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On one class of solvable boundary value problems

for ordinary differential equation of n-th order

Nguyen Anh Tuan

Abstract. New sufficient conditions of the existence and uniqueness of the solution of
a boundary problem for an ordinary differential equation of n-th order with certain
functional boundary conditions are constructed by the method of a priori estimates.

Keywords: boundary problem with functional conditions, differential equations of n-th
order, method of a priori estimates, differential inequalities

Classification: 34B15, 34B10

Introduction

In the paper we give new sufficient conditions for existence and uniqueness of
the solution to the problem

u(n) = f(t, u, . . . , u(n−1))(1)

ℓi(u, u
(1), . . . , u(k0−1)) = 0, i = 1, . . . , k0(21)

Φ0i(u
(i−1)) = Φi(u

(k0), u(k0+1), . . . , u(n−1)), i = k0 + 1, . . . , n(22)

where f : 〈a, b〉 × Rn → R satisfies the local Carathéodory condition and for

each i ∈ {1, . . . , k0}, ℓi : [C(〈a, b〉)]k0 → R is a linear continuous functional and
for each i ∈ {k0 + 1 . . . n}, Φ0i — the linear nondecreasing continuous functional
on C(〈a, b〉) is concentrated on 〈ai, bi〉 ⊆ 〈a, b〉, (i = k0 + 1, . . . , n) (i.e. the
value of Φ0i depends only on functions restricted to 〈ai, bi〉, and the segment can
be degenerated to a point). Φi (i = k0 + 1, . . . , n) are continuous functionals

on [C(〈a, b〉)]n−k0 . In general Φ0i(1) = ci (i = k0 + 1, . . . , n), without loss of
generality we can suppose Φ0i(1) = 1 (i = k0 + 1, . . . , n).
Problem (1), (2) for k0 = 0 is solved in paper [4].
Throughout the paper assume:

(3) Boundary value problem u(k0) = 0 possesses only the trivial solution

with condition (21).
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Problem for differential equation (1) together with boundary condition

k0
∑

j=1

aij · u(j−1)(a) + bij · u(j−1)(b) = 0 (i = 1, . . . , k0)

u(i−1)(ti) = ci (i = k0 + 1, . . . , n)

is not the special case of problems in [1] and [4]. On the other hand, the boundary
value problem with the same two groups of condition but in opposite order for
cj = 0 is the special case of problems, which were studied in [1].

Main result

We adopt the following notation:
〈a, b〉 — a segment, −∞ < a ≤ ai ≤ bi ≤ b < +∞ (i = k0 + 1, . . . , n), R

n —
n-dimensional real space with points x = (xi)

n
i=1 normed by ‖x‖ =

∑n
i=1 | xi |,

Rn
+ = {x ∈ Rn : xi ≥ 0 i = 1, . . . , n},

Cn−1(〈a, b〉) — the space of functions continuous together with their derivatives
up to the order n− 1 on 〈a, b〉 with the norm

‖u‖Cn−1(〈a,b〉) = max

{

n
∑

i=1

| u(i−1)(t) |: a ≤ t ≤ b

}

,

ACn−1(〈a, b〉) — a set of all functions absolutely continuous together with their
derivatives to the (n − 1)-order on 〈a, b〉, the space Lp(〈a, b〉) is the space of
functions integrable on 〈a, b〉 in p-th power with a norm

‖u‖Lp =

{

[
∫ b
a |u(t)|pdt]1/p for 1 ≤ p <∞

vraimax{| x(t)| : a ≤ t ≤ b} for p =∞,

Lp(〈a, b〉, R+) = {u ∈ Lp(〈a, b〉) : u(t) ≥ 0, t ∈ 〈a, b〉}. If x = (xi(t))
n
i=1 ∈

[C(〈a, b〉)]n and y = (yi(t))ni=1 ∈ [C(〈a, b〉)]n, then x ≤ y if and only if xi(t) ≤
yi(t) for all t ∈ 〈a, b〉 and i = 1, . . . , n. A functional Φ : [C(〈a, b〉)]n → R+
is said to be homogeneous iff: Φ(λx) = λΦ(x) for all λ ∈ R+ x ∈ [C(〈a, b〉)]n
and nondecreasing if Φ(x) ≤ Φ(y) for all x, y ∈ [C(〈a, b〉)]n, x ≤ y. Let us
consider the problem (1), (2). Under the solution we understand the function with
absolutely continuous derivatives up to the order (n− 1) on 〈a, b〉, which satisfies
the equation (1) for almost all t ∈ 〈a, b〉 and fulfils the boundary condition (2).
To solve (1), (2) we specify a class of auxiliary functions

g, ℓ1, ℓ2 . . . ℓk0 , hk0+1 . . . hn, Ψk0+1 . . .Ψn.
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Definition. Let ℓi : [C(〈a, b〉)]k0 → R (i = 1, . . . , k0) be the linear continuous

functionals, Ψi : [C(〈a, b〉)]n−k0 → R+ (i = k0 + 1, . . . , n) the homogeneous con-
tinuous nondecreasing functionals and g, hi ∈ L1(〈a, b〉, R+) (i = k0 + 1, . . . , n).
If the system of differential inequalities

|̺′i(t)| ≤ |̺i+1(t)| t ∈ 〈a, b〉 (i = 1, . . . , n− 1)(41)

|̺′n(t)− g(t) · ̺n(t)| ≤
n

∑

j=k0+1

hj(t)|̺j(t)|, t ∈ 〈a, b〉(42)

with boundary conditions

ℓi(̺1, . . . , ̺k0) = 0 (i = 1, . . . , k0)(51)

min{|̺i(t)| : ai ≤ t ≤ bi} ≤ Ψi(|̺k0+1|, . . . , |̺n|) (i = k0 + 1, . . . , n)(52)

has only the trivial solution, we say that

(6)
(g, ℓ1, ℓ2, . . . , ℓk0 , hk0+1, . . . , hn,Ψk0+1, . . . ,Ψn) ∈

LN(〈a, b〉, ak0+1, . . . , an, bk0+1, . . . , bn).

Remark. If k0 = 0 we have

LN(〈a, b〉, a1, a2, . . . , an, b1, . . . , bn) = Nic(〈a, b〉, a1, . . . , an, b1, . . . , bn)

from paper [4].

Theorem 1. Let the condition (6) be satisfied and let the data f , Φk0+1, . . . ,Φn

of (1), (2) satisfy the inequalities

[f(t, x1, x2, . . . , xn)− g(t) · xn] sign xn ≤
n

∑

j=k0+1

hj(t) · |xj |+ ω(t,
n

∑

j=1

|xj |)

for t ∈ 〈an, b〉, x ∈ Rn(71)

[f(t, x1, x2, . . . , xn)− g(t) · xn] sign xn ≥ −
n

∑

j=k0+1

hj(t)|xj | − ω(t,
n

∑

j=1

|xj |)

for t ∈ 〈a, bn〉, x ∈ Rn(72)

|Φi(u
(k0), . . . , u(n−1))| ≤ Ψi(|u(k0)|, . . . , |u(n−1)|) + r

for (i = k0 + 1, . . . , n),(8)

where r ∈ R+, ω : 〈a, b〉 × R+ → R+ and ω(·, ̺) ∈ L(〈a, b〉, R+) ∀̺ ∈ R+, ω(t, ·)
is nondecreasing for all t ∈ 〈a, b〉 and

(9) lim
̺→+∞

1

̺

∫ b

a
ω(t, ̺) dt = 0.

Then the problem (1), (2) has at least one solution.

To prove Theorem 1 the following lemma is suitable.
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Lemma 1. Let the condition (6) be satisfied. Then there exists a nonnegative
constant ̺ > 0 such that the estimate

(10) ‖u‖Cn−1(〈a,b〉) ≤ ̺(r + ‖h0‖L1(〈a,b〉))

holds for each constant r ≥ 0, h0 ∈ L1(〈a, b〉, R+) and for each solution u ∈
ACn−1(〈a, b〉) of the differential inequalities

(111)
[u(n)(t)− g(t) · u(n−1)(t)] · sign u(n−1)(t) ≤

n
∑

j=k0+1

hj(t)|u(j−1)(t)|+

+h0(t) for an ≤ t ≤ b

(112)
[u(n)(t)− g(t) · u(n−1)(t)] · sign u(n−1)(t) ≥ −

n
∑

j=k0+1

hj(t)|u(j−1)(t)|−

−h0(t) for a ≤ t ≤ bn

with boundary condition (21) and

(12) min{|u(i−1)(t)| : ai ≤ t ≤ bi} ≤ Ψi(|u(k0)|, . . . |u(n−1)|) + r
(i = k0 + 1, . . . , n).

Proof: Let us denote by M the set of all 3-tuples (u, h0, r) such that u ∈
ACn−1(〈a, b〉), h0 ∈ L1(〈a.b〉), r ≥ 0 and the relations (21), (111), (112) and (12)
are satisfied. It is easy to verify that (u, h0, r) ∈ M if and only if the 3-tuple

(u(k0), h0, r) fulfils the assumptions of Lemma 1 in [4] (with n − k0 in the place
of n). Hence there exists ̺1 > 0 such that

(13) ‖u(k0)‖Cn−k0 (〈a,b〉) ≤ ̺1(r + ‖h0‖L1(〈a,b〉))

holds for all (u, h0, r) ∈ M . Furthermore, by the assumption (3) there exists the

Green function G(t, s) of the boundary value problem u(k0) = 0, (21). Conse-
quently, for any (u, h0, r) ∈M , the relations

(14) u(i−1)(t) =

∫ b

a

∂(i−1)G(t, s)

∂t(i−1)
u(k0)(s) ds, t ∈ 〈a, b〉, i = 1, 2, . . . , k0

are true. Putting

̺2 = max
a≤t≤b

k0
∑

i=1

∫ b

a

∣

∣

∣

∂(i−1)G(t, s)

∂(t)(i−1)

∣

∣

∣
ds,
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we obtain the relation

(15) ‖u‖Ck0(〈a,b〉) ≤ ̺1̺2(r + ‖h‖L1(〈a,b〉))

holds for all (u, h0, r) ∈ M . We put ̺ = ̺1 + ̺1 · ̺2, then (10) follows from (13)
by (15). �

Proof of Theorem 1: Let ̺ > 0 be the constant from Lemma 1. According to
(9) there exists constant ̺0 > 0 such that

(16) ̺(r +

∫ b

a
ω(t, ̺0) dt) ≤ ̺0.

Putting

(17) χ(s) =











1 for |s| ≤ ̺0

2− |s|
̺0

for ̺0 ≤ |s| ≤ 2̺0,
0 for |s| > 2̺0

f̃(t, x1, x2, . . . , xn) = χ(‖x‖)[f(t, x1, x2, . . . , xn)− g(t) · xn],(18)

Φ̃i(u
(k0), . . . , u(n−1)) = χ(‖u‖Cn−1〈a,b〉)Φi(u

(k0), . . . , u(n−1))(19)

(i = k0 + 1, . . . , n).

We consider the problem

(20) u(n)(t) = g(t)u(n−1)(t) + f̃(t, u(t), . . . , u(n−1)(t))

with condition (21) and

(21) Φ0i(u
(i−1)) = Φ̃i(u

(k0), . . . , u(n−1)) (i = k0 + 1, . . . , n).

The relations (18), (19) immediately imply that f̃ : 〈a, b〉 ×Rn → R satisfies the

local Carathéodory conditions, Φ̃i : [C(〈a, b〉)](n−k0) → R (i = k0 + 1, . . . , n) are
continuous functionals,

(22) f0(t) = sup{|f̃(t, x1, . . . , xn)| : (xi)
n
i=1 ∈ Rn} ∈ L1(〈a, b〉)

and

(23) ri = sup{|Φ̃i(u
(k0), . . . , u(n−1))| : u ∈ Cn−1(〈a, b〉)} < +∞.

Now we want to show that the homogeneous problem

(200) u(n) = g(t) · u(n−1)(t)
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with conditions (21) and

(210) Φ0i(u
(i−1)) = 0 (i = k0 + 1, . . . , n)

has only trivial solution. Let u be an arbitrary solution of this problem. Then

u(n−1)(t) = c · w(t)
where c = const and w(t) = exp[

∫ t
a g(s) ds].

According to (210) and the character of functional Φ0n we get

Φ0n(u
(n−1)) = 0 = c · Φ0n(w).

From Φ0n(w) ≥ exp(−
∫ b
a |g(t)| dt) · Φ0n(1) > 0 it follows that c = 0 and u(n−1)

= 0. Similarly we have u(n−2) ≡ 0, . . . , u(k0) ≡ 0, therefore u is a solution of the
differential equation u(k0) = 0 with condition (21). By hypothesis (3) we have
u ≡ 0. Using 2.1 from [3], we obtain that the condition (22), (23) and the unicity
of trivial solution of each problem (200), (210), (21) guarantees the existence of
solutions of the problem (20), (21), (21). Let u be the solution of problem (20),
(21), (21). We want to show that

(24) ‖u‖Cn−1(〈a,b〉) ≤ ̺0.

From (18) and (7) we have

[u(n)(t)− g(t)u(n−1)(t)] · sign u(n−1)(t) =
= f̃(t, u(t), . . . , u(n−1)(t)) · sign u(n−1)(t) =

= χ(

n
∑

i=1

|u(i−1)(t)|)[f(t, u, . . . , u(n−1))− g(t)u(n−1)(t)] · sign u(n−1)(t) ≤

≤ χ(

n
∑

j=1

|u(j−1)(t)|)[
n

∑

j=k0+1

hj(t)|u(j−1)(t)|+ ω(t,
n

∑

j=1

u(j−1)(t)|)] ≤

≤
n

∑

j=k0+1

hj(t)|u(j−1)(t)|+ ω(t, 2̺0) for t ∈ 〈an, b〉.

Similarly

[u(n)(t)− g(t)u(n−1)(t)] · sign u(n−1)(t) ≥

≥ −
n

∑

j=k0+1

hj(t)|u(j−1)(t)| − ω(t, 2̺0) for t ∈ 〈a, bn〉.

From (8) and the character of functionals Φ0i (i = k0 + 1, . . . , n) imply that

min{|u(i−1)(t)| : ai ≤ t ≤ bi} ≤ |Φ0i(u(i−1))| ≤
≤ Ψi(u

(k0), . . . , u(n−1)) + r.

Therefore by Lemma 1 and by (16), (24) holds. Then χ(
∑n

j=1 |u(j−1)(t)|) = 1
and hence by (18), (19) u is a solution of problem (1), (2). �



On one class of solvable boundary value problems . . . 305

Theorem 2. Let the condition (6) be satisfied and let the data f,Φk0+1, . . . ,Φn

of (1), (2) satisfy the inequalities

(251)

{[f(t, x11, . . . , x1n)− f(t, x21, . . . , x2n)]− g(t)[x1n − x2n]}×

× sign [x1n − x2n] ≤
n

∑

j=k0+1

hj(t)|x1j − x2j |

for t ∈ 〈an, b〉, x1, x2 ∈ Rn,

(252)

{[f(t, x11, . . . , x1n)− f(t, x21, . . . , x2n)]− g(t)[x1n − x2n]}×

× sign [x1n − x2n] ≥ −
n

∑

j=k0+1

hj(t)|x1j − x2j |

for t ∈ 〈a, bn〉, x1, x2 ∈ Rn,

(26)

[Φi(u
(k0), . . . , u(n−1))− Φi(v

(k0), . . . , v(n−1))] ≤
≤ Ψi(|u(k0) − v(k0)|, . . . , |u(n−1) − v(n−1)|)
for u, v ∈ Cn−1(〈a, b〉) (i = k0 + 1, . . . , n).

Then the problem (1), (2) has unique solution.

Proof: Let us put ω(t, ̺) = |f(t, 0 . . . 0)|, r = max
i=k0+1,...,n

|Φi(0, . . . , 0)|. From
(25), (26) and Theorem 1 follows that problem (1), (2) has a solution. We shall
prove its uniqueness.
Let u and v be arbitrary solutions of the problem (1), (2). Put

̺i(t) = u
(i−1)(t)− v(i−1)(t) (i = 1, . . . , n).

From (25) follows that

(27) |̺′n(t)− g(t) · ̺n(t)| ≤
n

∑

j=k0+1

hj |̺j |.

From (26) and the character of ℓi (i = k0 + 1, . . . , n) and Φ0i (i = k0 + 1, . . . , n)
we have

(28)

min{|̺i(t)| : ai ≤ t ≤ bi} = Φ0i(min{|̺i(t)| : ai ≤ t ≤ bi}) ≤
≤ |Φ0i(̺i)| ≤ Ψi(|̺k0+1|, . . . , |̺n|) (i = k0 + 1, . . . , n)

ℓi(̺1, . . . , ̺k0) = 0 for i = 1, . . . , k0.

Therefore by (6) we have ̺i(t) ≡ 0 (i = 1, . . . , n), i.e. u(t) ≡ v(t). �
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Effective criteria

Theorem 3. Let the inequalities

(291)
f(t, x1, . . . , xn) · sign xn ≤

n
∑

j=k0+1

hj(t)|xj |+ ω(t,
n

∑

j=1

|xj |)

for t ∈ 〈an, b〉, x ∈ Rn,

(292)
f(t, x1, . . . , xn) · sign xn ≥ −

n
∑

j=k0+1

hj(t)|xj | − ω(t,

n
∑

j=1

|xj |)

for t ∈ 〈a, bn〉, x ∈ Rn,

(30)
|Φi(u

(k0), . . . , u(n−1))| ≤
n

∑

j=k0+1

rij‖u(j−1)‖Lq〈a,b〉 + r

for u ∈ Cn−1(〈a, b〉) (i = k0 + 1, . . . , n)

hold, where r, rij ∈ R+ (i, j = k0+1, . . . , n), ω : 〈a, b〉×R+ → R+ is a measurable
function nondecreasing in the second variable satisfying (9), hi ∈ Lp(〈a, b〉, R+),
p ≥ 1; 1/p+ 2/q = 1,

(31)

si =
n

∑

m=k0+1

{(b− a)1/q ×
n

∑

j=i

[
2(b− a)

π
]
2

q
(j−i)

(

j−1
∏

k=i

△k)rjm+

+[
2(b− a)

π
]
2

q
(n+1−i)

(

n−1
∏

k=i

△k)h0m} < 1 (i = k0 + 1, . . . , n),

where

△k = max{(b− ak)
1− 2

q , (bk − a)
1− 2

q } (k = k0 + 1, . . . , n),

h0m = max{‖hm‖Lp(〈a,bm〉), ‖hm‖Lp(〈am,b〉)} (m = k0 + 1, . . . , n).

Then the problem (1), (2) has a solution.

Theorem 4. Let the inequalities

(321)

[f(t, x11, . . . , x1n)− f(t, x21, . . . , x2n)] sign [x1n − x2n] ≤

≤
n

∑

j=k0+1

hj(t)|x1j − x2j |

for t ∈ 〈an, b〉, x1, x2 ∈ Rn,
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(322)

[f(t, x11, . . . , x1n)− f(t, x21, . . . , x2n)] sign [x1n − x2n] ≥

≥ −
n

∑

j=k0+1

hj(t)|x1j − x2j |

for t ∈ 〈a, bn〉, x1, x2 ∈ Rn,

(33)

|Φi(u
(k0), . . . , u(n−1))− Φi(v

(k0), . . . , v(n−1))| ≤

≤
n

∑

j=k0+1

rij‖u(j−1) − v(j−1)‖Lq(〈a,b〉)

for u, v ∈ Cn−1(〈a, b〉) (i = k0 + 1, . . . , n)

hold, where the functions hi and constants rij and si satisfy the assumptions of
Theorem 3. Then the problem (1), (2) has unique solution.

We consider the differential equation

(34) u
′′

= f(t, u, u′)

with boundary condition

(351) ℓ(u) =

∫ b

a
p(t) · u(t) dt+ ξu(t0) = 0

(352) Φ02(u
′) = Φ2(u

′)

where f : 〈a, b〉 × R2 → R satisfies the local Carathéodory condition and p(t) ∈
C(〈a, b〉), ξ ∈ R, t0 ∈ 〈a, b〉, Φ02 — the linear non-decreasing continuous func-
tional on C(〈a, b〉) is concentrated on 〈a2, b2〉 ⊂ 〈a, b〉 (e.g.

Φ02(u
′) =

∫ b2

a2

q(t) · u′(t) dt,

q(t) ∈ C(〈a, b〉, R+)).
Φ2 : C(〈a, b〉)→ R is a continuous functional.

Theorem 5. Let the inequalities

(361) f(t, x1, x2) · sign x2 ≤ h(t) · |x2|+ ω(t,
2

∑

i=1

|xi|)

for a2 ≤ t ≤ b, (x1, x2) ∈ R2,

(362) f(t, x1, x2) · sign x2 ≥ −h(t) · |x2| − ω(t,
2

∑

i=1

|xi|)
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for a ≤ t ≤ b2, (x1, x2) ∈ R2.

(37) |Φ2(u′)| ≤ m.‖u′‖L2(〈a,b〉) + r

hold, where m, r ∈ R+, h(t) ∈ L2(〈a, b〉, R+),
√
b− a(m+ ‖h‖L2(〈a,b〉)) < 1,

∫ b

a
p(t) dt+ ξ 6= 0,

ω : 〈a, b〉 × R+ → R+ is a measurable function nondecreasing in the second
variable satisfying (9).
Then the problem (34), (35) has at least one solution.

Proof: We put
g(t) ≡ 0; ψ2(|x2|) = m · ‖x2‖L2(〈a,b〉)

for x2 ∈ C(〈a, b〉).
By Theorem 1 we must prove that the data (g, h, ℓ, ψ2) are of the class
LN(〈a, b〉, a2, b2). Let the vector (̺1(t), ̺2(t)) be the solution of the problem (38),
(381) |̺′1(t)| ≤ |̺2(t)| a ≤ t ≤ b

(382) |̺′2(t)| ≤ h(t)|̺2(t)| a ≤ t ≤ b

with boundary condition

(391) ℓ(̺1) =

∫ b

a
p(t) · ̺1(t) dt+ ξ · ̺1(t0) = 0

(392) min{|̺2(t)| : a2 ≤ t ≤ b2} ≤ m‖̺2‖L2(〈a,b〉).

We shall prove that this solution is zero. Let us choose τ0 ∈ 〈a2, b2〉 so that
|̺2(τ0)| = min{|̺2(t)| : a2 ≤ t ≤ b2}.

Then integrating relation (382) and using Hölder inequality we obtain

|̺2(t)| ≤ |̺2(τ0)|+ |
∫ t

τ0

h(s)|̺2(s)| ds|

≤ m‖̺2‖L2(〈a,b〉) + |
∫ b

τ0

h(s)|̺2(s)| ds|

and

‖̺2‖L2(〈a,b〉) ≤
√
b− a(m+ ‖h‖L2(〈a,b〉))×

×‖̺2‖L2(〈a,b〉).

Since
√
b− a · (m+ ‖h‖L2(〈a,b〉)) < 1, it follows that ̺2(t) ≡ 0.

From (381) we have
̺1(t) ≡ C = const.

The relation (391) implies that ̺1(t) ≡ 0, because
∫ b
a p(t) dt+ ξ 6= 0. �
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Theorem 6. Let the inequalities

[f(t, x11, x12)− f(t, x21, x22)] · sign [x12 − x22] ≤
≤ h(t)|x12 − x22|

for a2 ≤ t ≤ b; (x11, x12), (x21, x22) ∈ R2,

[f(t, x11, x12)− f(t, x21, x22)] · sign [x12 − x22] ≥
≥ −h(t)|x12 − x22|

for a ≤ t ≤ b, (x11, x12), (x21, x22) ∈ R2,

|Φ2(u′)− Φ2(v′)| ≤ m‖u′ − v′‖L2(〈a,b〉)

for u, v ∈ C1(〈a, b〉) hold, where the functionals h and m satisfy the assumptions
of Theorem 5. Then the problem (34), (35) has unique solution.
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