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Approximate inverse systems of uniform spaces

and an application of inverse systems

M.G. Charalambous

Abstract. The fundamental properties of approximate inverse systems of uniform spaces

are established. The limit space of an approximate inverse sequence of complete metric
spaces is the limit of an inverse sequence of some of these spaces. This has an application
to the dimension of the limit space of an approximate inverse system. A topologically
complete space with dim ≤ n is the limit of an approximate inverse system of metric
polyhedra of dim ≤ n. A completely metrizable separable space with dim ≤ n is the limit
of an inverse sequence of locally finite polyhedra of dim ≤ n. Finally, a new proof is derived
of the important equality dim = Ind for metric spaces.

Keywords: inverse systems, approximate inverse systems, uniform, metric and complete
spaces, covering and inductive dimension

Classification: 54B25, 54E15, 54F45

1. Introduction.

Mardešić and Rubin [9] have recently introduced and studied approximate inverse
systems (AIS) of compact metric spaces. They proved that every compact Hausdorff
space with dim ≤ n is the limit of an AIS consisting of finite polyhedra with dim ≤ n.
In contrast to this result, it has been known for some time that there are compact
Hausdorff spaces of covering dimension 1 which are not homeomorphic to the limit
space of an inverse system (IS) of polyhedra with dimension ≤ 1 [8], [11]. An AIS
readily makes sense in the context of uniform spaces, and some obvious questions
present themselves. For example, which properties of these spaces does the limit
space inherit, and what spaces can be obtained as limit spaces of an AIS of “nice”
(e.g. metric) spaces. Motivated by questions like these, in Section 2, we look for
those properties of an AIS that correspond to the well-known fundamental results
concerning an IS. We show, for example, that the limit space of an AIS is always
a closed subspace of the product of the spaces making up the AIS. In fact, for all
results in this paper, only one of the original three axioms of Mardešić and Rubin
is needed, and the definition is weakened accordingly. In Section 3, we aim to prove
that if an AIS consists of complete metric spaces with dim ≤ n, then the limit
space has dim ≤ n. The purpose of Section 4 is to point out that the result of
Mardešić and Rubin for compact spaces quoted above is generalized both to the
class of topologically complete and the class of strongly paracompact Hausdorff
spaces. A corollary is that a completely metrizable separable space with dim ≤ n
is the limit space of an inverse sequence of locally finite polyhedra with dim ≤ n.
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Finally, in Section 5, we give a new proof of the equality dim = Ind for metric
spaces. This transparent proof follows readily from results on inverse limits.
In this paper, uniform spaces are not necessarily Hausdorff, and dimX denotes

the covering dimension of X defined in terms of cozero covers rather than open
covers. The reader is referred to [3], [4], [6], [10], [13] for the facts of Dimension
Theory and General Topology. The results in polyhedra needed in this paper can
be found in [7], [10], [13], [14].

2. Definitions and basic results.

An AIS of uniform spaces ((Xα,Uα), pαβ , A) consists of a directed set A, a uni-
form space (Xα,Uα) for each α ∈ A, and, for α < β,a uniformly continuous function
pαβ : Xβ → Xα satisfying the following condition.

(AIS) For each α ∈ A and U ∈ Uα, there is in A α′ > α such that for α′ < β <
γ, |pαβpβγ − pαγ | < U , i.e. (pαβpβγ(x), pαγ(x)) ∈ U for all x ∈ Xγ .

Remark 1. In addition to the above condition, Mardešić and Rubin require their
AIS to satisfy two more axioms that we dispense with. One drawback of the extra
two axioms is that it is not immediately clear whether they are satisfied by any IS.

Remark 2. Entourages are taken to be symmetric so that |x−y| < U iff |y−x| < U .
Also the partial order < on A is assumed to be anti-reflexive, i.e. α < β ⇒ α 6= β.

Throughout this section, we will be considering a fixed AIS ((Xα,Uα), pαβ , A).
Its limit space X is the subspace of the product

∏

α∈A Xα consisting of all points
x = (xα) such that, for each α ∈ A, xα is a limit point of the net {pαβ(xα) : α < β},
i.e.

(L) For each α ∈ A and U ∈ Uα, there is (in A) α′ > α such that for α′ <
β, |xα − pαβ(xβ)| < U .

At this point, we digress to deal with an obvious question that arises. Suppose
our AIS is in fact an IS. Then its limit space X∗ consists of all x = (xα) with
xα = pαβ(xβ) for α < β. Obviously, X∗ ⊂ X . We show that X∗ = X if each Xα

is Hausdorff, and that otherwise the equality may fail.

Proposition 1. If ((Xα,Uα), pαβ , A) is an IS and each Xα is Hausdorff, then
X∗ = X (cf. [9, Proposition 1]).

Proof: Let x = (xα) ∈ X and α < β. Since the limits of nets are unique in
Hausdorff spaces,

xβ = lim
β<γ

pβγ(xγ).

Now, by continuity of pαβ ,

pαβ(xβ) = lim
β<γ

pαβpβγ(xγ) = lim
β<γ

pαγ(xγ) = lim
α<γ

pαγ(xγ) = xα .

Hence x ∈ X∗ and X∗ = X . �
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Example 1. For each n ∈ N , the set of positive integers, let Xn consists of at least
one point xn, and let Un consists of Xn × Xn. For n < m, let pnm : Xm → Xn be
given by pnm(x) = xn. We have an inverse sequence ((Xn,Un), pnm, N) with X∗

consisting of a single point (xn) while X =
∏

n∈N Xn.

Returning to our AIS ((Xα,Uα), pαβ , A), the restriction of the canonical projec-
tion πα :

∏

α∈A Xα → Xα to X will be denoted by pα .
The following result is the cornerstone of this section.

Proposition 2. For α ∈ A, and U ∈ Uα, there is α′ > α such that for α′ <
β, |pα − pαβpβ | < U (cf. [9, Lemma 4]).

Proof: Let x = (xα) ∈ X and pick V ∈ Uα with 3V = V ◦ V ◦ V ⊂ U . By (AIS),
there is α′ > α such that for α′ < β < γ,

(1) |pαγ − pαβpβγ | < V.

For a fixed β > α′, by the uniform continuity of pαβ , there exists W in Uβ such
that

(2) |y − z| < W ⇒ |pαβ(y)− pαβ(z)| < V.

Next, by (L), there is γ > β such that

|xβ − pβγ(xγ)| < W(3)

and |xα − pαγ(xγ)| < V.(4)

Now by (2) and (3),

(5) |pαβpβγ(xγ)− pαβ(xβ)| < V.

Finally, by (4), (1) and (5),

|xα − pαβ(xβ)| < 3V ⊂ U.

Hence, |pα − pαβpβ | < U . �

The next two results supply the necessary information about the uniformity ofX .

Proposition 3. Given αi ∈ A and Ui ∈ Uαi , i = 1, 2, . . . , n, there is α′ ∈ A such
that α′ > each αi and for α′ < α, there is Uα ∈ Uα such that

|pα(x)− pα(y)| < Uα ⇒ |pαi(x) − pαi(y)| < Ui .

Proof: Choose Vi ∈ Uαi with 3Vi ⊂ Ui. By Proposition 2, there is α′ > each αi

such that for α > α′ and each i,

(1) |pαi − pαiαpα| < Vi.
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For each α > α′, by the uniform continuity of pαiα, there is Uα ∈ Uα such that for
each i,

(2) |x − y| < Uα ⇒ |pαiα(x)− pαiα(y)| < Vi .

Now, if |pα(x)− pα(y)| < Uα, then for each i, by (1), (2), (1), respectively,

|pαi(x)− pαiαpα(x)| < Vi,

|pαiαpα(x) − pαiαpα(y)| < Vi,

and |pαiαpα(y)− pαi(y)| < Vi .

Hence
|pαi(x)− pαi(y)| < 3Vi ⊂ Ui .

�

Proposition 4. {(pα × pα)
−1(U) : α ∈ A′, U ∈ Uα} is a base for the uniformity

on X for any cofinal subset A′ of A.

Proof: Sets of the form
⋂n

i=1(παi × παi)
−1(Ui) form a base for the uniformity on

∏

α∈A Xα. By Proposition 3, the intersection of any such set with X ×X contains

(pα × pα)
−1(U) for some α ∈ A′ and U ∈ Uα, and the result follows. �

Our next result gives a property of X that is not always enjoyed by the limit
space of an IS if it consists of non-Hausdorff spaces.

Proposition 5. X is closed in
∏

α∈A Xα.

Proof: Let y ∈ Y =
∏

α∈A Xα − X . Then, by (L), for some α ∈ A and U ∈ Uα,
the set of β ∈ A that satisfy

(1) |yα − pαβ(yβ)| ≮ U

is cofinal in A. Pick V ∈ Uα with 3V ⊂ U . In view of Proposition 2, there is β > α
satisfying (1) and

(2) |pα − pαβpβ | < V.

Next, by the uniform continuity of pαβ , there is W in Uβ such that

(3) |x − y| < W ⇒ |pαβ(x) − pαβ(y)| < V.

Now, suppose there is a point x ∈ X that satisfies

(4) |y − x| < (πα × πα)
−1(V ) ∩ (πβ × πβ)

−1(W ).

Then |yα − xα| < V(5)

and |yβ − xβ | < W.(6)
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By (3) and (6),

(7) |pαβ(xβ)− pαβ(yβ)| < V

and by (2),

(8) |xα − pαβ(xβ)| < V.

Finally, (5), (8) and (7) imply

|yα − pαβ(yβ)| < 3V ⊂ U,

which contradicts the choice of β to satisfy (1). Thus, there is no x in X that
satisfies (4), which shows that Y is open and hence X is closed in

∏

α∈A Xα. �

Some conclusions may now be readily drawn.

Corollary 1. If each Xα is compact or complete, then the same is true of X .

Corollary 2. A topological space is the limit space of an AIS of metric spaces iff
it is topologically complete.

We next give a universal property of X which is readily seen to characterize X
in the same fashion as the well known analogous result for inverse limits.

Proposition 6. Let Y be a uniform space with the property that for each α ∈ A,
there is a uniformly continuous fα : Y → Xα such that for any U ∈ Uα, there
is α′ > α with |fα − pαβfβ | < U for α′ < β. Then there is a unique uniformly
continuous f : Y → X such that fα = pαf .

Proof: It suffices to observe that f(y) = (fα(y)) is indeed a point of X for each
y ∈ Y . �

With reference to our next and final result of this section, we recall that a sub-
system of an IS over a cofinal subset has the same limit space. For an AIS, this
always happens only if each space of the system is both Hausdorff and complete.
The following two examples illustrate what might happen if these conditions are
not present.

Proposition 7. Let A′ be a cofinal subset of A and X ′ the limit space of ((Xα,Uα),
pαβ , A′), and assume that each Xα is Hausdorff. Then there is an isomorphism

π : X → X ′ into X ′ which is onto if additionally each Xα is complete.

Proof: Let π : X → X ′ and π′
α : X

′ → Xα, α ∈ A′, be respectively the restrictions
of the canonical projections

∏

α∈A Xα →
∏

α∈A′ Xα and
∏

α∈A′ Xα → Xα. By

Proposition 4 and the fact that pα = π′
απ for α ∈ A′, any entourage of X contains

(π × π)−1(π′
α × π′

α)
−1(U) for some α ∈ A′ and u ∈ Uα. Thus, p is an isomorphism

of uniform spaces into X ′. Note that here the fact that X is Hausdorff is needed to
assure that π is injective.
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Now assume that each Xα is complete and let x′ = (xα)α∈A′ , be a point of X ′.
Let α ∈ A, U ∈ Uα and choose V ∈ Uα with 4V ⊂ U . There is by (AIS) an α′ ∈ A
such that α < α′ and for α′ < β < γ

(1) |pαγ − pαβpβγ | < V.

For a fixed β ∈ A′ with α′ < β, there is W ∈ Uβ such that

(2) |x − y| < W ⇒ |pαβ(x) − pαβ(y)| < V.

Also, by (L), there is α′′ > β such that for γ ∈ A′ with γ > α′′

(3) |xβ − pβγ(xγ)| < W

and hence, by (2)

(4) |pαβ(xβ)− pαβpβγ(xγ)| < V.

Now, by (1) and (4), for γ ∈ A′ with γ > α′′,

(5) |pαβ(xβ)− pαγ(xγ)| < 2V.

Hence for γ, δ ∈ A′ with γ, δ > α′′,

(6) |pαγ(xγ)− pαδ(xδ)| < 4V ⊂ U.

This means that {pαγ(xγ) : γ ∈ A′} is a Cauchy net and, since Xα is complete
and Hausdorff, it converges to a unique point xα. Now it is seen that (2), (3) and (4)
hold for any β ∈ A with β > α′. Also, there is γ ∈ A′ for which (5) holds as well as

|xα − pαγ(xγ)| < V.

Hence |xα − pαβ(xβ)| < 3V ⊂ U .

Thus xα = limβ∈A pαβ(xβ), x = (xα)α∈A is a point of X with π(x) = x′, and π
is surjective. �

Example 2. In Example 1, let Xi be a singleton for i ≥ 2. Then the limit space
of the AIS ((Xi,Ui), pij , i ≥ 2) is a singleton.

Example 3. Let A′ = {r1, r2, r3, . . . }, where each ri is an integer ≥ 2 chosen by
induction on i so that

(

1 +
1

2ri+1

)3
<

(

1 +
1

2ri

)

.

Let A = {0} ∪ A′ and for each i ∈ A let Xi = (1, (1 +
1
2i
)2] carry the subspace

uniformity inherited from R, the space of real numbers. For i, j ∈ A′ with i < j,
we define pij : Xj → Xi by

pij(x) =
(

1 +
1

2i
) (

1 +
1

2j
)

x.

For i ∈ A′, we define poi : Xi → Xo by

poi(x) =
(

1 +
1

2i
)

x.

It is readily seen that (Xi, pij , A) constitutes an AIS with the limit X = ∅, for

if xi ∈ Xi, since 1 < poi(xi) ≤ (1 +
1
2i
)3, then limi poi(xi) = 1 /∈ Xo. However, the

subsystem (Xi, pij , A
′) contains at least one point, namely (1 + 1

2i
)i∈A′ .
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3. Approximate inverse systems and dimension.

In this section, we show that the limit space X of an AIS made up of complete
metric spaces Xi, i ∈ N , is in fact isomorphic with the inverse limit of a subset of
these spaces. An immediate application is that dimX ≤ n if dimXi ≤ n for each
i ∈ N , and this result is generalized for an arbitrary AIS of complete metric spaces.
When dealing with several metric spaces, it is convenient to use the same symbol

d for the metric on each one of them. Which metric is meant is usually abundantly
clear from the context.

Proposition 8. Let (Xi, pij , N) be an AIS of complete metric spaces with the limit
space X . Then X is uniformly isomorphic with the limit space of an IS (Xi, πij , M),
whereM is a cofinal subset ofN and πij = pij whenever j is an immediate successor
of i in M .

Proof: As in Section 2, pi : X → Xi denotes canonical projection. If M =
{m1, m2, . . . } with mi < mj for i < j, instead of πmimj we will write qij . Note
that qij is the composite of pmj−1mj , . . . , pmimi+1 . For each i ∈ N , we will choose
mi ∈ N and si ∈ R by induction on i so that

0 < si+1 < si < 1/i,(1)

mi < mi+1,(2)

d(pmi(x), pmi(y)) < 3si ⇒ d(x, y) < 1/i(3)

d(pmi , qii+1pmi+1) <
1

2
si,(4)

i < j and d(x, y) < sj ⇒ d(qij(x), qij(y)) < 2−jsj−1,(5)

ℓ ≤ mi < mi+1 ≤ m < n ⇒ d(pℓn, pℓmpmn) < 2
−i−2si(6)

and

m < n ≤ mi and d(x, y) < si ⇒ d(pmn(x), pmn(y)) < si−1.(7)

Assuming that si andmi have been chosen for i ≤ j with the required properties,
we can, using Proposition 2 and (AIS), first pick mj+1 > mj so that (4) and (6)
with i = j are satisfied. By Proposition 4, we can further assume that for some
positive tj+1 < sj ,

d(pmj+1(x), pmj+1(y)) < 3tj+1 ⇒ d(x, y) <
1

j + 1
.

Now using the uniform continuity of qij+1, i ≤ j, and pmn, m < n ≤ mj+1, we
can find a positive sj+1 < tj+1 that satisfies (3) and (7) with i = j+1 and (5) with
j replaced by j + 1. This completes the construction of mi and si.
If i < j, it follows from (4) and (5) that

d(qijpmj , qij+1pmj+1) < 2−jsj−1 .
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Hence, for i < j < k, by the triangle inequality,

(8) d(qijpmj , qikpmk
) < sj−1(

k−1
∑

ℓ=j

2−ℓ) <
1

2
sj−1 .

Thus, for a fixed i, {qijpmj}
∞
j=1 is a Cauchy sequence and, since Xmi is com-

plete, it converges to a uniformly continuous πi : X → Xmi . Note that qijπj =
limk qijqjkpmk

= limk qikpmk
= πi. Hence, if Y is the limit space of the IS

{Xmi , qij , N} and qi : Y → Xmi denotes the corresponding canonical projection,
there is a uniformly continuous π : X → Y such that qiπ = πi. It follows from (8)
that for i < j,

d(qijpmj , πi) ≤
1

2
sj−1

and hence, by (4) and the triangle inequality

(9) d(pmi , πi) < si .

Now, using the triangle inequality and (9), if d(πi(x), πi(y)) < si, then d(pmi(x),

pmi(y)) < 3si and, by (3), d(x, y) < 1
i . Thus the entourage {(x, y) : d(x, y) <

1
i } of X is refined by the inverse image under π × π of the entourage {(x, y) :
d(qi(x), qi(y)) < si} of Y . Hence π is a uniform isomorphism into Y .
To show that π is onto, let y = (yi) ∈ Y . Then, using (6) and yi = qii+1(yi+1) =

pmimi+1(yi+1), for ℓ ≤ mi−1,

d(pℓmi+1
(yi+1), pℓmi

(yi)) < 2
−i−1si−1 .

Hence, if also i < j, using the triangle inequality,

(10) d(pℓmi
(yi), pℓmj

(yj)) < 2−isi−1 .

Thus, {pℓmi
(yi)}

∞
i=1 is a Cauchy sequence for each ℓ ∈ N and so it converges to

some point xℓ of Xℓ. It follows from (10) that

(11) d(xℓ, pℓmi
(yi)) ≤ 2

−isi−1 .

Let m < mi−3 < mi−2 ≤ n ≤ mi−1. Then, using (11) and (7), (6), and (11),
respectively, we obtain

d(pmn(xn), pmnpnmi(yi)) < si−2 ,

d(pmmi (yi), pmnpnmi(yi)) < si−3 ,

d(xm, pmmi(yi)) < si−1 .

It follows that d(xm, pmn(xn)) < 3si−3, xm = limn pmn(xn), and x = (xn) ∈ X .
Finally, by (11), d(xmj , yj) < sj and, for i < j, by (5), d(qij(xmj ), yi) < sj−1. This
implies that yi = limj qijpmj (x), so that y = π(x), and hence π is onto. �
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Corollary 3. If X is the limit space of an AIS (Xi, pij , N) of complete metric
spaces with dimXi ≤ n for each i ∈ N , then dimX ≤ n.

Proof: With the notation of Proposition 8, dimX = dimY ≤ n according to the
inverse limit theorem of Nagami [10]. �

A generalization of Corollary 3 is possible in terms of the dimension function Dim
introduced by the author in [1]. A subset of a uniform space X is called uniformly
open if it is of the form f−1(G), where G is an open set of a metric space Y and
f : X → Y is uniformly continuous. DimX ≤ n iff every finite uniformly open
cover of X has a finite uniformly open refinement of order ≤ n. Clearly, Dim and
dim agree on metric spaces.
We first need the following result which is interesting in itself.

Proposition 9. Let X be the limit space of an AIS (Xα, pαβ , A) of metric spaces.
For each i ∈ N , let fi : X → Mi be a uniformly continuous function into a metric
space Mi. Then there is an AIS (Xα, pαβ , B) over a countable subset B of A with
limit space Y , and uniformly continuous π : X → Y and gi : π(X) → Mi with
fi = giπ, i ∈ N .

Proof: Let pα : X → Xα denote the canonical projection and f =
∏

i∈N fi : X →
∏

i∈N Mi. Using (AIS) and Propositions 2 and 4, we can readily pick by induction
an increasing sequence B = {αi} in A and a sequence {si} of positive reals such
that for i < j < k,

d(pαiαk
, pαiαj pαjαk

) <
1

j
,(1)

d(pαi , pαiαj pαj ) <
1

j
(2)

and

d(pαi(x), pαi (y)) < si ⇒ d(f(x), f(y)) <
1

i
.(3)

Now, (1) assures that (Xα, pαβ , B) is an AIS, and (2), by Proposition 6, that
there is a uniformly continuous π : X → Y with qiπ = pαi , where qi : Y → Xαi

denotes the canonical projection. Now, define g(y) = f(x) if y = π(x). Then g is
well-defined by (3), and gπ = f , so that, if gi denotes g followed by the projection
∏

i∈N Mi → Mi, then fi = giπ. Finally, (3) with qiπ = pαi assure that g and hence
each gi is uniformly continuous. �

Proposition 10. Let X be the limit space of an AIS (Xα, pαβ , A) of complete
metric spaces with DimXα ≤ n. Then DimX ≤ n (cf. [2, Theorem]).

Proof: Let {Hj : j ∈ J} be a finite uniformly open cover of X . Let fj : X → Mj

be a uniformly continuous function into a metric space Mj with Hj = f−1
j (Gj) for

some open setGj ofMj . With the notation of Proposition 9, dimπ(X) ≤ dimY ≤ n

by Corollary 3. Now, {g−1j (Gj) : j ∈ J} is a finite open cover of π(X) and so it

has an open refinement {Uj : j ∈ J} of order ≤ n. Then {π−1(Uj) : j ∈ J} is
a uniformly open refinement of {Hj : j ∈ J} of order ≤ n. Hence DimX ≤ n. �
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4. Approximate inverse systems of polyhedra.

Our purpose in this section is to generalize the main result of Mardešić and Rubin
in [9]. Every topologically complete topological space X with dimX ≤ n is shown
to be the limit space of an AIS of metric polyhedra of dim ≤ n. If X is strongly
paracompact, the polyhedra can be taken to be locally finite. Note that because
dimX ≤ DimX for X completely paracompact [2] and every finite-dimensional
metric polyhedron is complete [7], the results of this section have a converse in
Proposition 10.
The reference below to a metric polyhedron (P, d) entails that P is the realization

|K| of some fixed simplicial complex K and d is a metric on P uniformly equivalent
to the standard metric induced by K as in [14]. Note that for finite-dimensional
polyhedra the metric considered in [7] is uniformly equivalent to the standard met-
ric. It is convenient to call a mapping f : X → P locally finite if there is an open
cover of X consisting of sets G with f(G) covered by a finite number of simplexes
of K. If P is locally finite, more precisely, if K is locally finite, then the star of
a vertex v, st(v), meets only a finite number of simplexes, and hence every contin-
uous f : X → P is locally finite. The lemmas that follow generalize the results
of [8].
Lemma 1. Let (P, d) be a finite-dimensional metric polyhedron, f : X → P locally
finite and ε > 0. Then there is a subpolyhedronQ of P and a locally finite surjection
g : X → Q with d(f, g) ≤ ε.

Proof: Let K be a subdivision of the original triangulation of P with d-mesh of
every simplex≤ ε. Let {sα : α < ω} be a bijective enumeration of all simplexes ofK.
By transfinite induction, we define a map πα into P for each α < ω as follows. If sα

is the union of points of the form παnπαn−1
. . . πα1f(x) with α1 < α2 · · · < αn < α,

then we let πα be the identity on P . If some point pα of sα is not of the above
form, we let πα on s − {pα} be the projection from pα into the boundary of s if s
is a simplex containing pα, and πα/s = identity if pα /∈ s. Let π : f(X)→ P be the

composite of all πα, α < ω, with πα applied before πβ for α < β, and g = πf . Note
that on each simplex, g is the composite of f with only a finite number of πα’s and
the local finiteness of f assures that g is continuous and hence locally finite. It is
readily checked that g(X) = Q is a polyhedron and d(g, f) ≤ ε. �

Lemma 2. Let X be a Tychonoff space with dimX ≤ n, f : X → M a map into
a metric space and V an open cover of M . Then there is a locally finite cozero
refinement U of the cover f−1(V) of X with order ≤ n.

Proof: By Pasynkov’s factorization theorem [11], there is a metric space L and
continuous g : X → L and h : L → M with dimL ≤ n and f = hg. Next, the open
cover h−1(V) of L has a locally finite open refinementW of order ≤ n, and we need
only set U = g−1(W). �

If U = {Uα : α ∈ A} is a locally finite cozero cover of X , there is a canonical
mapping f : X → |N (U)|, where N (U) denotes the nerve of U , defined as follows.
Let fα : X → I be continuous with f−1

α (0, 1] = Uα and
∑

α∈A fα = 1. Then f(x)
is the point with α-th barycentric coordinate fα(x). Note that f is then a locally
finite mapping.
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Lemma 3. Let X be a Tychonoff space with dimX ≤ n, (P, d) a metric finite-
dimensional polyhedron, f : X → P a locally finite mapping and ε > 0. Then there
is a subpolyhedron Q of P with dimQ ≤ n and a locally finite surjection g : X → Q
with d(f, g) ≤ ε.

Proof: Let K be a subdivision of the original triangulation of P with d-mesh of
each simplex ≤ ε

2 . Let V be the set of all vertices of K and V∗ the collection of all
their stars. By Lemma 2, there exists a locally finite cozero cover U of X of order
≤ n refining f−1(V∗). Let φ : U → V be a function such that U ⊂ f−1(st(φ(U))).
Let h1 : X → |N (U)| be a canonical mapping and h2 : |N (U)| → P the simplicial
mapping sending U to φ(U). It is readily seen that h = h2h1 is a locally finite
mapping into P with h(x) lying in the open simplex of K containing f(x) and
hence d(f, h) ≤ ε

2 . Now, by Lemma 1, there is a subpolyhedron Q of h2(|N (U)|),
necessarily of dim ≤ n, and a locally finite surjection g : X → Q with d(h, g) ≤ ε

2
and hence d(f, g) ≤ ε. �

Lemma 4. Let X be a Tychonoff space with dimX ≤ n, (Pi, di), i = 1, . . . , k,
finite-dimensional metric polyhedra, fi : X → Pi locally finite maps and
ε > 0. Then there exists a metric polyhedron (Q, d) with dimQ ≤ n, a locally finite
surjection g : X → Q and uniformly continuous pi : Q → Pi with di(fi, pig) ≤ ε.

Proof: P =
∏k

i=1 Pi with the metric d =
∏k

i=1 di is a finite-dimensional polyhe-

dron [7, p. 60], and f =
∏k

i=1 fi : X → P is a locally finite map. Lemma 3 now
provides a locally finite surjection g : X → Q onto a subpolyhedron Q of P with
dimQ ≤ n and d(f, g) ≤ ε. Let pi be the restriction of the canonical projection
P → Pi to Q. �

Proposition 11. A topologically complete Hausdorff space X with dimX ≤ n is
homeomorphic with the limit space of an AIS ((Pα, dα), pαβ , A) of metric polyhedra
(Pα, dα) with dimPα ≤ n and surjective uniformly continuous maps pαβ .

Proof: Start with the complete uniformity V on X of weight w. In view of
Lemma 2, there is a collection {Uλ : λ ∈ Λ}, where |Λ| = w, of locally finite cozero
covers of X of order ≤ n such that each uniform cover of V is refined by some Uλ.
Let Pλ = |N (Uλ)| with its standard metric and fλ : X → Pλ a canonical mapping.
Let the set A of all finite non-void subsets of Λ be ordered by inclusion. For

α = {λ}, we let Pα = Pλ and fα = fλ. For α ∈ A, we construct by induction on |α|,
using the fact that each α has only a finite number of predecessors in conjunction
with Lemma 4 and the definition of uniform continuity, a metric polyhedron (Pα, dα)
with dimPα ≤ n, a locally finite surjection fα : X → Pα, a uniformly continuous
pαβ : Pβ → Pα for α < β, and a positive εα less than 1 such that

dα(pαβfβ , fα) < 2
|α|−|β|εα(1)

and

dβ(x, y) < εβ ⇒ d(pαβ(x), pαβ(y)) < 2|α|−|β|.(2)
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In view of (1), given α < β < γ,

d(pβγfγ , fβ) < εβ .

Then, by (2), for any point y = fγ(x) of Pγ ,

d(pαβpβγ(y), pαβfβ(x)) < 2|α|−|β|.(3)

Hence, by (1) and (3), and (1), respectively,

d(pαβpβγ(y), fα(x)) < 2|α|−|β|+1(4)

and

d(pαγ(y), fα(x)) < 2|α|−|γ|.(5)

It now follows from (4) and (5) that

d(pαγ , pαβpβγ) < 2
|α|−|β|+2.

Thus ((Pα, dα), pαβ , A) is an AIS. Let Y be its limit space and pα : Y → Pα

the canonical projection. Let X be endowed with the smallest uniformity U that
makes each fα uniformly continuous. Note that the weight (U) ≤ w, U is finer than
V and hence U is complete. In view of (1) and Proposition 6, there is a uniformly
continuous g : X → Y with pαg = fα for each α ∈ A. If x1, x2 are distinct points
of X , for some α = {λ} ∈ A, fα(x1) 6= fα(x2). Hence, g(x1) 6= g(x2) and g is
injective. Now since g and each pα are uniformly continuous, then g : X → g(X)
is an isomorphism by the definition of U . Hence, being complete, g(X) is a closed
subspace of Y . Finally, if y ∈ Y − g(X), then y and g(X) are distant, so that, by
Proposition 4, for some α ∈ A, pα(y) and pαg(X) = fα(X) are distant in Pα, which
contradicts the fact that fα is surjective. Thus, Y = g(X) is isomorphic with X ,
and this completes the proof. �

An immediate corollary is Nagami’s theorem 27-7 in [10].

Corollary 4. If X is completely metrizable with dimX ≤ n, then X is the limit
space of an inverse sequence of metric polyhedra with dim ≤ n.

Proof: In the proof of Proposition 11, A can be taken to be countable, and the
result then follows from Proposition 8. �

The following result is readily established by making trivial modifications to the
proof of Proposition 11. What is needed is the fact that an open cover of a strongly
paracompact space X with dimX ≤ n has a star-finite cozero shrinking of order
≤ n.
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Proposition 12. A strongly paracompact Hausdorff space X with dimX ≤ n is
homeomorphic with the limit space of an AIS ((Pα, dα), pαβ , A) of metric locally
finite polyhedra (Pα, dα) with dimPα ≤ n and surjective uniformly continuous maps
pαβ .

The following result generalizes Freudenthal’s original result for compact metric
spaces [5]. It follows from Propositions 8 and 12 in the same manner as Corollary 4
follows from Propositions 8 and 11.

Corollary 5. A completely metrizable separable space X with dimX ≤ n is the
limit space of an inverse sequence of metric separable locally finite polyhedra with
dim ≤ n.

We conclude this section with a proof of a version of the factorization theorem
that we use in Section 5, using results of this paper. The reader will have noticed
that in Lemma 2 for a compact space X , the use of the factorization theorem was
superfluous.

Proposition 13. Let X be a Tychonoff space with dimX ≤ n and f : X → M
a continuous function onto a compact metric space. Then there is a compact metric
space L with dimL ≤ n and continuous g : X → L and h : L → M with hg = f
(cf. [8] and [12]).

Proof: Since the Stone–Čech compactification of X has the same dim as X , we
can assume that X is compact. Let (Pα, pαβ , A) be the AIS of polyhedra with
dimPα ≤ n obtained in Proposition 11. With the notation of the proof of that
proposition, we can assume that f is uniformly continuous w.r.t. V and hence U .
Then, by Proposition 9, there is a countable subset B of A such that (Pα, pαβ , B) is
an AIS with limit Y , and uniformly continuous g : X → Y and h : L = g(X)→ M
with f = hg. Finally, by Proposition 10, dimY ≤ n and hence dimL ≤ n. �

5. An application of inverse limits.

The purpose of this section is to give a proof of the equality dimX = IndX
for metric spaces, using essentially only results on inverse limits. This proof has
apparently not been previously noticed.
A mapping f : X → Y between metric spaces is called special if for each j ∈ N ,

there is an open cover {V j
i : i ∈ N} of f(X) such that each f−1(V

j
i ) is the union

of a discrete collection {V j
iα : α ∈ A} of open sets of X with mesh ≤ 1

j . Note that

if f is special, the same is true of its restriction to a subspace of X .

Proposition 14. If f : X → Y is special, then IndX ≤ IndY .

Proof: The proof is by induction on n = Ind Y , the cases n = −1 or ∞ being
trivial. Let IndY = n ≥ 0 and suppose the result holds provided the range has

Ind ≤ n − 1. By the subset theorem, we can suppose that f is onto. Let V
j
i and

V
j
iα be as in the definition of a special mapping. Then there is an open refinement

{U j
i : i ∈ N} of the open cover {V j

i : i ∈ N} of Y with U
j
i ⊂ V

j
i and Ind ∂(U

j
i ) ≤
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n − 1, where ∂ denotes boundary. Put U j
iα = V j

iα ∩ f−1(U j
i ). By the induction

hypothesis, Ind f−1(∂(U
j
i )) ≤ n − 1, and hence Ind ∂(U

j
iα) ≤ n − 1 by the subset

theorem. Let E, F be disjoint closed sets of X and, for i, j ∈ N , set

Gj
i =

⋃

(U j
iα : U

j
iα ∩ F = ∅)

and

Hj
i =

⋃

(U j
iα : U

j
iα ∩ E = ∅).

The following facts are readily checked.

Ind ∂(G
j
i ) ≤ n − 1, Ind ∂(H

j
i ) ≤ n − 1,(1)

X =
⋃

i,j∈N

Gj
i ∪ Hj

i ,(2)

G
j
i ∩ F = ∅ and H

j
i ∩ E = ∅.(3)

Now by a well-known technique [4, Lemma 2.3.16], using (2) and (3), one can con-

struct a partition L between E and F which is a closed subspace of
⋃

i,j∈N ∂(Gj
i )∪

∂(H
j
i ). Then by (1) and the countable sum and the subset theorems, IndL ≤ n−1,

and hence IndX ≤ n. �

Lemma 5. For a compact metric space X , IndX ≤ dimX .

Proof: The proof is by induction on n = dimX , for n = −1 or ∞ the proof
being trivial. Assume then that dimX = n ≥ 0 and that the result holds for
all compact spaces with dim ≤ n − 1. By Proposition 12, X is the limit space
of an inverse sequence (Pi, pij , N), where each Pi is a finite n-dimensional poly-
hedron. Let pi : X → Pi denote the canonical projection. Let V be an open
neighbourhodd of a closed subset E of X . By the compactness of X , there is k ∈ N
and an open neighbourhood U of pk(E) with E ⊂ W = p−1k (U) ⊂ W ⊂ V . Then

(∂p−1ki (U), pij , k ≤ i < j) is an inverse sequence with limit as a compact metric
subspace Y of X containing ∂W . It is well known that the boundary of a subset of
Rn has dim ≤ n − 1 (see Theorem 1.8.10 and the problem 1.8.D of [4], and Theo-

rem IV.3 of [6]). It follows that dim ∂p−1ki (U) ≤ n − 1 and by Corollary 3 and the
subset theorem, dim ∂W ≤ dimY ≤ n − 1. Finally, by the induction hypothesis,
Ind ∂W ≤ n − 1 and hence IndX ≤ n. �

A similar argument to that employed above was originally employed in [8] and [11].

Proposition 15. For a metric space X , dimX = IndX .

Proof: It suffices to show that dimX ≤ n < ∞ implies IndX ≤ n since dim ≤ Ind

holds for all normal spaces. For each j ∈ N , let {U j
iα : i ∈ N, α ∈ A} be a σ-

discrete open cover of X of mesh ≤ 1
j . Let f j

i : X → I be continuous with
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(f j
i )

−1(0, 1] = U j
i =

⋃

(U j
iα : α ∈ A). Then f =

∏

i,j∈N f j
i : X → IN is a special

mapping. By Proposition 13, there is a compact metric space Y with dimY ≤ n
and continuous g : X → Y and h : Y → IN with hg = f . This last property
implies that g is a special mapping. Finally, by Proposition 14 and Lemma 15,
IndX ≤ IndY ≤ dimY ≤ n. �
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[5] Freudenthal H., Entwicklungen von Räumen und ihren Gruppen, Compositio Math. 4 (1937),
145–234.

[6] Hurewicz W., Wallman H., Dimension Theory, Princeton University Press, Princeton, 1941.
[7] Isbell J.R., Uniform spaces, Amer. Math. Soc. Surveys 12, 1964.
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