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Operational quantities derived from the norm

and generalized Fredholm theory

Manuel Gonzalez, Antonio Martinon

Abstract. We introduce and study some operational quantities associated to a space ideal A.
These quantities are used to define generalized semi-Fredholm operators associated to A,
and the corresponding perturbation classes which extend the strictly singular and strictly
cosingular operators, and we study the generalized Fredholm theory obtained in this way.
Finally we present some examples and show that the classes of generalized semi-Fredholm
operators are non-trivial for several classical space ideals.
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0. Introduction.

Several operational quantities have been used to characterize the classes of op-
erators of the classical Fredholm theory: upper semi-Fredholm operators, lower
semi-Fredholm operators, compact operators, strictly singular operators and strictly
cosingular operators. See, for example, [17], [18], [20], [21]. These quantities are
defined in terms of the class of finite dimensional spaces.

In this paper we develop a Fredholm theory associated to a space ideal by means
of some suitable operational quantities.

In Section 1 we present a survey of the main results of classical Fredholm theory.
Then, in Section 2, we introduce and study some operational quantities associated to
a space ideal A. These quantities are used in Section 3 to define generalized semi-
Fredholm operators associated to A, and the corresponding perturbation classes
which extend the strictly singular and strictly cosingular operators, and we study
the generalized Fredholm theory obtained in this way. Finally, in Section 4, we
present some examples and show that the classes of generalized semi-Fredholm
operators are non-trivial for several classical space ideals.

Notations and preliminaries.

X, Y, Z are Banach spaces; X∗ the dual space of X ; BX the closed unit ball
of X ; IX the identity operator of X ; L(X, Y ) the space of the operators (linear and
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continuous) between X and Y ; n(T ) := ‖T ‖ the norm, N(T ) the kernel, R(T )
the range and T ∗ the dual of the operator T ∈ L(X, Y ). M, N, U, V are (closed)

subspaces; JM : M → X the inclusion of M in X ; QU : X → X/U the quotient
map.

The classes of operators which are used in classical Fredholm theory are defined
below.

Definition 1. Let X, Y be Banach spaces and T ∈ L(X, Y ).

(1) T is an injection ⇐⇒ N(T ) = {0} and R(T ) is closed.
(2) T is surjection ⇐⇒ R(T ) = Y .
(3) T is upper semi-Fredholm (T ∈ SF+) ⇐⇒ dim(N(T )) < ∞ and R(T ) is
closed.

(4) T is lower semi-Fredholm (T ∈ SF−)⇐⇒ R(T ) is closed and dim(Y/R(T ))
< ∞.

(5) T is strictly singular (T ∈ SS)⇐⇒ TJM injection implies dim(M) < ∞.
(6) T is strictly cosingular (T ∈ SC) ⇐⇒ QUT surjection implies dim(Y/U)

< ∞.

1. The classical case.

Let F denote the class of all finite dimensional Banach spaces. For X an infinite
dimensional Banach space, let SF(X) be the set of subspaces M ⊂ X such that
M /∈ F.

If T ∈ L(X, Y ), from the norm, n(T ) := ‖T ‖, we can derive the following opera-
tional quantities:

inF(T ) := inf{n(TJM ) :M ∈ SF(X)},

sinF(T ) := sup{inF(TJM ) :M ∈ SF(X)}.

The quantity inF was introduced by B. Gramsch (see [17]) and sinF by M. Schech-
ter [17].

Dually, for Y an infinite dimensional Banach space, let SF(X) be the set of
subspaces U ⊂ X such that X/U /∈ F. If T ∈ L(X, Y ), we can derive the quantities:

inF(T ) := inf{n(QUT ) : U ∈ SF(Y )},

sinF(T ) := sup{inF(QUT ) : U ∈ SF(Y )}.

The operational quantities inF and sinF were introduced by L. Weis [20].

These quantities have been used to characterize the classes SF+, SF−, SS and
SC, and to obtain some results of perturbation.
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Theorem 2. Let X, Y be Banach spaces and T ∈ L(X, Y ).

(1) [17] If dim(X) =∞, then
(a) T ∈ SF+(X, Y )⇐⇒ inF(T ) > 0,
(b) T ∈ SS(X, Y )⇐⇒ sinF(T ) = 0.
(2) [20] If dim(Y ) =∞, then
(a) T ∈ SF−(X, Y )⇐⇒ inF(T ) > 0,

(b) T ∈ SC(X, Y )⇐⇒ sinF(T ) = 0.

Theorem 3. Let X, Y be Banach spaces and T ∈ L(X, Y ).

(1) [17] If dim(X) =∞, then
T ∈ SF+ and sinF(S) < inF(T ) =⇒ T + S ∈ SF+.

(2) [20] If dim(Y ) =∞, then
T ∈ SF− and sinF(S) < inF(T ) =⇒ T + S ∈ SF−.

2. A-operational quantities.

This is a rather technical section which will be basic for the remainder of the
paper. We shall introduce and study some operational quantities associated to
a space ideal A.
Recall that a space ideal A in the sense of [15] is a class of Banach spaces bigger

than F, which is stable under isomorphisms, finite products and complemented
subspaces. A is injective if every subspace ofX ∈ A belongs to A, and A is surjective
if every quotient of X ∈ A belongs to A.

SA(X) will be the set of subspacesM ⊂ X such that M /∈ A; and SA(X) the set
of subspaces U ⊂ X such that X/U /∈ A. We shall denote also

Ad = {X : SA(X) = ∅} and A
d = {X : SA(X) = ∅}.

Note that in the case A injective we have A = Ad, and in the case A surjective we
have A = A

d.
We shall need the notions of totally incomparable Banach spaces and totally

coincomparable Banach spaces.

Definition 4. Let X, Y be Banach spaces.

(1) [16] X and Y are totally incomparable if Banach spaces isomorphic to a sub-
space of X and to a subspace of Y have finite dimension.

(2) [9] X and Y are totally coincomparable if Banach spaces isomorphic to
a quotient of X and to a quotient of Y have finite dimension.

Given a space ideal A, we shall denote by Ai(A
c) the class of Banach spaces

which are totally incomparable (coincomparable) with every space in A. It is proved
in [3] that Ai is an injective space ideal, A

c is a surjective space ideal, and they
verify Ai = Aiii and A

c = A
ccc. Moreover, X ∈ Aii(A

cc) if and only if every
infinite dimensional subspace (quotient) of X has an infinite dimensional subspace
(quotient) in A. Note that F = Fii = F

cc.
The A-operational quantities are defined as follows.
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Definition 5. Let X, Y be Banach spaces and T ∈ L(X, Y ).

(1) If X /∈ Ad, then
inA(T ) := inf{n(TJM ) :M ∈ SA(X)},
sinA(T ) := sup{inA(TJM ) :M ∈ SA(X)}.

(2) If Y /∈ A
d, then

inA(T ) := inf{n(QUT ) : U ∈ SA(Y )},
sinA(T ) := sup{inA(QUT ) : U ∈ SA(Y )}.

Next we prove some inequalities between the A-operational quantities.

Proposition 6. Let X, Y be Banach spaces and T ∈ L(X, Y ).

(1) If X /∈ Ad, then

(a) inA(T ) ≤ sinA(T ) ≤ n(T ),
(b) A = Aii =⇒ inF(T ) ≤ inA(T ) ≤ sinA(T ) ≤ sinF(T ).

(2) If Y /∈ A
d, then

(a) inA(T ) ≤ sinA(T ) ≤ n(T ),

(b) A = A
cc =⇒ inF(T ) ≤ inA(T ) ≤ sinA(T ) ≤ sinF(T ).

Proof: (1a) Obviously inA(T ) ≤ n(T ). Therefore, for every M ⊂ X, M /∈ A,

inA(T ) ≤ inA(TJM ) ≤ n(TJM ) ≤ n(T ),

and consequently inA(T ) ≤ sinA(T ) ≤ n(T ).
(1b) It is obvious that from F ⊂ A we obtain inF ≤ inA. In (1a) we show

that inA ≤ sinA. Moreover, if M ⊂ X, M /∈ A = Aii, then there exists N ⊂ M
such that SA(N) = SF(N); consequently inA(TJM ) ≤ inA(TJN ) = inF(TJN ) ≤
sinF(TJM ) ≤ sinF(T ), and taking the supremum over M we have that sinA(T ) ≤
sinF(T ).
(2) Analogously to (1). �

Proposition 7. Let X, Y be Banach spaces and S, T ∈ L(X, Y ).

(1) If X /∈ Ad, then

(a) inA(T + S) ≤ sinA(T ) + inA(S),
(b) sinA(S + T ) ≤ sinA(S) + sinA(T ).

(2) If Y /∈ A
d, then

(a) inA(T + S) ≤ sinA(T ) + inA(S),

(b) sinA(S + T ) ≤ sinA(S) + sinA(T ).

Proof: (1) Analogously to (2).
(2a) Because n(T + S) ≤ n(T ) + n(S), we obtain

inA(T + S) = inf{n(QU (T + S)) : U ∈ SA(Y )} ≤

≤ inf{n(QUT ) + n(QUS) : U ∈ SA(Y )} ≤

≤ inf{n(QUT ) : U ∈ SA(Y )}+ sup{n(QUS) : U ∈ SA(Y )} ≤

≤ inA(T ) + n(S).
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The last inequality implies, being U ⊂ Y , Y/U /∈ A,

inA(T + S) ≤ inA(QU (T + S)) ≤ inA(QUT ) + n(QUS) ≤ sinA(T ) + n(QUS),

hence inA(T + S) ≤ sinA(T ) + inA(S).

(2b) For U ⊂ Y , Y/U /∈ A, from (2a) we obtain

inA(QU (T + S)) ≤ sinA(QUT ) + inA(QUS) ≤ sinA(T ) + inA(QUS).

Taking the supremum over U , we conclude sinA(T + S) ≤ sinA(T ) + sinA(S). �

3. Generalized Fredholm theory.

In this section we introduce the classes SA+ and SA− of generalized semi-
Fredholm operators, and the corresponding perturbation classes ASS and ASC
which extend the strictly singular and strictly cosingular operators, and we study
their properties.

Definition 8.

(1) SA+(X, Y ) := L(X, Y ), if X ∈ Ad,
:= {T ∈ L(X, Y ) : inA(T ) > 0}, if X /∈ Ad.

(2) SA−(X, Y ) := L(X, Y ), if Y ∈ A
d,

:= {T ∈ L(X, Y ) : inA(T ) > 0}, if Y /∈ A
d.

Note that SF+ = SF+ and SF− = SF−. However, the classes SA+ and SA−

are empty in some cases.

Proposition 9. Let X, Y be Banach spaces.

(1) If A = Aii, X /∈ Ad and Y ∈ Ad, then SA+(X, Y ) = ∅.
(2) If A = A

cc, X ∈ A
d and Y /∈ A

d, then SA−(X, Y ) = ∅.

Proof: (1) Note that Ad = A = Aii. Hence there exists M ∈ SF(X) such that
SA(M) = SF(M).

If inA(T ) > 0, then inA(TJM ) = inF(TJM ) > 0; hence TJM is an upper semi-
Fredholm operator and then there exists N ∈ SA(M) such that TJN is an injection.
Consequently TN ∈ SA(Y ), hence SA(Y ) 6= ∅ and Y /∈ Ad.

(2) Note that A
d = A = A

cc. Hence there exists U ∈ SF(Y ) such that

SA(Y/U) = SF(Y/U).

If inA(T ) > 0, then inA(QUT ) = inF(QUT ) > 0; hence QUT is a lower semi-

Fredholm operator and then there exists V ∈ SA(Y/U) such that QV QUT is a sur-

jection. Consequently N(QV QUT ) ∈ SA(X), hence SA(X) 6= ∅ and X /∈ A
d.

�

The most important properties of the classes SA+ and SA− are given in the
following result.
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Theorem 10. Let X, Y be Banach spaces.
(1) (a) SF+ ⊂ SA+.

(b) SA+(X, Y ) is open in L(X, Y ). In fact,

T ∈ SA+(X, Y ), S ∈ L(X, Y ) and ‖S‖ < inA(T ) =⇒ T + S ∈ SA+.

(c) T ∈ SA+(X, Y ) =⇒ N(T ) ∈ A.

(2) (a) SF− ⊂ SA−.

(b) SA−(X, Y ) is open in L(X, Y ). In fact,

T ∈ SA−(X, Y ), S ∈ L(X, Y ) and ‖S‖ < inA(T ) =⇒ T + S ∈ SA−.

(c) T ∈ SA−(X, Y ) =⇒ Y/R(T ) ∈ A.

Proof: (1a) If X ∈ Ad, then it is obvious. If X /∈ Ad and T ∈ SF+(X, Y ), then
there exists M ⊂ X, dim(X/M) < ∞, such that TJM is an injection. For every
N ⊂ X, N /∈ A, we obtain that TJN∩M is an injection, being N ∩ M /∈ A. If we
put

α := inf{‖Tx‖ : x ∈ M, ‖x‖ = 1},

then we obtain
0 < α ≤ n(TJN∩M ) ≤ n(TJN ),

and consequently inA(T ) ≥ α > 0, hence T ∈ SA+.
(1b) If X ∈ Ad, then it is obvious. Assume X /∈ Ad and T ∈ SA+(X, Y ). From

Proposition 7 (1) (a) we obtain, for every S ∈ L(X, Y ),

inA(T ) ≤ inA(S + T ) + sinA(S) ≤ inA(S + T ) + n(S),

and taking 0 < n(S) < inA(T ) we have that inA(T ) > 0 and inA(S+T ) > 0, hence
T ∈ SA+ and S + T ∈ SA+.
(1c) If X ∈ Ad, then N(T ) ∈ A. Let X /∈ Ad and N(T ) /∈ A. Then TJN(T ) = 0

and inA(T ) = 0; hence T /∈ SA+.

(2a) If Y ∈ A
d, then it is obvious. If Y /∈ A

d and T ∈ SF−(X, Y ), then there

exists U ⊂ Y, dim(U) < ∞ such that QUT is a surjection. For every V ⊂ Y ,

Y/V /∈ A, we obtain that QU+V T is a surjection, being Y/(U + V ) /∈ A. If we put

α := sup{ε > 0 : εBY/U ⊂ QUTBX},

then we obtain
0 < α ≤ n(QU+V T ) ≤ n(QV T ),

and consequently inA(T ) ≥ α > 0, hence T ∈ SA−.

(2b) If Y ∈ A
d, then it is obvious. Assume Y /∈ A

d and T ∈ SA−(X, Y ). From
Proposition 7 (2) (a) we obtain, for every S ∈ L(X, Y ),

inA(T ) ≤ inA(S + T ) + sinA(S) ≤ inA(S + T ) + n(S),

and taking 0 < n(S) < inA(T ) we have that inA(S + T ) > 0 and consequently
S + T ∈ SA−.

(2c) If Y ∈ A
d, then Y/R(T ) ∈ A. Let Y /∈ A

d and Y/R(T ) /∈ A. Then

QR(T )T = 0 and inA(T ) = 0; hence T /∈ SA−. �

We have the following algebraic properties.
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Proposition 11. Let X, Y, Z be Banach spaces and T ∈ (X, Y ), S ∈ L(Y, Z).

(1) ST ∈ SA+ =⇒ T ∈ SA+.

(2) ST ∈ SA− =⇒ S ∈ SA−.

Proof: (1) If X ∈ Ad, it is obvious. If X /∈ Ad, then we obtain

0 < inA(ST ) ≤ n(STJM ) ≤ n(S) n(TJM ),

hence
0 < inA(ST ) < n(S) inA(T )

and we obtain the result.
(2) Analogously to (1). �

Remark 12. We do not know if the following implications are true:

S, T ∈ SA+ =⇒ ST ∈ SA+,

S, T ∈ SA− =⇒ ST ∈ SA−;

that is, if the classes SA+ and SA− are semigroups.
Next we introduce the perturbation classes ASS and ASC which extend the

strictly singular operators and strictly cosingular operators, respectively.

Definition 13. Let X, Y be Banach spaces.

(1) ASS(X, Y ) := L(X, Y ), if X ∈ Ad,
:= {T ∈ L(X, Y ) : sinA(T ) = 0}, if X /∈ Ad.

(2) ASC(X, Y ) := L(X, Y ), if Y ∈ A
d,

:= {T ∈ L(X, Y ) : sinA(T ) = 0}, if Y /∈ A
d.

Note that FSS = SS and FSC = SC. In the following theorem, we give the
most important properties of the classes ASS and ASC.

Theorem 14. Let X, Y be Banach spaces.

(1) (a) ASS(X, Y ) is closed in L(X, Y ).
(b) IX ∈ ASS ⇐⇒ X ∈ Ad.

(c) If A = Aii, then ASS(X, Y ) = {T ∈ L(X, Y ) : TJM injection =⇒
M ∈ Ad} and ASS is an operator ideal that includes the strictly

singular

operators.

(2) (a) ASC(X, Y ) is closed in L(X, Y ).

(b) IX ∈ ASC ⇐⇒ X ∈ A
d.

(c) If A = A
cc, then ASC(X, Y ) = {T ∈ L(X, Y ) : QUT surjection =⇒

Y/U ∈ A
d} and ASC is an operator ideal that includes the strictly

cosin-

gular operators.
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Proof: (1a) We show that L(X, Y ) \ ASS(X, Y ) is open in L(X, Y ). If X ∈ Ad,
then it is obvious. Let X /∈ Ad and T /∈ ASS(X, Y ); from Proposition 7 (1) (b) we
have that

0 < sinA(T ) ≤ sinA(S + T ) + sinA(S) ≤ sinA(S + T ) + n(S),

and taking 0 < n(S) < sinA(T ) we obtain sinA(S + T ) > 0. Hence S + T /∈ ASS.
(1b) If X /∈ Ad, then sinA(IX ) = 1, hence IX /∈ ASS. Moreover, if X ∈ Ad,

then ASS(X, X) = L(X, X), hence IX ∈ ASS.
(1c) If X ∈ Ad, then it is obvious. Suppose X /∈ Ad. If there exists a subspace

M ⊂ X, M /∈ A, such that TJM is an injection, then TJM is an upper semi-
Fredholm operator, hence

0 < inF(TJM ) ≤ inA(TJM ),

and consequently sinA(T ) > 0. Hence T /∈ ASS.
Conversely, if sinA(T ) > 0, then there exists a subspace M ⊂ X, M /∈ A, such

that inA(TJM ) > 0. From A = Aii we have that there exists N ⊂ M such that
SA(N) = SF(N) and, consequently,

0 < inA(TJM ) ≤ inA(TJN ) = inF(TJN );

hence TJN is an upper semi-Fredholm operator and TJP is an injection, for some
P ∈ SA(N). From sinA ≤ sinF (Proposition 6 (1) (b)), we obtain SS ⊂ ASS.

(2a) We show that L(X, Y ) \ ASC(X, Y ) is open in L(X, Y ). If Y ∈ A
d, then

it is obvious. Let Y /∈ A
d and T /∈ ASC(X, Y ); from Proposition 7 (2) (b) we have

that
0 < sinA(T ) ≤ sinA(S + T ) + sinA(S) ≤ sinA(S + T ) + n(S),

and taking 0 < n(S) < sinA(T ) we obtain sinA(S + T ) > 0. Hence S + T /∈ ASC.

(2b) If X /∈ A
d, then sinA(IX ) = 1, hence IX /∈ ASC. Moreover, if X ∈ A

d,
then ASC(X, X) = L(X, X), hence IX ∈ ASC.

(2c) If Y ∈ A
d, then it is obvious. Suppose Y /∈ A

d. If there exists a subspace

U ⊂ Y, Y/U /∈ A, such thatQUT is a surjection, then QUT is a lower semi-Fredholm
operator, hence

0 < inF(QUT ) ≤ inA(QUT ),

and consequently sinA(T ) > 0. Hence T /∈ ASC.

Conversely, if sinA(T ) > 0, then there exists a subspace U ⊂ Y , Y/U /∈ A, such

that inA(QUT ) > 0. From A = A
cc we have that there exists V ⊃ U such that

SA(Y/V ) = SF(Y/V ) and, consequently,

0 < inA(QUT ) ≤ inA(QV T ) = inF(QV T );

hence QV T is a lower semi-Fredholm operator and QW T is a surjection, for some
W ⊃ V , Y/W /∈ A. From sinA ≤ sinF (Proposition 6 (2) (b)), we obtain SC ⊂
ASC. �
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Remark 15. In the cases A = Aii and A = A
cc, the classes ASS and ASC

coincide with classes considered by several authors. Taking the equalities of The-
orem 14 (1) (c), (2) (c) as definitions, the classes ASS and ASC have been studied
in [4], [19]; it is showed in [4], [14] that if A = Aii, then ASS is an operator ideal,
and if A = A

cc, then ASC is an operator ideal.

Remark 16. It is not known in general if the classes ASS and ASC are operator
ideals. Moreover, we do not know if for every space ideal A it is verified SS ⊂ ASS
and SC ⊂ ASC. But it is true that the class of the compact operators C0 verifies
C0 ⊂ ASS and C0 ⊂ ASC, for every space ideal A. In fact, assume X /∈ Ad
and T ∈ C0(X, Y ); it results for every M ∈ SA(X) that TJM ∈ C0(M, Y ) and
consequently for every ε > 0 there exists a finite codimensional subspace N of M
(hence N ∈ SA(X)) such that n(TJN ) < ε [6, III. 2.3]; hence inA(TJM ) = 0 for
every M ∈ SA(X), and sinA(T ) = 0. Analogously, we can prove that C0 ⊂ ASC
based on the following fact: if dim(Y ) = ∞, T ∈ C0(X, Y ) and ε > 0, then there

exists a finite dimensional subspace U of Y such that n(QUT ) < ε [5, 21].

Finally, we give two properties about the perturbation of the classes SA+ and
SA− by the classes ASS and ASC.

Theorem 17.

(1) SA+ is invariant by ASS : T ∈ SA+ and S ∈ ASS =⇒ T + S ∈ SA+.

(2) SA− is invariant by ASC : T ∈ SA− and S ∈ ASC =⇒ T + S ∈ SA−.

Proof: From Proposition 6 (1) (a), (2) (a) we obtain the following inequalities:

inA(T ) ≤ inA(S + T ) + sinA(S), inA(T ) ≤ inA(S + T ) + sinA(S).

It is immediate to prove the statements. �

4. Examples and remarks.

Let M, N be subspaces of X . The gap between M and N (see [13], for example)
is defined by

δ(M, N) := sup{dist(m, N) : m ∈ M, ‖m‖ = 1}.

We shall need also the following concept of stability.

Definition 18 [1]. Let A be a space ideal.

A is stable ⇔
(

there exists α > 0 such that

N ∈ A and δ(M, N) < α ⇒ M ∈ A
)

.

It is proved in [1] that the stability can be characterized in terms of quotients:

A is stable ⇔
(

there exists α > 0 such that

X/M ∈ A and δ(M, N) < α ⇒ X/N ∈ A
)

.



654 M.Gonzalez, A.Martinon

Theorem 19. Assume A is stable. Let X, Y be Banach spaces and T ∈ L(X, Y )
such that R(T ) is closed. Then

(1) N(T ) ∈ A =⇒ T ∈ SA+,

(2) Y/R(T ) ∈ A =⇒ T ∈ SA−.

Proof: Because R(T ) is closed, T defines an isomorphism of X/N(T ) onto R(T ).
Hence there exists c > 0 such that, for every x ∈ X ,

c dist(x, N(T )) ≤ ‖Tx‖.

(1) If M /∈ A, then δ(M, N(T )) ≥ α for some α > 0, and there exists m ∈
M, ‖m‖ = 1, such that dist(m, N(T )) ≥ α; hence ‖Tm‖ ≥ cα. From this we obtain
n(TJM ) ≥ cα, hence inA(T ) ≥ cα > 0.

(2) If Y/U /∈ A, then δ(R(T ), U) ≥ α for some α > 0, and there exists y ∈ R(T ),
‖y‖ = 1, such that dist(y, U) ≥ α. Let x such that Tx = y. We obtain

c dist(x, N(T )) ≤ ‖y‖ = 1.

We take x such that ‖x‖ and 1/c are sufficiently near and ‖QUTx‖ ≥ α/2. Hence

‖QUT ‖ ≥ cα and consequently inA(T ) ≥ cα > 0. �

As examples of stable space ideals A for which the above theorem holds we
have: reflexive Banach spaces, spaces containing no copies of l1, separable spaces,
superreflexive spaces, B-convex spaces, quasireflexive spaces (see [1]). However, for
the class of all Banach spaces such that every infinite dimensional subspace contains
a copy of l2, A = (l2)ii, the above result is not true:

Proposition 20. Suppose A = (l2)ii. There exists a Banach space X containing

a subspace U isometric to l2 such that the associated quotient map QU : X → X/U
does not belong to SA+.

Proof: The following construction is based on [11]. Given 1 < p < ∞, we define
the (nonlinear map)

Ap : (xi) ∈ l2 −→
(

|xi|
2/p sgn(xi)

)

∈ lp.

Ap is an isometric bijection.

Taking 1/p+ 1/q = 1, it is not difficult to show that the space

Xp := lp × l2 with the norm

‖(y, x)‖ := sup{(Aqz)(y) + z(x) : z ∈ l2, ‖z‖ = 1}
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is a Banach space, and the subspaces Up := {0}×l2 andMp := lp×{0} are isometric
to l2 and lp, respectively. Moreover, if Jp is the inclusion of Mp into Xp and Qp is
the quotient map from Xp onto Xp/Up, then

‖QpJp‖ ≤ 2(2− p)/p.

We take a sequence 1 < p1 < · · · < pn < · · · < 2 with lim pn = 2. Then we define

X := (Xp1 ⊕ · · · ⊕ Xpn
⊕ . . . )l2

and we consider the subspaces

U := (Up1 ⊕ · · · ⊕ Upn
⊕ . . . )l2

and

Mn := (⊕{0} ⊕ · · · ⊕ {0} ⊕ Mpn
⊕ {0} ⊕ . . . )l2 .

Then, U and Mn are isometric to l2 and lpn
, respectively. Moreover,

‖QUJMn
‖ ≤ 2(2− pn)/pn. Consequently lim ‖QUJMn

‖ = 0.

Now, since Mn /∈ lii2 = A, we conclude inA(QU ) = 0; i.e. QU /∈ SA+. �

Finally, we show the relation between the tauberian operators and the class SR+,
where R is the class of all reflexive spaces.

Recall that T ∈ L(X, Y ) is tauberian [12] when T ∗∗
−1

JY (Y ) = JX(X), where
JX is the canonical inclusion of X in X∗∗.

Proposition 21. The class SR+ is properly contained in the class of tauberian

operators.

Proof: Let T ∈ SR+(X, Y ). For every compact operator T ∈ L(X, Y ) we have
that T +K belongs to SR+ (Remark 15 and Proposition 16), hence N(T +K) is
reflexive; consequently T is tauberian [10]. Moreover, SR+ is open, but the class of
tauberian operators is not [2]. �

Remark 22. If we consider for T ∈ L(X, Y ) the quantities [15]

j(T ) := inf{‖Tx‖ : ‖x‖ = 1},

the injection modulus of T , and

q(T ) := sup{ε > 0 : εBY ⊂ TBX},
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the surjection modulus of T , we have that j(T ) > 0 if and only if T is an injection
and q(T ) > 0 if and only if T is a surjection [15].

From j and q several authors have derived some operational quantities: sjF [17],

sqF [21], isjF and isqF [14]. These quantities characterize the classes of Fredholm
theory in a similar manner as the quantities considered in Section 2.

Analogously, we could define the operational quantities isjA, isqA, sjA and sqA.
The associated classes of operators have been studied in [8], [14].
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