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ON THE SET OF POINTS OF DISCONTINUITY FOR FUNCTIONS
WITH CLOSED GRAPHS

Jozer DoBo§, KoSice
(Received July 15, 1983)

For two topological spaces X and Y and any function f:X — Y the subset
{(x,f(x)); x € X} of the space X x Y (with Tychonoff’s topology) is called the graph
of f and is denoted by G(f). We denote by C(D,) the set of all such points at which
the function f defined on X is continous (discontinuous).

I. Baggs [1] dealt with the set of points of discontinuity of functions with closed
graphs. In this paper we shall generalize some results of the paper [1].

1. PRELIMINARIES
First we recall definitions and some basic properties.

Proposition A. Let a function f : X — Y have a closed graph. If K is a compact
subset of Y then f~'(K) is a closed subset of X. (See [2; Theorem 3.6].)
This proposition has the following corollary.

Proposition B. Let a function f:X — Y have a closed graph. Then f~'(y) is
a closed subset of X for each y € Y. (See [7; Theorem 1].)

Proposition C. Let f : X — Y be any function where Y is a locally compact
Hausdorff space. If for each compact K < Y, f~*(K) is closed, then G(f) is closed.
(See [9; Theorem 6].) |

Definition 1. Let X and Y be topological spaces, let f : X — Y be a function and let
pe X. Then f is said to be c-continuous at p provided the following holds: if U is an
open subset of Y containing f (p) such that Y — U is compact, then there is an open
subset V of X containing p such that f(V) = U. The function f is said to be c-con-
tinuous (on X) provided f is c-continuous at each point of X. (See [3; Definition 1].)
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Proposition D. Let f : X — Y be any function where Y is Hausdorff. Then the fol-
lowing statements are equivalent:
(1) f is c-continuous, and

(2) if K is a compact subset of Y, then f~'(K) is a closed subset of X. (See [3;
Theorem 1].)

Corollary 1. Let f : X — Y be any function where Yis a locally compact Hausdorff
space. Then f is c-continuous if and only if G(f) is closed.

Definition 2. A function f:X — Y is locally bounded at x,e€ X if and only if
there exists a compact subset K of Y such that x, € Int (f ~'(K)). We denote by B,
the set of all such points at which the function f is locally bounded.

Lemma A. Let f : X — Y be given. Then G(f) is closed if and only if for each
x€X and y € Y, where y # f(x), there exist open sets U and V containing x and y,
respectively, such that f(U) n'V = 0. (See [8; Lemma].)

Theorem 1. Let f : X — Y be given. If G(f) is closed, then
B, <= C,.

Proof. We may assume that Y has at least two elements (in the opposite case we evi-
dently have B, = Cj). Let the set G(f) be closed. Let x, € B;. By Definition 2 there
exists a compact set K (in Y)such that x, € Int (f~'(K)). Let ¥ be an open neighbour-
hood of the point f(x,). Since K — Vis compact and G(f) is closed, f ~'(K — V) is
closed by Proposition A. Put

U=Int(f"YK)—-f"Y(K~-V).
Evidently U is an open neighbourhood of the point x,. We shall prove that f(U) < V.
Let x e U. Since f(x) € K and f(x) ¢ K — V, evidently f(x) e V. Hence x, € C,.

Corollary 2. Let f : X — Y be any function where Y is a locally compact space.
If G(f) is closed, then B, = C,. '
The converse to Corollary 2 is not necessarily true as the following example shows.

Example 1. Let X = Y = R (where R denotes the set of all real numbers) with the

usual topology. Define a function f: X — Y as follows:

1sin£ for x+ 0,
f=1x =
0 for x=0.

Then G(f) is not closed, but Yis locally compact and B, = C,.
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Lemma 1. Let the function f:X — Y have a closed graph. If K is a compact
subset of Y then f~'(K) — B, is nowhere dense in X.

Proof. Let K be a compact subset of Y. Put
A=f"Y(K) - B;.

By Definition 2 it is easy to see that B, is open. By Proposition A the set f~'(K) is
closed. Therefore 4 is closed. Now we shall prove that Int (4) = 0. Let x € Int (4).
Then A is a neihbourhood of the point x such that f(4) = K. Since K is com-
pact by Definition 2 we have x € B. This leads to a contradiction because x € A =
< X — By. Therefore A is nowhere dense in X.

Theorem 2. Let f : X — Y be any function where Y is a o-compact space (i.e. Y
is the countable union of compact sets). If G(f) is closed, then X — By is closed and
of the first category (in X).

o]
Proof. By the assumption, Y = J K,, where each K, is compact. Let ne N

n=1

(where N denotes the set of all positive integers). Put

A, =f"YK,) - B;.

By Lemma 1 the set 4, is nowhere dense in X. Hence X — B, = |J 4, is of the first
n=1

category in X.

2. REAL FUNCTIONS WITH CLOSED GRAPHS

Let X be a topological space. Denote by U(X) the class of all real functions defined
on X with closed graphs.

From Corollary 2, Lemma 1, Proposition B and Theorem 2 we obtain the fol-
lowing three theorems.

Theorem 3. Let f € U(X). Then the set D is closed and of the first category (in X).
Theorem 4. Let f € U(X). Then D, n f~*(0) is closed and nowhere dense (in X).
Theorem A. Let X be a T, Bairespace. If f : X — R" (R" — the Euclidean n-space)
has a closed graph, then D, is closed and nowhere dense in X. (See [1], and for metric

spaces see [5; Theorems 4 and 5].)

Theorem B. A set F = R is closed and nowhere dense if and only if there exists
a function f : R - R such that f has a closed graph and D, = F. (See [1].)
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Theorem 5. Let F be a closed, G; and nowhere dense subset of a normal topological
space X. Let u : X — <0, 1> be a continuous function such that u='(0) = F. Define
a function g : X — R as follows:

_ [ 1fu(x) for xeX —F,
g(x)—{o Jor xeF.

Then g has a closed graph and D, = F.

Proof. We show that the graph of g is closed. Let {(x,, g(x,))}«c4 be a convergent
net of points of the graph of g, ie. there exist x, and y, such that (x,, g(x,)) -
- (x0, ¥o) € X x R. We distinguish two cases.

a. Let there exist o, such that for every « > o, we have x, € F. Sinhce x, = Xq
and F is closed, we obtain x, € F. Hence g(x,) = 0 = y,.

b. For each a let there exist f > a« such that x; ¢ F. It follows from the definition
of g that g(x) = 1 whenever xeX — F. The convergence of the net {g(x,)}ses
implies that there is oy such that for every a« > «, we have x,€ X — F. Since u is
continuous at the point x, and g(x,) — ¥4, We obtain x, € X — F. Since g is continu-
ous on the set X — F, it is not difficult to verify that g(x,) — g(x,). Hence g(x,) = yo.

Finally, we show that D, = F. Evidently g is continuous on the set X — F. Let
x € F. Because the set F is nowhere dense, we have w,(x) 2 1 for the oscillation of g
in x. Hence x € D,. The following example shows that there exists a metric space X
and a function f e U(X) such that D, is not nowhere dense.

Example 2. Let X = {x, x,,...} be a countably dense subset of R. Define
a function f : X — R as follows:

fGx)=n (n=1,2,..).
Then f has a closed graph, but D; = X is not nowhere dense in X.

Proposition 1. Let X be a topological space. Let f € U(X). Then |f| € U(X).

Proof. Let xo € X. Let y = |f(x,)|- First suppose that y = 0. Since y * f(xo),
by Lemma A there exist 6, > 0 and a neighbourhood U, of the point x, such that

f(Ul)n(y—‘sls )’+51)=0-

Since —y = f(x,), by Lemma A there exist 6, > 0 and neighbourhood U, of the
point x, such that

f(Uz)ﬁ(—y—_‘sz, —.V+52)=0-
Put
U= UlﬁUZ,

5 = min (3;,5,),
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V=_(y-9y+9).

Let xeU. If f(x) 2 0, since f(x)¢(y — 6;, y + &), we have ||f(x)| - y| =
= |1(x) - y| 2 8, 2 8. Therefore |f(x)| ¢ V. If f(x) <O, then f(x)¢(—y — 6,
—y + &), hence |y — lf(x)H = |y + f(x)| 2 8, 2 6. Therefore |f(x)| ¢ V. In the
case y<OputU =X,V =(—o0; 0). Then by Lemma A the function f has a closed
graph.

Proposition 2. Let X be a topological space. Let a be a real number. Let f € U(X).
Then «. f e U(X).

Proof. It is obvious that for @ = 0 we have «.fe U(X). Suppose that « = 0.
Let x, € X. Let K be a compact subset of R such that a . f(x,) ¢ K. Since K is closed,
there exists £ > 0 such that

(3 (x.f(x0) — &, a.f(xo) +E)NK=09.
Let k > 0 be a bound of the set K (i.e., K = {(—k, k)). Put
h = max (k, k[|a) ,
Ky = <=h by = (f(x0) = f|o] . f(x0) + ¢flo]) -

Since f(xo)b¢K , and K, is compact, there exists a neighbourhod U of the point x,
such that

@ fU)NK, =0.

Let xe U. If a. f(x) ¢ {—k, k), evidently a . f(x) ¢ K. Let « . f(x) € {—k, k). Then
f(x) € {—h, b, therefore by (4) we have f(x) e (f(xo) — s/|a|, f(xo) + a/|a|). Thus
Ioz S(x) = a.f(xo)l = |a| . lf(x) —f(x0)| < |oz| . e/|oc| = ¢, hence by (3) we have
« . f(x) ¢ K. Then Corollary 1 yields « . f € U(X). '

Remark 1. Propositions 1 and 2 are proveﬂ in the paper [6] for X a metric space.
It is known that the class U(X) is not closed with respect to addition (see [6;

Example 3]). We prove that U(X) is closed with respect to addition of nonnegative
functions. . ' U '

Theorem 6. Let X be a topological space. Let f, g € U(X) be nonnegativefﬁnctions.
Then f + g € U(X). ' :

Proof. Let Xo € X. Let K be a compact subset of R such that f (xa) + g(x0) ¢ K.
The closedness of the set K implies that there exists ¢ > 0 such that

) (f(xo)+g(xo)—6,‘f(xo)+g(xo)+‘s)nK=0,
Let k > 0 be a bound of the set K (i.e. K = {—k, k)). Put
Ky =<0,k) — (f(x0) — /2, f(x0) + ¢[2),

64



K, =<0, k> — (g(x0) — /2, g(xo) + ¢[2).
Since fe U(X), by Corollary 1 there exists a neighbourhood U, of the point x,
such that

(6) fU)NK;=90.
Since g € U(X), by Corollary 1 there exists a neighbourhood U, of the point x, such
that
(7) g(U2) N K2 = 0 .
Put
U=U;nU,.

Let x e U. If f(x) + g(x) > k, evidently f(x) + g(x) ¢ K. Let f(x) + g(x) € <0, k).
Since by (6) we have f(x) € <0, k) — K, by the definition of K; we obtain

(®) f(x) € (f(xo) — &2 f(x0) + &[2).

Since by (7) we have g(x) € €0, k) — K, by the definition of K, we obtain

©) g(x) € (9(x0) — #/2, 9(x0) + &[2).

From (8) and (9) it follows that |(f(x) + g(x)) — (f(xo0) + 9(x0))| £ |f(x) — f(x0)| +

+ |g(x) — g(xo)| < €2 + €/2 = &, hence by (5) we have f(x) + g(x) ¢ K. Therefore
(f + 9)(U)n K = 0. By Corollary 1 we obtain f + g € U(X).

Corollary 3. Let X be a topological space. Let f, g € U(X). Then |f| -+ |g| e U(X).

Definition 3. A topological space X is called perfectly normal if and only if it is
normal and each closed subset of X is G,. (See [4], p. 181.)

Theorem 7. Let X be a perfectly normal topological space. Then A = X is closed
and of the first category in X if and only if there exists a function f € U(X) such that
D, = A.

Proof. Necessity follows from Theorem 3. Sufficiency. Let A = X be closed and

00

of the first category in X. Then A = |J A,, where each A, is a closed nowhere dense

n=1
subset of X, 4, < 4,,, (n =1,2,...). Let g : X - <0, 1) be a continuous function
such that g~'(0) = A. Let g, : X - <0,1) (n = 1,2,...) be continuous functions
such that for each ne N

(10) g,,“(O) =4,
(11) gu(x) = g(x) foreach xeX.
The existence of functions g, g, (n =1,2, ) follows from Urysohn’s lemma. For

each n € N define a function f, : X — R as follows:
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1/g(x) for xeX — A4,,
fulx) = {/ (x) .
or xXeA,.

By Theorem 5 we have f, € U(X) (n = 1, 2, ...). Consider the series

2 )1,

We now show that the series (12) is convergent to some function f : X —» R. If x€ 4,,
for some m € N, then

05 3 ((12) - 5i¥) = L (1)) -£x) < +oo.

If xéX— A, then
05 3((12)-£(9) = 3 ((12) - (1o.(9) <

< 3((1/2) - (o)) = 1fox) < +eo.

We now show that D, = A. First we shall prove that X — 4 =« C,. Let be X — A.
Since g(b) > 0 and g is continuous at the point b, there exists a neighbourhood U
of the point b such that

(13) VxeU :g(x) > g(b)/2.
Evidently U = X — A. Hence by (13) we have for each x e U
%) = 1g.(x) £ 1]g(x) < 2[g(b) (n=1,2,...).

Therefore the series (12) is uniformly convergent on the set U. Since all functions f,
are continuous on U, the function f is continuous at the point b. Now we show that
A c D,.Letae A Then a e A, for some m € N. We shall prove that for each neigh-
bourhood V of the point a and for each n e N there exists a point y € V such that
f (y) > n. Let V be a neighbourhood of the point a. Let n € N. Since g,, is continuous
at the point a, there exists a neighbourhood W of the point a such that

(14) VxeW:g,(x) <27"n.

Since 4, is closed and nowhere dense, there exists a point y e ¥V W such that y e
€ X — A,. Hence by (14) we have

f0) = (f27) . (Ugn(y)) > n.
Therefore ae X — B, = D,.

Now we shall prove that f € U(X). Let K be a compact subset of R. We now show
that X — f~!(K) is open. Let x, € 4,, — f~!(K) for some m € N. Put
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h =n§1((1/2") ) -

By Theorem 5, Proposition 2 and Theorem 6 we obtain h € U(X). Since f(x,) ¢ K
and K is closed, there exists ¢ > 0 such that '

(f(x)) — & f(x)) +&)nK =9.
Let k > 0 be a bound of the set K (i.e. K = {—k, k)). Put

Ky =<0,k) — (f(x1) — & f(x,) + ¢).

Since h(x,) = f(x,) ¢ K,, K, is compact and h € U(X), by Proposition A the set
X — h™!(K,) is an open neighbourhood of the point x,. Since g,, is continuous at
the point x,, there exists a neighbourhood U, of the point x; such that U; < X —
— h™!(K,) and for each x € U, we have

(15) gn(x) < 27"(f(x,) + &) .

If xeU, n A, then f(x) = h(x) ¢ K,. Therefore f(x) ¢ K. If xe U; — A4
(15) we have

then by

ms

h(x) 2 (1/27) . fulx) = (1/27) . (1]gu(x)) > f(x1) + .
Since h(x)¢K,, we obtain h(x)¢ <0, k). Hence f(x) = h(x) > k, then f(x)¢K.
Therefore the point x, has a neighbourhood U, such that U; = X — f~!(K).
Let x, € (X — A) — f~'(K). Since x, € C, the set

Up=X—f"'(K)=f"'(R - K)

is a neighbourhood of the point x,.
Therefore the set X — f~!(K) is open. By Proposition C we have f € U(X).
This theorem has the following corollary.

Theorem C. Let X be a Baire metric space. Then F < X is closed and nowhere
dense in X if and only if there exists a function f € U(X) such that D, = F.

The following example shows that the assumption “X is perfectly normal” in
Theorem 7 cannot be replaced by the assumption ‘‘X is normal”.

Example 3. Let X = {0; o £ Q} (where Q denotes the first uncountable ordinal
number) with the order topology. It is well known that X is a normal space, and the
set {Q} is closed and nowhere dense in X but for each f e U(X) we have D, + {Q}.

(See [1].)
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