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časopis pro pěstování matematiky, roč. 110 (1985), Praha 

ON THE SET OF POINTS OF DISCONTINUITY FOR FUNCTIONS 
WITH CLOSED GRAPHS 

JOZEF DOBOS, Kosice 

(Received July 15, 1983) 

For two topological spaces X and Y and any function / : X -> Y the subset 
{(x,f(x)); xeX} of the space X x y(with Tychonoff's topology) is called the graph 
of/ and is denoted by G(/). We denote by Cf(Dj) the set of all such points at which 
the function / defined on X is continous (discontinuous). 

I. Baggs [l] dealt with the set of points of discontinuity of functions with closed 
graphs. In this paper we shall generalize some results of the paper [1]. 

1. PRELIMINARIES 

First we recall definitions and some basic properties. 

Proposition A. Let a function f : X -> Y have a closed graph. If K is a compact 
subset of Ythenf~l(K) is a closed subset of X. (See [2; Theorem 3.6].) 

This proposition has the following corollary. 

Proposition B. Let a function f :X -> Y have a closed graph. Then f~1(y) is 
a closed subset of X for each y e Y. (See [7; Theorem l].) 

Proposition C. Let f : X -> y be any function where Y is a locally compact 
Hausdorff space. If for each compact K a Y, f~x(K) is closed, then G(f) is closed. 
(See [9; Theorem 6].) t 

Definition 1. Let X and Ybe topological spaces, let/: X -> Ybe a function and let 
peX. Then/is said to be c-continuous at p provided the following holds: if U is an 
open subset of Y containing f(p) such that Y — U is compact, then there is an open 
subset V of X containing p such that/(V) c 17. The function/is said to be c-con­
tinuous {on X) provided/is c-continuous at each point of X. (See [3; Definition 1].) 
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Proposition D. Let f : X -> Y be any function where Y is Hausdorff. Then the fol­
lowing statements are equivalent: 

(1) f is c-continuous, and 

(2) if K is a compact subset of Y, then f-1(K) is a closed subset of X. (See [3; 

Theorem l].) 

Corollary 1. Letf : X -> Y be any function where Yis a locally compact Hausdorff 
space. Then f is c-continuous if and only if G(f) is closed. 

Definition 2. A function f: X -> Y is locally bounded at x0eX if and only if 
there exists a compact subset K of Y such that x0 e Int (f_1(K)). We denote by Bf 

the set of all such points at which the function f is locally bounded. 

Lemma A. Let f :X -> Y be given. Then G(f) is closed if and only if for each 
xeX and y e Y, where y 4= f(x), there exist open sets U and Vcontaining x and y, 
respectively, such that f(U) n V = 0. (See [8; Lemma].) 

Theorem 1. Letf : X -> Y be given. If G(f) is closed, then 

Bf a Cf. 

Proof. We may assume that yhas at least two elements (in the opposite case we evi­
dently have Bf = Cf). Let the set G(f) be closed. Let x0 e Bf. By Definition 2 there 
exists a compact set K (in Y) such that x0 e Int (f~ 1(K)). Let Vbe an open neighbour­
hood of the point f(x0). Since K — Vis compact and G(f) is closed, f-^K — V) is 
closed by Proposition A. Put 

U = I n t ( f - 1 ( K ) ) - f - 1 ( K - V). 

Evidently U is an open neighbourhood of the point x0. We shall prove thatf(U) <= V 
Let xeU. Since f(x) e K and f(x) $ K — V, evidently f(x) e V Hence x0 e Cf. 

Corollary 2. Let f : X -> Y be any function where Y is a locally compact space. 
If G(f) is closed, then Bf = Cf. 

The converse to Corollary 2 is not necessarily true as the following example shows. 

E x a m p l e l . L e t K = Y = R (where R denotes the set of all real numbers) with the 
usual topology. Define a function f : X -> Y as follows: 

- sin - for x =t= 0 , 
f(x) = I x x 

, 0 for x = 0 . 

Then G(f) is not closed, but yis locally compact and Bf = Cf. 
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Lemma 1. Let the function f: X -> Y have a closed graph. If K is a compact 
subset ofYthenf~*(K) — Bf is nowhere dense in X. 

Proof. Let K be a compact subset of Y. Put 

A=f-\K)-Bs. 

By Definition 2 it is easy to see that Bf is open. By Proposition A the setf-1(K) is 
closed. Therefore A is closed. Now we shall prove that Int (A) = 0. Let x e Int (A). 
Then A is a neihbourhood of the point x such that f(A) c K. Since K is com­
pact by Definition2we have x e Bf. This leads to a contradiction because xe A a 
c X — Bf. Therefore A is nowhere dense in X. 

Theorem 2. Let f : X -> Y be any function where Y is a a-compact space (i.e. Y 
is the countable union of compact sets). If G(f) is closed, then X — Bf is closed and 
of the first category (in X). 

00 

Proof. By the assumption, 7 = \J Kn, where each Kn is compact. L e t n e N 

(where N denotes the set of all positive integers). Put 

An=f-\Kn)-Bf. 
00 

By Lemma 1 the set An is nowhere dense in X. Hence X — Bf = \J An is of the first 
n=l 

category in X. 

2. REAL FUNCTIONS WITH CLOSED GRAPHS 

Let X be a topological space. Denote by U(X) the class of all real functions defined 
on X with closed graphs. 

From Corollary 2, Lemma 1, Proposition B and Theorem 2 we obtain the fol­
lowing three theorems. 

Theorem 3. Letfe U(X). Then the set Df is closed and of the first category (in X). 

Theorem 4. Let fe U(X). Then Df nf^O) is closed and nowhere dense (in X). 

Theorem A. LetX be a T2 Baire space. Iff : X -* Rn (Rn — the Euclidean n-space) 
has a closed graph, then Df is closed and nowhere dense in X. (See [l] , and for metric 
spaces see [5; Theorems 4 and 5].) 

Theorem B. A set F c R is closed and nowhere dense if and only if there exists 
a function f : R -+ R such thatf has a closed graph and Df -= F. (See [l].) 
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Theorem 5. Let F be a closed, G5 and nowhere dense subset of a normal topological 
space X. Let u :X -> <0, 1> be a continuous function such that w_ 1(0) = F. Define 
a function g :X -> R as follows: 

g(x) = 1 ^ f0Г 

J 1 0 for 

xєX - F 

xєF. 

Then g has a closed graph and D = F. 

Proof. We show that the graph of g is closed. Let {(x„ g(xa))}aeA be a convergent 
net of points of the graph of g, i.e. there exist x 0 and y0 such that (xa, g(xa)) -> 
-* (x0, y0) e X x R. We distinguish two cases. 

a. Let there exist a 0 such that for every a > a 0 we have xa £ F. Since xa -> x0 

and F is closed, we obtain x0 e F. Hence g(x0) = 0 = y0. 

b. For each a let there exist P > a such that xp $ F. It follows from the definition 
of g that g(x) = 1 whenever xeX — F. The convergence of the net {g(xa)}aeA 

implies that there is a0 such that for every a > a0 we have xa e X — F. Since u is 
continuous at the point x0 and g(xa) -> y0, we obtain x0 e X — F. Since g is continu­
ous on the set X — F, it is not difficult to verify that g(xa) -> g(x0). Hence g(x0) = *y0. 

Finally, we show that Dg = F. Evidently g is continuous on the set X — F. Let 
XE F. Because the set F is nowhere dense, we have cog(x) = 1 for the oscillation of g 
in x. Hence x e Dg. The following example shows that there exists a metric space X 
and a function fe U(X) such that Df is not nowhere dense. 

Example 2. Let X = {x 1 ,x 2 , . . .} be a countably dense subset of R. Define 
a function f :X -> R as follows: 

f(x„) = n (n = l,2,...). 

Then f has a closed graph, but Df = X is not nowhere dense in X. 

Proposition 1. Let X be a topological space. Letfe U(X). Then |f| e U(X). 

Proof. Let x 0 e X Let y 4= |f(x0)|. First suppose that y = 0. Since y # f (x 0 ) , 
by Lemma A there exist 5X > 0 and a neighbourhood Ut of the point x0 such that 

f(Ut) n (y - 5U y + 8X) = 0 . 

Since — j> 4=f(x0), by Lemma A there exist 52 > 0 and neighbourhood U2 of the 
point x0 such that 

f(U2)n(-y-S2, - j + 52) = 0. 
Put 

U = UlnU2, 

S = m i n ^ j , 52), 
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V = (y-5, y + 5). 

Let xeU. If f(x) = 0, since f(x)t(y - Sl9 y + Sx)9 we have | | /(x) | - y\ = 
= |/(x) - y\ = Sx = 8. Therefore | /(x) | * V. If / (x) < 0, then f(x)t(-y - S29 

-y + d2), hence \y - | /(x) | | = \y + f(x)\ = (52 = <5. Therefore | /(x) | $ V. In the 
case y< 0 put U = X, V = ( — oo; 0). Then by Lemma A the function / h a s a closed 
graph. 

Proposition 2. Le/ X be a topological space. Let oc be a real number. Letfe U(X). 
Thenoi.feU(X). 

Proof. It is obvious that for a = 0 we have a , / e U(X). Suppose that a + 0. 
Let x0 e X. Let K be a compact subset of R such that a . / (x 0 ) £ K. Since K is closed, 
there exists e > 0 such that 

(3) ( a . / ( * 0 ) - e , a . / ( x o ) + e ) n K = 0 . 

Let fc > 0 be a bound of the set K (i.e., K cz <-fc, fc>). Put 

h = max (fc, fc/|a|), 

K! = < - h , h> - (/(x0) - e/|a| , / (x 0 ) + e/|a|). 

Since/(x 0 )^K ! and Kx is compact, there exists a neighbourhod U of the point x0 

such that 

(4) f(U)nK±=0. 

Let x e 17. If a . / (x) £ <-fc, fc>, evidently a .f(x)$K. Let a . / (x) e <-fc, fc>. Then 
f(x) e < — h, h>, therefore by (4) we have f(x) e (/(x0) — e/|a|, / (x 0 ) + e/|a|). Thus 
|a . / (x) - a . / (x 0 ) | = |a| . | /(x) - / (x 0 ) | < |a| . e/|a| = e, hence by (3) we have 
a . f(x) $ K. Then Corollary 1 yields a . / e U(X). 

Remark 1. Propositions 1 and 2 are proved in the paper [6] for X a metric space. 
It is known that the class U(X) is not closed with respect to addition (see [6; 

Example 3]). We prove that U(X) is closed with respect to addition of nonnegative 

functions. ".''"•• 

Theorem 6. LetX be a topological space. Letf, g e U(X) be nonnegative functions. 
Then f + geU(X). 

Proof. Let x0 eX. Let K be a compact subset of R such that / (x 0 ) + g(x0)<£K. 
The closedness of the set K implies that there exists e > 0 such that 

(5) (/(*o) + 0(*o) - c / /(*o) + g(x0) + £) n K = 0 . 

Let fc > 0 be a bound of the set K (i.e. K c <-fc, fc». Put 

K! = <0, k> - (f(x0) - 6/2, f(x0) + 8/2) , 
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K2 = <0, fc> - (g(x0) - e/2, g(x0) + e/2). 

Since feU(X), by Corollary 1 there exists a neighbourhood Ut of the point x0 

such that 

(6) / ( l / . ) r . K . = 0 . 

Since g e U(K), by Corollary 1 there exists a neighbourhood U2 of the point x0 such 
that 

(7) #(U2)nK2 = 0. 

Put 
U = l/1 n U2 . 

Let x e U. I f / (x) + a(x) > fc, evidently f(x) + g(x)$K. Let / (x) + g(x) e <0, fc>. 
Since by (6) we have/(x) e <0, fc> — Kl9 by the definition of Kx we obtain 

(8) / ( x ) e ( / ( x 0 ) - e / 2 / ( x 0 ) + e/2). 

Since by (7) we have g(x) e <0, fc> — K2, by the definition of K2 we obtain 

(9) g(x) e (g(x0) - e/2, g(x0) + e/2) . 

From (8) and (9) it follows that |(/(x) + g(x)) - (/(x0) + g(x0))| rg |/(x) - / (x 0 ) | + 
+ \g(x) — g(x0)j < e/2 + e/2 = e, hence by (5) we have/(x) + g(x) <£K. Therefore 
( / + g) (U) n K = 0. By Corollary 1 we obtain / + g e U(X). 

Corollary 3. Let X be a topological space. Let f, g e U(X). Then | / | + \g\ e U(X). 

Definition 3. A topological space X is called perfectly normal if and only if it is 
normal and each closed subset of X is Gd. (See [4], p. 181.) 

Theorem 7. Let X be a perfectly normal topological space. Then A a X is closed 
and of the first category in X if and only if there exists a function fe U(X) such that 
Df = A. 

Proof. Necessity follows from Theorem 3. Sufficiency. Let i c l b e closed and 
00 

of the first category in X. Then A = (J An, where each An is a closed nowhere dense 
n = l 

subset of X, An c: An + 1 (n = 1, 2, . . .) . Let g : X -> <0, 1> be a continuous function 
such that g_1(0) = A. Let gn : X -> <0, 1> (n = 1, 2,. . .) be continuous functions 
such that for each n e N 

(io) g;1(o) = A, 

(11) grt(x) = g(x) for each xeX . 

The existence of functions g, gn (n = 1, 2,. . .) follows from Urysohn's lemma. For 
each neJV define a function fn : X -> R as follows: 
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f rx\ = f W*) for xeX - An, 
(0 for x e An. 

By Theorem 5 we have/n e U(X) (n = 1, 2,...). Consider the series 

(1-) i((i/-rL). 
n = l 

We now show that the series (12) is convergent to some function/ : X -> R. If x e Am 

for some m e N, then 
oo m 

0 < I ((1/2-) ./„(*)) = ~ ((I/I-) .L(x)) < + «>. 
n = l n = l 

If x e X - A, then 

oo oo 

0 < - ((1,2") ./.,(*)) = £ ((1/2") • ( l M < 
n=l w = l 

<f((l/2»).(#))) = # ) < + W . 
1 1 = 1 

We now show that Df = A. First we shall prove that X — A c Cj. Let b e X — A. 
Since #(fr) > 0 and g is continuous at the point b, there exists a neighbourhood U 
of the point b such that 

(13) VxeU:g(x)>g(b)\2. 

Evidently II c= X — A. Hence by (13) we have for each xeU 

fn(x) = l\gn(x) = \\g(x) < 2\g(b) (n = 1, 2,...) . 

Therefore the series (12) is uniformly convergent on the set U. Since all functions /,, 
are continuous on II, the function / is continuous at the point b. Now we show that 
A cz Dj. Let ae A. Then a e Am for some meN. We shall prove that for each neigh­
bourhood V of the point a and for each neN there exists a point y eV such that 
f(y) > n. Let Vbe a neighbourhood of the point a. Let neN. Since gm is continuous 
at the point a, there exists a neighbourhood JVof the point a such that 

(14) VxeW:gm(x)<2-mln. 

Since Am is closed and nowhere dense, there exists a point y eVn W such that y e 
e X — Am. Hence by (14) we have 

f(y)^(ll2m).(llgm(y))>n. 

Therefore aeX — Bf = Df. 
Now we shall prove tha t /e U(X). Let K be a compact subset of R. We now show 

that X - f~\K) is open. Let xt e Am - f~\K) for some meN. Put 
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n = l 

By Theorem 5, Proposition 2 and Theorem 6 we obtain ft e U(X). Since / (x x ) £ K 
and K is closed, there exists e > 0 such that 

(f(xx)--,f(xx) + a)nK = 9. 

Let k > 0 be a bound of the set K (i.e. K _ <-fc, fc>). Put 

Kx = <0, fc> - (f(xx) - a, f(xx) + a). 

Since ft(xj) =f(x1)$Kl9 Kt is compact and heU(X), by Proposition A the set 
X — h"\K^) is an open neighbourhood of the point xt. Since gm is continuous at 
the point x l 5 there exists a neighbourhood Ut of the point xt such that Ut _ K — 
— ft_1(Kj) and for each x e Ut we have 

(15) gm(x) < 2-ml(f(Xl) + a) . 

If x e U! n AOT, then / (x) = ft(x) £ Kx. Therefore / (x) $K.If xeUt - Am9 then by 
(15) we have 

h(x) ^ (l/2m) .fm(x) = (l/2m) . (l/o,„(x)) > / (x . ) + £ . 

Since h(x)$Ku we obtain ft(x)^<0, fc>. Hence / (x) ^ ft(x) > k, then f(x)$K. 
Therefore the point xx has a neighbourhood Ut such that LI! _ X — / _ 1 ( K ) . 

Let x2 e (.K — .A) — / _ 1 ( K ) . Since x2 e C /? the set 

U2=X-f-\K)=rl(R-K) 

is a neighbourhood of the point x2. 
Therefore the set X — f~l(K) is open. By Proposition C we have /e U(X). 
This theorem has the following corollary. 

Theorem C. Let X be a Baire metric space. Then F _ X is closed and nowhere 
dense in X if and only if there exists a function / e U(X) such that Df -= F. 

The following example shows that the assumption "K is perfectly normal" in 
Theorem 7 cannot be replaced by the assumption "X is normal". 

Examp le 3. Let X = {„; co ̂  Q} (where Q denotes the first uncountable ordinal 
number) with the order topology. It is well known that X is a normal space, and the 
set {Q} is closed and nowhere dense in X but for each /e U(X) we have Df 4= {Q}. 
(See[l] .) 
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