Theorem 6.3. Letk,m=1,2,...,1< g < 400,1 < p <n and2 be an exterior
domain (Q € ¢™ax(k:m)y or O = R™. Let

6.4) we™>EM Q) w-v|gg =0, a=divw, feWHIUQ)NHZPQ).

Then there exists a constant «; > 0 such that:

If

(6.5)1 k>m, kqg>n, VFa e LI(Q) nWm=bn(Q)
and . ,

or if

(6.5)2 k <m, Va e WmLn(Q)
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and . ,
arnh < A, ny = 9§D 49,

or if

(6.5)3 Ek>m, 1<qg<n, \VLI= L™(Q), Va € Wm—l,n(Q)

and

05177:{7) < /\7 77§ =

)

k? ! ).
o) gl

then there exists just one solution of problem (1.2) z € HP(Q) N Wka(Q)
satisfying estimate

1
66 1V2norp+ el € 5y (1971 + 1)

(2

(where i = 1,2,3 corresponds to (6.5); and v, 19;- are defined in (2.11)).

6.3 Existence of solutions in dual spaces to Sobolev spaces and to ho-
mogenous Sobolev spaces

For Q bounded (992 € C?), the existence of weak solutions was established
by B. da Veiga [BV2]. Here we follow step by step his duality argument and use
essentially the solvability of the adjoint problem, which was proved in Theorem 5.2
(in order to prove existence of weak solutions in W~=14(Q), Q € BK¥)) or in
Theorem 6.2 (in order to prove existence of weak solutions in H~14(0), Q exterior
domain or 2 = R™, R").

As far as applications are concerned, the most important case is that one with
a = div w. This corresponds to the transport equation (1.2).

It is necessary to recall the definition of weak solution (see e.g. B. da Veiga
[BV1]).

Definition 6.1.
(a) Let Q be exterior domain (9Q € C!) in R™ or @ = R" or @ = R and

fe H19Q), 1 < ¢ < +oo. Then z € ﬁo_l’q(Q) is a weak solution of
problem (1.1) if and only if

for every ¢ € Dg where
/ =1, / =1, /
D%:{w:weHoq(Q), w-VwEHOq(Q)}.

(Here (-,-) denotes duality in ﬁé’q/(ﬂ), % + % =1))
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(b) Let Q€ BW, fe W=14(Q), 1 < ¢ < +00. Then z € W—14(0) is a weak
solution of problem (1.1) if and only if

for every ¢ € ’DZJ/ where
DY = {(p Lo e WH(Q), w-Vp e Wol’ql(Q)}.

(Here (-, -) denotes duality in Wol’q(Q) and % + % =1,

Theorem 6.4. Let () € B(l), 1 < ¢ < +o0 and
(6.7) weCl@Q), w-v|pgo =0, acC@), feW b4Q).

Then there exists a constant ag > 0 (see Remark 2.1) such that we have:
If

(6.8)1 l<g< Ll . V(a — divw) € LY(Q)
n—
and
a1dg < A
or if
(6.8)2 % < ¢ < +00, V(a—divw) € L"(Q)
and
a1dg < A
or if
(6.8)3 1<q¢g< oo, a=divw
and
a1v19 < A,

then there exists just one weak solution z € W~14(Q) of problem (1.1) satisfying
estimate

1
zll—1,g £ ——— I fll-1,¢-
Iell 10 < g g1

(Here i = 1,2, 3 corresponds to (6.8); and 93—J1g are defined in (2.11).)



About the steady transport equation I 81

Theorem 6.5. Let 2 = R" Rl or Q be an exterior domain, 0} € C! and

6.9) weclQ), w-v|gn=0, acC’@), fe HQ) (1<q<+).

Then there exists a constant ag > 0 (see Remark 2.1) such that we have:
If

(6.10); Ll < ¢ < +00, V(a—divw) € L"(Q)
n—
and
a1dg < A
or if
(6.10)2 1<qg<+oo, a=divw
and
a1 < A,

then there exists just one weak solution of problem (1.1) z € H=14(0) satisfying
estimate

1
6.11 e < ————|fl1
(6.11) el € Tgrgefl-1a

(i = 1,2 refers to (6.10); and ¥; are defined in (2.11)).

PROOF: We prove only Theorem 6.5 with assumption (6.10)5. For the other cases,
it is easy to repeat the established argument, which is left to the kind reader. In
any case, we only follow step by step B. da Veiga’s arguments, proposed in [BV2].

Due to Theorem 6.1 there exists a bounded linear map B : ﬁol’q,(Q) — ﬁol’q,(Q)

(ie. B € L(Hy"(2))) such that
¢ = B¢

is a unique solution of the adjoint problem
Ap—w-Vo+ (a—divw)p =¢

with £ € ﬁé’q,(Q). Due to the uniqueness, B has inverse (say B~! = A). Its
domain of definitions is

D(4) = {so Lpe HyT(2), w-Vpe ﬁé’q/(ﬂ)};
hence it is dense in ﬁé’q/(ﬁ). The range of A is

R(4) = Hy" ()
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and its representation
Ap=Xdp—w-Ve+ (a—divw)p, ¢ € D(A).

Since A is a linear transformation with a bounded inverse, with domain of defi-
nition D(A) dense in ﬁé’q(Q) and with range R(A) = ﬁé’q (©), we deduce that
there exists an adjoint A* with dense definition domain D(A*) such that

(A*)—l — (A—l)* - B*

(see Hille [Hi, Example 10.4]). Since B € L(HY'? (Q)), we have B* € L(H~14(Q))
(the Banach space of bounded linear operators from H~14(Q) to H~14(Q)) and

therefore R
(4%)~1 e L(H Q)
and
HA*_lHE(ﬁ—l,q’) = HA_IHE(E(&,Q)-
Let u = (A*)71f.
Then (Ap,u) = (p, A*u) Vo € D(A), according to the definition of A. Moreover
(A, (A7) = (o, )

(here (-,-) denotes duality in ﬁé’q(Q)), hence u is a weak solution of problem
(1.1). Obviously, it is unique and

|u|—1,q = |(A*)_1f|—1,q < HBHE(ﬁl,q’(Q)ﬂﬂ—l,q-
The proof is thus complete. (|

7. About one particular regularity of solutions

As it is seen from Theorems 5.1-5.8, 6.1-6.5, the general property of transport
equation (provided the coefficients are small and sufficiently smooth) is the con-
servation of regularity and summability. Here we investigate this property in a
very particular situation:

(a) Let © € B®) and z € WH4(Q) be a solution of problem (1.1); then clearly
Az € WF=24(Q). Does the corresponding estimate

HAsz—2,q < CHAfHk—Q,q

(eventually with other quadratic terms at r.h.s.) hold?
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(b) Let Q be an exterior domain or @ = R" or Q@ = R} and z € ﬁé’q(Q) be a
solution of problem (1.1). Then, of course, Az € fl‘lvq(Q). Does the estimate

|AZ|—1,q < C|Af|—1,q

(eventually with other quadratic terms at r.h.s.) hold?

These two questions are by no means trivial especially when £ = 1 and
their positive answer has nice applications in the theory of compressible fluids,
cf. Novotny, Padula [NP1], Novotny [N1], [N3], Novotny, Penel [NPe], Padula,
Pileckas [PP].

The results of this section are not restricted only to A; the Laplace operator

can be replaced by any second order differential operator of the type aijWa;T
10T

(a;; € R1). This generalization is left to the kind reader.

Again, we restrict ourselves to the problem (1.2) (¢ = div w), since it is im-
portant in applications. The general problem can be treated in a similar way, but
the assumptions are more complicated.

Theorem 7.1.
(a) Let k=1,2,...,1 < g < +o0, Qe B%) and

(7.1) we k@), w-v|gg =0, a=divw, feWhkiQ)
and

(7.2)1 kq>n, VFa e LI(Q)

or

(7.2)2 1<qg<n, VFae L)

(b) Let k=2,3,...,1 < q < +o0, Q € B*) and

(7.1) we P HQ), w-v|pn =0, a=divw, feWkiQ)

and

(7.2)3 1<g<n, VFwe L"Q), VF7la € L"(Q), VFa € LU(Q)
or

(7.2)4 1<q<n, VFwe L"(Q), VFta e win(Q)

or

(7:2)s l<q<n, VFwe L™(Q), vk-14 e whia(Q)
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or
(7.2)6 (k—1)g >n, VFw e LI(Q), VF"la e Whi(Q)
or
(7.2)7 (k—1)q > n, VFw e LI(Q), VFla e Wh™(Q).

Let z € W54(Q) be a solution of problem (1.2). Then Az € Wk=24(Q) and
(7.3) [Az][k—2,4 < 1AF k-2, + Vil 2llk,q

where ¥; corresponds to (7.2); (it is defined in (2.11)) and c is a positive constant
(see Remark 2.1).

Theorem 7.2. Let Q be an exterior domain (9Q € C') or @ = R" or Q = R7
and

(7.4) weCQ), w-v|ga=0, a=divw, fewWhi(Q)
and

(7.5)1 kq >n, VFa e LI(Q)

or

(7.5)2 1<q<n, VFae L™(Q).

Let z € W14(Q) be a solution of problem (1.2). Then
Az e H19(Q)

and

(7.6) |Az[—1,4 < [Af]-1,4 + il 2]l1,q

where ¥; (i = 1,2) is defined in (2.11) and corresponds to (7.5);, and ¢ > 0 (see
Remark 2.1).

PROOF OF THEOREMS 7.1 AND 7.2: We prove only Theorem 7.2 under assump-
tions (7.4) and (7.5)1. The proofs of Theorem 7.1 and the rest of Theorem 7.2
are similar (even easier) and therefore left to the reader. We closely follow [NP1].
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Since w, f can be extended continuously to R™, it is convenient to consider
(1.2) in R™ (instead of €2, cf. Remark 5.2). Regularize (1.2) by using mollifier and
take A, we get

(7.7) AMze + Adiv(wz)e = Afe
Put, for ¢ € ﬁé’ql(R"),

Ay = —(Adiv(wz)e, ), Be = (div(wAze),¢)
where (, ) is a scalar product in L?(R™). We have

(V[(div w)z 4+ w - Vz]e, V2] V)

([Vdiv wz + divwVz + Vw - Vz 4+ w- VVz]e, Vo),
(div(div wVze) + div(w - VVze) — div(Vze - Vw), @)
—(dlv wVze +w-VVze — Vze - Vuw, Vga).

Coming back to (7.7), we get
/\(Azsa 80) + (diV (U)Azs)v <P) = (Afsa 80) +Ac + Be = (Af€7 ‘P) + C(a) + D(a)
where

Cey = (w- VVz = (w- VV2)e, V) = (¢(o), Vo)
Dy = ([Vzdivw + 2V divw + Vw - V2] — div wVze + V2 - Vu, V)

Hence
(7'8) (AzEv Ap —w - VSD) = (Afaa 90) + (C(s)v v@) + (d(e)7 VSD)'

In virtue of Corollary 2.1
ey llo,qrn — 0.

By basic properties of mollifier, cf. (2.10) and Sobolev imbedding theorem,
ldeyllo,grn < cd1]2]l1,q,Rm
and

diey = d=[Vzdivw+2Vdivw+ Vw - Vz] —divw - Vz + Vz - Vw
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in LY(R™). Hence {c(¢)}e>0 {d(e)}e>0 are Cauchy sequences in L(R™). On the

other hand, by Theorem 6.2, there exists just one solution ¢ € fl&’ql (R™) of the
problem

Ap—w -V =19

such that

IVello,q mr < clVill1grn

(provided ¢ is sufficiently small and ¢ € Elol o (R™)). Take the difference (7.8)—
(7.8)r; taking supremum over all ¢ € ﬁé’ql(Q), Vill1,q 0 <1, one gets

|AZ€/ - AZa’|—1,q,[R" < C|Afa’ - Afa’|—1,q,R" + Hd(e) - d(e’)”O,q,R"
+ lle@e) = ¢enllogrn-

Hence {Az:}.>0 is a Cauchy sequence in H~14(R"). Clearly
Az. — Az in H V9RM).

Taking in (7.8) a supremum over all ¢ € fl&’ql (R™), [[V9][1,4Rn < 1, one arrives
at

|Aze|_1,grn < c ([ fell1,grn + 121,687 + ) ll0,g,R7
(e)

which yields (7.6). The proof is thus complete. O

8. A remark about one possible generalization

In this section we explain how to weaken the assumptions on the smallness of
coefficients a, w. This observation is due to M. Padula.

It is easily seen from the proofs of Lemmas 3.1-3.3, which are dealing with
estimates of solutions, that we never need the complete norms |w|cr (k=1,2,...)
but only |[Vw|ck-1. Indeed in estimates (3.11) and (3.14) the bound |w|c1 can be
replaced by more precise one, which is | div w|co and in (3.15), the bounds |w|;x
and |w|ck-1 by more precise one, |Vw|pox-1 and |Vw|ok-2, respectively.

The consequences of this observation are formulated in the following remark.
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Remark 8.1. Put

38D (w,a) = [Vuler s + lalgs
95D (w, a) = [Vwlpr1 + |aler—1 + [VFalloq
759 (w,a) = |[Vawlgea
955 (w,a) = [Vl + laler-1 + [|V¥allon
935D (1, a) = [Vwler-1 + laler-1 + | Valle—1.n
Eék’q)(w,a) = |Vwler—2 + [alee—2 + | VFwllon + [V Lallo,n+
) . +[[V¥allo,g
93 (w,a) = |Vulers +lalor—2 + [VFwllon + V¥ all1n
757 w,0) = [Vulgrs + lalgs—s + [VFwlon + [V* a1
Eék’q)(w,a) = [Vw|er-2 + |alee-2 + [ VFwllog + V¥ a4
TP (w, a) = [Vwler-a + laler-2 + [ TRulloq + V5 a1
T8 (w, a) = [Vawleo + |aleo + V(@ — div w)]g (% = 1)
Eg(k’q)(w,a) = |Vw|eo + |aleo + |V (a — div w) o
El(g’q)(w,a) = [Vw|co + |alco
Then the following statements remain valid if we replace 9, j = 0,1,...,10 (see

(2.11)) systematically by J; (see (8.1)).

0 Lemma 3.1, 3.2 and 3.3 about estimates independent of the domain.

O Theorems 4.2 and 4.3 about existence and uniqueness of solutions in R3.

[0 Theorems 5.1, 5.2, 5.3 about existence and uniqueness of solutions in 2 € Bk,
[0 Theorem 5.6 about the regularity of solutions.

O Theorem 5.7 about existence of weak solutions in Lebesgue spaces.

O Theorems 6.1 and 6.2 about the solvability in homogenous Sobolev spaces.

O Theorem 6.3 about the regularity in homogenous Sobolev spaces.

(] Theorems 6.4 and 6.5 about the solvability in dual spaces.

[0 Theorems 7.1 and 7.2 about estimates of Laplacian of solutions.
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