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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

ON BOUNDARY ELEMENTS OF THE FOURTH KIND 

ILJA CERNY, MARIE PROKSOVA, Praha 

(Received August 17, 1981) 

We use definitions and notation from [2]. Let Q be a fixed subregion of the closed 
Gaussian plane S, conformally equivalent to the unit circle U; let F : Q --> U be 
a fixed conformal mapping. As, if needed, we may apply a suitable homography, we 
suppose throughout the following text that dQ does not contain the point oo; in this 
way we simplify formal aspects while preserving the full generality of results. 

By a cut in Q we mean every one-one or Jordan curve cp : <a, /?> -* Q with 
(<p) (= (p((<x, p))) c Q, cp((x), cp(p) e dQ, (F o cp) (a+) * (F o cp) (£ - ) ; let us note 
that the last inequality means the curves cp | <a, i(a + /?)>, —cp | <-£(a + /?), /?> 
belong to two distinct bundles (of curves from dQ into Q — cf. [2]). Boundary 
elements of the region Q are certain classes of "normal" (see [2]) sequences {Qn}„=t 

of subregions of Q; we denote by § the set of all boundary elements of Q. 

1. Let #? G $, {Qn}n
t>

=1 G #C. Suppose {zk}k=1 is a sequence of points from Q and 

(1) cp : (a, p) -> .Q is a continuous mapping . 

Write 

(2') **->*, 

iff for each n there is a k(n) with z* G .0,, for all k > k(n); write 

(2") v -> JT , 

iff for each n is a <5„ > 0 with <p((a, a + <5n)) c .Q,,.1) 

As in [2], denote by 1F(X) the only element of the set f] F(Qn).
i) We easily see 

that w=1 -

(30 zk->tf, iff F(zk)-+yF(tf), 

1) As {Qn} e Jtf, {Q*} e J f iff the (normal) sequences {£„}, {&%} are mutually inscribed, the 
definition is independent of the choice of the sequence {Qn} e 3f. 
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and 

(3") q> - * , iff (F o q>) (a + ) = yF(3f) , 

For each mapping (1) we denote (as in [3]) 

(4) &>(cp) = n <?((«> « + *.)) . 
n = l 

where {Sn} is an arbitrary strictly decreasing sequence of positive numbers converging 
to 0; evidently, the right-hand side of (4) is independent of the choice of such a se­
quence {Sn}. As is easy to see, the identities 

(4') 0>(cp) = Ls <?((*, a + Sn)) = Ls p « a + iB + 1, a + <5n» 

(where Ls denotes the topological limes superior) hold. 

We easily verify that 

(5) cp -> tf => 0>(<p) c < j f > , 

where <Jf > is the geometrical image of the boundary element 3tf, i.e., the continuum 

0 fi, (see [2]). 

Caratheodory (cf. [1]) distinguished four kinds of boundary elements; we denote 
by §,(1 = j = 4) the set of all elements of the j-th kind. (The classification may be 
realised, e.g., as follows: «?f e .§x u § 2 means that there is a curve from dQ into (2 
with cp -> ^f; then Jf e $ i («?f e §2), iff <^f> is a one-point set (a proper con­
tinuum). / e § 3 u $ 4 means that #e e § - ( § x u §2); then Jf 6 § 3 (^f e §4), iff 
the implication cp -> Jf => 0*(<p) = <Jf > holds (does not hold). Thus, / e ^ u § 2 , 
iff there is a mapping (l) such that <p -> ffl and that 0>(<p) is a one-point set; further, 
^f e § 3 u $ 4 , iff for each mapping (l) with cp -> ^f the set ^((p) is a proper con­
tinuum.) 

We easily see that 

(6) for each / e § there is a mapping (1) with <p -> 34? and &>(cp) = < ^ > ; 

directly from the definition of boundary elements ^ of the second and the fourth 
kind it follows that there are mappings (1) with (p -+ 2% and &>((p) 4= <^f>. If 
Jf e $ 2 , there is a point a# e <-5f > such that a# e &>((p) for each (p -> Jf; at the 
same time, there are mappings cp -> tf with ^(<p) = {fl-r}. (In terms of definitions and 
notation from [2], the point a# is the origin of the bundle £f which determine the 
boundary element $?.) 

Thus, if Jf e § x u $ 2 u § 3 , there are continuous mappings <p -> Jf with "mini­
mal" ^(<p). Our main goal is the proof of an analogous assertion for elements of the 
fourth kind: 
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Theorem. If #C e § 4 , then there is a continuous mapping <pQ -* tf such that 
p0) cz &(<p) for each <p -* tf. 

We prove the theorem in § 3; before doing so we introduce several symbols and 
prove some auxiliary assertions. 

If #e e .§, we write 

(7') A(tf) = {ze <^>; ze&>(<p) for each <p -

(7") B(tf) = {ze (My there is a <p -• tf with z $ &>(<p)} . 

Evidently, 

(8) <Jf> = A(X) u fl(-*r) , A(^) n JB(jf) = 0 . 

According to whether ^f e § l 3 ^ f e § 2 J ^ e $3 , / e §4 , A(jf) is equal to the 
one-point set <^f> (= {a*}), to the one-point set {a#) (=# <Jf>), to the proper 
continuum <Jf >, to the proper continuum 8>(<pQ) where (p0 is as in the above theorem, 
respectively. Further, / e ^ u § 3 , iff B(tf) = 0, and Jf e § 2 u §4 , iff B(j^) * 0. 

Example 1. Let Q be the set-difference of the square {z; 0 < Re z < 1, 0 < 
< / m z < l } and the union of all segments <2~2rt; 2~2n + £i>, <2~2n+1 + i; 
2~2n+i + ^y (where n is a positive integer). Then the segment <0; i> is the geometrical 
image of precisely one boundary element tf (of the region Q); for this X , A(^f) is 
the segment <£i; fi>. 

Remark 1. The connectedness of the set A(j^) is evident for each element tf e 
e § — $4 ; by the theorem, A(#?) is a proper continuum for each Jf e § 4 as well. 
For each ^f e §, the set .A(.?f ) is the intersection of all sets &>(<p) where <p -* Jf. 
This intersection being a/wajs connected, mappings <p -+ 3f,\j/ -+ 3f may exist with 
^(cp) n ^ (^ ) disconnected; however, such a situation may occur only if ffl e 
~ $2 u §4- The following example confirms the possibility of the situation. 

Example 2. On the left-hand (right-hand) figure, tf is a boundary element of the 
second (fourth) kind with (&> equal to the union of the segments B, D and the cir­
cumference C (of the segments B, D and the circumferences A, C). 

With aid of continuous mappings <p, \// we may "approach" the boundary element 
tf "from the left" and "from the right", respectively, in such a way that the inter­
section &>(<p) n &(i//) is the thickly marked disconnected set. 

By easy modification, an example of Q, tf, <p, ij/ may be created in which &(<p) n 
n &{$) has uncountably many components. 

2. In the proof of the theorem we shall need several auxiliary assertions. 

Lemma 1. If A : <0,1> -> D is a Jordan curve with 

(9) 1(0), 1(1) edQ, (X) c Q , 
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(10) 

then X is a cut in Q. 

Int X n ÔQ ф 0 ф Ext X n ôQ , 

Fig. 1. 

Proof. Suppose the assumptions of Lemma 1 are satisfied, but X is no cut; then 
the F-image2) /x of the curve X is a Jordan curve. By (10), there are curves Xu X2 

such that i . p . X1 e Int X n dQ, i. p . X2e Ext X n dQ, (Xx} c= Int A n Q, {X2} c 
cz Ext X n Q. The F-images /Zj of the curves Xj are curves from dU into U and 
</ij> n </*> = 0 for j = 1,2. Therefore, both end points bj = e . p . fij must lie 
in the same component U1 = U — Int/i of the set U — </x>; as a consequence, 
F_i(Ui) is a component of the set Q — <A> containing both the points e . p . X} — 
a contradiction. 

Lemma 2. (CarathSodory.) For each tf e § there is a point z0 6 < ^ > , a (strictly) 
decreasing sequence of positive numbers rn with rn -* 0, and a normal sequence 
{Qn} e 2f such that, for each n, Q n dQn is a connected subset of the circumference 
\z - z0\ = rn. 

Proof — see [1]. 

2) If <p is as in (1) and if the limits (F o <p) (a+) , (F o q>) ($—) exist, then the F-image of q> is the 
curve y/ defined on <a, 0) as follows: y/(oc) = (F0<p) (a+) , ^(t) = F(9)(t)) for t e (a, )5), (̂J?) = 
= (FortO»-)(cf.[2]). 
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Remark 2. Let the conditions of Lemma 2 hold. If cp -> Jf, then (q>) n (3.Q,. 4= 0 
for all n sufficiently large. As a consequence, z0 e &*(<p) (for each mapping (1) with 
<p -• Jf); thus z0 G A(^f). 

We see thejset A(^) is non-empty (for each 3tf e §). 

Given any (finite) complex number z and any number S e (0, oo) we set 

(11) Q(z, 5) = {z'; \Re (zf - z)| = 5, \lm (zf - z)| = <5} . 

If z e d.G, then the condition 

(12,) 8Q - Q(z, 5) #= 0 , 

and, as a consequence, also the condition 

(122) dQ n dQ(z, S) * 0 , 

hold for each sufficiently small <5 > 0. For each sufficiently small d > 0, moreover, 

(123) F - i ( 0 ) ^ - e ( z ^ ) . 

Suppose all these conditions hold and let 

be a fixed Jordan curve with 

(132) X(0) = X(l) E dQ . 

Then there is a finite or infinite sequence of disjoint open intervals 

(14) Ii = (ul9 vx) , 12 = (w2, v2), ... 

contained in (0, l) such that 

(15) Q n dQ(z, S) = \J X(Ik) , X(uk), X(vk) e dQ . 
k 

We assert that then 

(16) the curve Xk = X1 <wfc, vky is a cut in Q (for each k). 

This is clear, if Xk is one-one; if Xk is not one-one, then fc = 1, Xk = X, and Afc is 
a cut by Lemma 1. 

Denoting by \ik the P-image of Xk, p.k is a one-one cut in U. Evidently, the following 
two implications hold: 

(17) If \ik(uk) = yF(tf) (for some tf e §) , then Xk -> tf>; if fik(vh) = y f (^ ) , then 
~ Ak —• «2ir. 

As a consequence: 

(18) If e/fher ixk(uk) = yF(c5f), or ^(i;k) = yF(j^) (for some Jf e $) , rhen ^f e 
6 § i U S2 . 
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Each cut fik splits the circle Uinto two regions Uk, Uk; choose the notation so that 
0 G Uk. Suppose now ^ 6 § 3 u § 4 ; then, by (18), yF(^) is not equal to any point 
fik(uk), fik(vk). As a consequence, the point yF(jf) lies in the closure of precisely one 
of the regions Uk, U*. Set 

(19) CC-tf) = {fc; yF(tf) E Uk} , C2(jf) = {k; yF(X>) E C7*} . 

Thus, 

(20) k E Cx(2tf) (k E C2(jf)), iff <lzfc> does not separate (separates) U between the 
points 0 and yF(jf). 

Lemma 3. For each Jf E § 4 and each z e B(jtf), there is a A(z) > 0 such that the 
conditions (ll^-^) hold and C2(jf) = 0 for each 5 E (0, J(z)>. 

Proof. Supposing the contrary there is an Jf e § 4 , a ZEB(3^), a sequence of 
positive numbers Sn with 5n -» 0, and cuts ln : <M", vny -> 3Q(z, 5n) in :Q such that, 
denoting by fin the F-image of .A", each set </*"> separates the circle U between 0 
and yF(#e). 

As z G B(tf), there is a continuous mapping cp : (0, 1> -> Q with <p -+ #?, z $ 
$ &*(<p); we may suppose <p(l) = F.^O). Denoting by \j/ the F-image of q> we have 
*A(0) = )v(-^)> ^CO = 0. As a consequence, (fin) n (\jj) 4= 0, which implies (An) n 
n (cp) 4= 0 (for all n). Choose numbers tn E (0, 1) so that cp(tn) E (AW). As Ls (?n) = 
= {z} G 30, we necessarily have tn -» 0, and (£>(*„) -> z. This contradicts our premise 
z £ &*(<p); Lemma 3 is proved. 

Lemma 4. Suppose 2tf E § 4 , z G B(J^), q> -* Jf, and let A(z) be as in Lemma 3. 

Then there is a continuous mapping i// -» tf such f/mf 

(21) 0>OA) ci 0>(<p) - int Q(z, A(z)) . 

Proof. Let the assumptions of Lemma 4 hold. By a "slight" modification of the 
mapping cp we easily obtain a mapping cp0 : (0,1> -> Q with the following properties: 
The mapping cp0 is not constant on any interval I a (0,1); for each rj E (0, 1), the 
mapping cp0 | (rj, 1> is piece-wise linear; no segment contained in (p0((0,1>) is parallel 
to the real axis, nor to the imaginary one; &>(q>0) = &*(cp); (p0 -* 2tf* Evidently, we 
may suppose <p0(l) = P-i(0) as well. 

Set 6 = A(z) (where A(z) is as in Lemma 3) and for the square Q(z, 8) construct 
the intervals (14) and the curves kk, fik (with the above properties); as above let Uk, Uk 

be the components of the set U — (fik) (0 E Uh); set 

(22) Vk = F_1(Uk), Qt = F_1(Ul) 

(so that Qk, Qk are (the only two) components of the set Q - (4)). C / j f ) (1 = 1, 2) 
being as in (19), we have C2(jF) = 0 by Lemma 3. 
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Two situations may occur: I. The mapping <p0 has no substantial intersection point 
with dQ(z, 8) 3); as <p0(l) = F . ^ G A - Q(z, 8), we then have &>(<p0) c (<p0) c 
c S — int Q(z, 8) and the mapping ^ = <p0 satisfies (21). 

II. The mapping <p0 has at least one substantial intersection point with dQ(z, 8). 
Let tt be the maximal one and let j \ e Cx(tf) be the index with <p0(tx) e (A^); as 
<p0(l) 6 QJt implies <p0((tt, 1>) c. Qjt, there is an rj > 0 with <p0((t1 — f> *i)) c 0*r 

Relations (F o <p0) (0+) = yF(jf) $ U* 4) imply the existence of such an rj' > 0 that 
(F o <p0) ((0, rj')) a UJl9 i.e., <p0((0, r\')) c QJt. As a consequence, there is a minimal 
number Tx e (0, ^) with ^0(T1) e (A;.). Obviously, then <p0((0, Tx)) c ;QjV 

Define the mapping hx : <Tl5 tt> -> (A^) as follows: If p0(Ti) = cpov'i)' then h1 

is constant, equal to <p0(Tx); if <p0(-Ti) =f= <Po(h)> then hi is a one-one continuous 
mapping with h^Tj) = <p0(Tx), hx(tx) = ^(f^. The mapping 

' / V o ( 0 for * e ( 0 , 3 i > u <*,,!>, 
(23) <Pi(0 = ( 

X h i ( 0 for te<Tl9tx> 

is continuous on (0,1>, <px -> Jf, ^ ( p j = 0>(<p), ^((O,1>) n D^ = 0. 

Again, there are two possibilities: I'. The mapping <px has no substantial intersec­
tion point with dQ(z, 8); then \j/ = <pt satisfies (21). IV. The mapping <px has at least 
one substantial intersection point with dQ(z, 8); then all such points lie in the interval 
(0, TL). Let t2 be the maximal one; find the index j 2 e Cx(jf) with <Pi(t2) e (kJ2). 
Evidently j 2 4= IV For analogous reasons as above, there is a minimal number 
T2e(0, t2) with <pt(T2) e (kj2), and <px((0, T2)) u <px((t2,1» c QJ2. Analogously as 
above, construct the curve h2 in (kj2) with terminal points h2(T2) = <p0(T2), hx(t2) = 
= <p0(t2), and with aid of it and of <px define the mapping <p2 : (0,1> -> Q with the 
following properties: <p2((0,1>) n (Q*t u Qj2) = 0, <p2(t) = <p0(f) on (0, T2), so that 
<p2-> & and &(<p2) = 0>(<p). 

Continuing this process, we either construct, after a finite number of steps, a con­
tinuous mapping <pn : (0,1> -> Q with no substantial intersection point with dQ(z, 8) 
and such that <pn -> •#*, ^(cp,.) = &*(<p), or the construction of mappings <pn never 
ceases. In the former case we evidently have (<pn> n int Q(z, 8) = 0, and the mapping 
xj/ = <pn satisfies (21). In the latter case we obtain an infinite sequence of mappings 
<pn : (0,1> -» Q, an infinite sequence of mutually distinct indices jn e Cx(j^), and an 
infinite sequence of numbers 1 > tx > Tx > ... > tn > Tn > ... > 0 such that, 
for every integer n ^ 1, the following conditions hold: 

(24,) <pn(t) = q>H^(t) for each t e <fh, 1> ; 

3) We say a point t0 of the set M = {/ e (0,1>; <p0(t) e 8Q(z, <5)> is a substantial intersection 
point, iff there is an .7 > 0 such that one of the sets <p0((t0 — rj, t0)), <p0((t0, t0 -f- rj)) lies in the 
interior and the other one in the exterior of the square Q(z, S). Note that, by properties of the 
mapping <p0, the set M has no accumulation point in (0,1>. 

4) As C2(Mf) = 0, <!/>!> does not separate U between 0 and yF(#F). 

418 



(24i) <p„(t) e(AJn) for each f e <r„, f„> ; 

(243) </>„(0 = <7>o(» for each . e ( 0 , r„> ; 

(244) )̂„ | <T,„ 1> does not intersect dQ(z, 6) substantially ; 

(24i) 0„> n U «;fc = 0 ; 
*=-l 

(243) implies 

(246) <?>„-> ^ > ^ J = ^ ) . 

Let us show that Tn -> 0 (so that f„ -> 0 as well). As the indices jn are mutually 
distinct, (XjJ, (AJ2),..., (A/J,... are disjoint open arcs contained in dQ(z, 8); as 
a consequence, diam <A>n> -> 0. As the terminal points of the arcs <AJn> lie in dQ, 
it follows that Ls <Ain> c dQ. By (243) and (244), <p0(Tn) = cpn(Tn) e (XJn); therefore, 
Ls <p0(T„) <-= dQ as well. As (<p0> c Q, this necessarily implies Tn -> 0. 

By (24 j , identities 

(25) xl/(t) = <pn(t) for each te(tm+l9 1> , n = 0 , 1 , . . . 

define a (continuous) mapping i/t : (0,1> -> Q. 
By (244), \j/ has no substantial intersection point with dQ(z, 8); as i/r(l) = F_i(0) e 

e n - Q(z, 5), this implies (i/t> n int Q(z, 8) = 0 and, as a consequence, 

(26) ^ ) n int Q(z, 8) = 0 

as well. 
By (25), (243), (242), we have Pty) cz &>((p0)u Ls <AJn>; relations ( p 0 ( 0 e 

e <A/n>, diam <AJn> -> 0, tn -> 0 imply Ls <Ajn> cz &(cp0). It follows that 

(27) 0>(il,)c:0>((po) = 0>((p). 

It remains to prove that i> -> Jf, i.e., (F 0 ^ ) (0+) = yF(jf)9 i.e., &>(Fo\l/) = 
= { 7 F ( ^ ) } . However, 

(28) 9>(F o iA) = Ls (F o *) «fB+l f O ) = Ls (F o *) «fn+1 , TB» u 

u Ls (F o $) «TW, *„>) cz Ls (F o <p0) «fB+1, Tn» u Ls foi J 

(by (25), (243), (242)). The relations (F o q>0) (0+) = 1F(&\ Tn » 0, tn -• 0 imply 
Ls(Fo<po)«r„+ 1 ,Tn» = {yF(^)}. As F(cp0(tn)) e (fiJn), F(<p0(tn)) - ype), the 
equality Ls (pJn) = {yF(tf)} holds (and Lemma 4 is proved), if diam (fiJn) -> 0. 

Suppose the last relation is not correct. Then there is a subsequence {jn{k)} of {jn} 
and there are arcs Mk cz (njnik}) with terminal points ak, bk such that ak -> a, bk -> 
-> b + a, and that Ls <A/n(k)> is a one-point set5). 

) As diam <Ajn> -> 0 and S is compact, we can (by an appropriate choice of the subsequence 
{jrwc)}) satisfy the last condition as well. 
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However, such a situation is impossible, for the mapping F_x (inverse of F) would 
be, by a well known corollary of the Lindelof Lemma6), constant. 

This finishes the proof of Lemma 4. 

3. Proof of the theorem. For each ze B(j^) let us construct, by Lemma 3, 
the number A(z). By the inclusion B(#t) c (J U(z, \ A(z)) and by separability, 

zeB(Jt) 

there is a sequence of points zn e B(jj?) with 

(29) B(tf)cz{JU(zn,iA(zn)). 
w = i 

Put 

(30) Qn = Q(zn, A(zn)) , Qt = Q(z„, \ A(z„)) 

and construct a sequence of continuous mappings i/ij, j = 0, 1, . . . , in the following 
way: \j/0 : (0,1> -> Q is an arbitrary continuous mapping with \jj0 -> Jf. Further, 
suppose that, for an index n, a continuous mapping \l/n : (0, 1> -> Q has already been 
constructed satisfying \l/n -> 2tf and 

(31) &>tyn) c= &>ty0) - u e ; . 

By Lemma 4, there is a continuous mapping ^ n + 1 : (0,1> -* Q with ij/n+i -• ^ 
n + l 

and ^(i/>„+i) cr ^ M ) - int Qw+1 c ^(</t0) - (J Qj. 
I=i 

Choose a decreasing sequence of numbers Sn > 0 such that 3„ -> 0 and 

(32) U(0>(il,n),Sn)n{)Q] = <b. , 
I=i 

Let Qn, rn, z0 be as in Lemma 2 and set Rn = Q n dQn. As it is easily seen, there 
exist numbers <5„ > 0 and an increasing sequence of indices kn with 

(33,) M M ^ W , ) , 9 . ) , 
(332) ipn(Sn)eRkn, rkn<9„, 

(333) M(0> <5»)) c «*„ • 

Further, there exist numbers 5* e (0, 5n) with 

(34) ^K)e*fc.+1. 
Define a curve xn . <0,«5?> -> ^ n + 1 as follows: If iAn+1(5„+1) = <A„(<5*), then x„ 

is constant, equal to \j/n(d*); if i/'II+1(<5n+1) 4= <A,,(<5*), t n e n Z» is a one-one curve in 
**„•, satisfying £,(0) = iA,,+1(<5„+1), x.(3*) = *„(#) . 

) We mean the following corollary (see, e.g., [4]): Suppose 0 is meromorphic on U and S — 
— #(U) contains a proper continuum; suppose there are curves cok in U with Ls (,<oky <= dU, 
i.p. mk -> a, e.p. cok-*b 4= a, and with Ls <<P 0 »-£> containing one point only. Then 0 is constant. 
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Let 

Xn(t) for each <e<0,<5*>, 

jrj(t) for each te<tf,<5„> 
(35) \.(г) - ч 

and let con : <l/(n + 1), l/n> °nt°> <0, <5„> be a continuous strictly increasing func­
tion. Putting 

(36) <p0(t) = vn(con(t)) for each f e <l/(n + 1), l/n> , n = 1, 2, . . . 

the mapping cp0 : (0,1> -• Q is continuous. 
00 00 

The inclusion <vn) c fikn implies (p0((0> 1/W)) = U <V/) <= U -A, = *2*„> a n d > a s 

a consequence, c/?0 -» Jf. Moreover, as J = И 7 = И 

(37) <p0((0, 1/B» = U <v,-> <= U t! W ; ) , 3,) = U W „ ) , S,) «= UWo). ».), 
7=11 J=/l 

we have 
0 0 

(38) P(ę0) = П Фo((0, l/n» c= П Í / W ð.) 
и = l n = l 

<= n (^Wo), a.) - u Q*) = ^ o ) - u e* > 
» = i j = i i = i 

and therefore &>((p0) c <jf> - B(^f) = A(jf). As the relation <p0 -> ^f implies 
the inclusion A(jf) c 0»(<po)5 the identity A(jf) = 0>((po) holds. Q.E.D. 
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