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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

ALGEBRAIC PROPERTIES OF HUSIMI TREES 

LADISLAV NEBESK*, Praha 

(Received February 22, 1980) 

1. INTRODUCTION 

By a graph we mean a finite undirected graph with no loops or multiple edges 
(i.e. a graph in the sense of the books [1] or [2]). If G is a graph, then V(G) or E(G) 
denotes the vertex set of G or the edge set of G, respectively. Following [1] we shall 
say that a graph G is a Husimi tree if it is connected and every block of G is a complete 
graph. (Note that the concept of a Husimi tree in our sense is different from that in 
the sense of [6]). 

By a ternary algebra we mean an ordered pair (17, co), where U is a nonempty set 
and a> is a mapping of U x U x U into U. Let A = (U, co) be a ternary algebra; 
then we shall write V(A) = U; if r, s, t e V(A), then instead of co(r, s, t) we shall 
write rst or rstA. We shall say that a ternary algebra A is an HT-algebra if V(A) is 
finite and the following axioms hold (u, v, w, and x are arbitrary elements of V(A)): 

I uvu = u, 

II uvw = wvu, 

IIIA uv(uvw) = uvw, 

IIIB u(uvw) w = uvw, 

IV (uvx) xw = u(vxw) x, 

V (uvw) (vuw) x e {uvw, vuw], 

VI \{uxv, vxw, uxw}\ S 2. 

(Clearly, every tree algebra in the sense of [4] is an HT-algebra.) 

Let U be a finite nonempty set. In the present paper we shall show that there exists 
a one-to-one correspondence between the set of Husimi trees G with V(G) = U and 
the set of HT-algebras A with V(A) = U. 
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2. HUSIMI TREES AND THEIR ALGEBRAS 

We begin with a useful characterization of Husimi trees: 

Proposition 1. Let G be a graph. Then the following statements are equivalent: 

(1) G is a Husimi tree; 
(2) for any u,ve V(G), there exists exactly one induced u — v path in G. 

Proof, (l) => (2) is obvious. 
non (1) => non (2). Assume that G is not a Husimi tree. The case when G is dis­

connected is obvious. Let G be connected. Then there exists a noncomplete block F 
of G. Therefore, there exist distinct vertices w, v, and w of F such that ww, vw e E(F) 
and uv $ E(F). Consider a shortest cycle C containing w, v, and w. Clearly, C — w 
is an induced w — v path in G. This means that there exist at least two induced w — v 
paths in G, which completes the proof. 

Let G be a Husimi tree. For any u,ve V(G), we denote 

[w. v\G = {xe V(G); X belongs to the induced w — v path in G} . 

Moreover, for any w, v e V(G), we denote 

[w, v\* = {x G V(G); |[w, x]G n [x, v\G\ = 1} . 

Proposition 2. Let G be a Husimi tree. Then for any u,ve V(G), 

[u, v\G = {x e V(G); x belongs to a u — v path in G} . 

Proof. If x G [w, v\G, then [w, x]G n [x, v\G = 1, and therefore, x belongs to 
a w - v path in G. 

Conversely, assume that x belongs to a w — v path in G. Consider a path P which 
is a shortest path among the w — v paths containing x. Denote 

P: u = wl,...,wn = v. 

Obviously, there exists k, 1 = k ^ n, such that wfc = x. We denote by Px or P2 the 
path w t , . . . , wk or the path wk,..., w„, respectively. Both Pt and P2 are induced paths 
in G (or else P is not a shortest path among the w — v paths containing x, which is 
a contradiction). This implies that 

[w, x] G = {wu ..., wk} and [x, i>]G = {wk,..., w„} . 

Hence x G [W, I;]G, which completes the proof. 

Proposition 3. Let G be a Husimi tree, and let u,v,we V(G). Then 

\[u, v\G n [v, w\G n [w, w]£| = 1 . 
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Proof. Denote X = [w, v]G n [v, w]G n [w, w]G. If w = w, then X = {w}. 
Assume that w # w. If G is a complete graph then [w, i?]G = {w, v}, [v, w]G = 
= {v, w} and [w, w]S = V(G); thus X = {v}. 

We now assume that G is not a complete graph. This means that G contains at 
least two blocks and at least one cut-vertex. It is easy to see that there exists at most 
one cut-vertex s of G with the following property: 
(*) each component of G — s contains at most one of the vertices w, v, and w. 
If there exists such a cut-vertex s, then X = {s}. 

Assume that there exists no cut-vertex s with the property (*). Then there exists 
a block F of G such that each component of G — V(F) contains at most one of the 
vertices w, v and w. It is easy to see that F is uniquely determined. If v e V(F), then 
X = {v}. Let v $ V(F). Then there exists exactly one cut-vertex t of G such that t e 
e V(F) and the component of G — t containing v contains neither w nor w. Then 
X = {t}, which completes the proof. 

Let G be a Husimi tree. We denote by AG the ternary algebra defined as follows: 
V(A) = V(G) and 

{UV™AG} = ["> ^]G n [v, w]G n [w, w]G , for any w, v, w e V(G) . 

We shall say that AG is the algebra of G. 

Proposition 4. The algebra of every Husimi tree is an HT-algebra. 

Proof. For any Husimi tree G0, we denote by b(G0) the number of blocks of G0. 
Assume that G is a Husimi tree. We wish to prove that AG is an HT-algebra. Let 

first b(G) s; 1. Then G is a complete graph. It is obvious that for any u,v,we V(G), 

UVWAG ~ v ^ w 4= w 

and 
UVWAG

 = u if * w = w . 

This implies that AG fulfils Axioms I—VI. 

Let now b(G) ^ 2. Assume that for every Husimi tree G' with b(G') < b(G) the 
proposition is proved. Since G is connected, there exists a cut-vertex t of G. Then 
there exist graphs F and H with the property that V(F) n V(H) = {t}9 V(F) u 
U V(H) = V(G), E(F) n E(H) =-= 0, and E(F) u E(H) = E(G). Clearly, both F 
and H are Husimi trees and max (b(F), b(H)) < b(G). According to the induction 
assumption both AF and AH are HT-algebras. 

Let w, v, w e V(G). We shall show that UVWAG can be determined by means of AF 

or AH. Without loss of generality we may assume that at most one of the vertices w, v, 
and w belongs to V(H). Then we have 

UV™AG = UVWAF -f w, t>, vv* e V(F), 

uvwAa = uvtAF if u,ve V(F) and w e V(H) , 
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UVWAG = utwAp if u,we V(F) and v e V(H) , and 

UVWAG = tvwAp if u e V(H) and v, w e V(F) . 

Since both At and /4H are HT-algebras it is not difficult to see that AG fulfils Axioms 
I-VI. 

Remark 1. Let G be a connected graph. We denote by jf(G) the graph with 
V(j^(G)) = V(G) and such that vertices u and v are adjacent in Jf (G) if and only 
if u 4= v and there exists a block F of G such that u,ve V(F). It is clear that for 
any connected graph G, (i) J^(je(G)) = 3tf(G), and (ii) ^f(G) = G if and only if G 
is a Husimi tree. The concept of the algebra of a Husimi tree can be generalized as 
follows: if G is a connected graph, then by the algebra of G we can mean the algebra 
of tf(G). However, if G and G' are connected graphs and 3tf(G) = J>tf(G'), then the 
algebra of G is identical with that of G'. 

Proposition 5. The algebras of distinct Husimi trees are distinct. 

Proof. Let G and G' be distinct Husimi trees. If V(G) 4= V(G'), then AG 4= AG,. 
Assume that V(G) = V(G'). Since G =t= G', without loss of generality we assume that 
E(G) - E(G') 4= 0. Then there exist distinct u,ve V(G) such that uv e E(G) and 
uv $ E(G'). Since G' is a Husimi tree, there exists a cut-vertex x of G' such that u 4= 
=t= x 4= v and each component of G' — x contains at most one of the vertices u and v. 
This implies that [x, v\G. n [w, x]G> = {x}. Since x e [u, !>]<-,, we have that uvxAG. = 
= x. Since uv e E(G), we have that [u, t;]G = {u, u}, and therefore ut;x^G e {u, t;}. 
This means that UVXAG 4= UVXAG., and thus AG 4= -4G', which completes the proof. 

3. HT-ALGEBRAS AND THEIR GRAPHS 

In Propositions 6 —9 we shall prove some properties of HT-algebras A which follow 
from Axioms I—IV and are independent of the fact that V(A) is finite. 

Proposition 6. Let A be an HT-algebra, and let u, v, w, x e V(A). Then 

(a) uuv = u; 

(b) uvx = x => t;ux = x; 

(c) t;u(ut;w) = uvw; 

(d) u(uvw) v = uvw; 

(e) uvw = vuw => uvw = uwv; 

(f) uvx = uwx => vuw = vxw. 

Proof (application of Axioms I and II will not be mentioned explicitly), 

(a) According to IV, uuv = (uvu) uv = u(vuv) u = uvu = u. 
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(b) If uvx = x, then it follows from IV that vux = xuv = (uvx) uv = (xvu) uv = 
= x(vuv) U = XVU = UVX = X. 

(c) follows from IIIA and (b). 
(d) According to IV and (a), u(uvw) v = (uuv) vw = uvw. 
(e) According to (d) and IV, uwv = vwu = v(vwu) w = v(uwv) w = (vuw) wv. If 

vuw = uvw, then according to (c) we have that uwv = uvw. 
(f) Let uvx = uwx. According to (a), IIIA and IV, we have that vxw = wxv = 

= (wxv) (wxv) u = (wx(wxv)) (wxv) u = w(x(wxv) u) (wxv) = w(u(vxw) x) (wxv). Ac­
cording to IV, u(vxw) x = (uvx) xw, and thus vxw = w((uvx) xw) (wxv). Since 
uvx = uwx, it follows from (c), IV, IIIA, and IV that vxw = w((uwx) xw) (wxv) = 
= w(uwx) (wxv) = (vxw) (xwu) w = ((vxw) xw) wu = (vxw) wu = v(uwx) w. There­
fore, we have that vxw = v(xwu) w. 

Analogously, we get that vuw = v(uwx) w. This implies that vxw = vuw, which 
completes the proof of the proposition. 

Let A be an HT-algebra. For any u, v e V(A), we denote 

["> V]A = {xe V(A); uvx = x} 
and 

[M, v]* = {xe V(A); uxv = x}.. 

Instead of [M, v]A or [M, U]* we shall often write [M, V] or [M, V]*.' 

Proposition 7. Let A be an HT-algebra, and let u,ve V(A). Then 

(a) ue[u,v]; 

(b) [M, V] = [v, u]; 

(c)\[u,u]\ = l; 

(d) x e [M, v] => [M, X] C [U, V];, 

(e) [M, V] <= [M, V]*. 

Proof, (a), (b) and (c) easily follow from Proposition 6. 

(d) Let x e [M, V] and y e [M, X]. Since [M, V] = [v, u], we have that I;MX = x 
and MX>> = y. According to IV, vuy = yuv = (yxu) uv = y(xuv) u = yxu = y. 
Hence y e [M, v]. 

(e) Let x G [M, v]. Then uvx = x. According to Proposition 6(b), vux = x. Since 
uvx = vux9 it follows from Proposition 6(e) that uvx = uxv. Hence uxv = x, and 
thus x e [M, v]*. 

Proposition 8. Let A be an HT-algebra, and let u,v9we V(A). Then 

[M, V] n [v9 w] n [M, W]* = {MUW} . 
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Proof. Denote X = [w, v\ n [v, w\ n [w, w\*. As follows from IIIA, IIIB and 
Proposition 6(c), wv(wvw) = w(wvw) w = vw(uvw) = uvw, and thus wt;w e X. Hence 
-Y4=0. 

Consider an arbitrary x e X. Then t;wx = vwx = uxw = x. Since t;wx = vwx, it 
follows from Proposition 6(f) that wt;w = wxw. Since wxw = x, we have that x = 
= wt;w, and thus X = {wtnv}, which completes the proof. 

Proposition 9. Let A be an HT-algebra, and let u,ve V(A). Then 

[w, v\* = {xe V(A); |[w, x] n [x, v\\ = 1} . 

Proof. Denote X = {x e V(A); |[w, x] n [x, v\\ = 1}. Let first x e [w, v\*. 
Then wxt; = x. Clearly, x e [w, x] n [x, v\, and thus [w, x] n [x, v\ 4= 0. Consider 
an arbitrary y e [w, x] n [x, v\. Then uxy = y = xvy. According to IV, we have 
that y = uxy = wx(xtYy) = (yvx) xw = y(vxu) x = x(uxv) y = xxy = x. Hence 
|[w, x] n [x, v\\ = 1, and thus x e X. 

Conversely, let xeX. Then |[w, x] n [x, v\\ = 1. As follows from Proposition 7, 
[w, x] n [x, v\ = {x}. Denote z = wxt;. According to Proposition 6, wxz = xvz = z, 
and thus z G [W, X] n [x, v\. Since [w, x] n [x, v\ = {x}, we have that z = x. 
Hence wxt; = x, and thus x e [w, v\*, which completes the proof. 

Remark 2. In the proofs of Propositions 6—9 only Axioms I —IV were used. 
Note that ternary algebras A fulfilling the property 

wt;w = t;ww for any w, v, w e V(A) 

and Axioms I, II and IV are called normal graphic algebras in [5]. However, every 
normal graphic algebra fulfils also IIIA, IIIB and V. 

Let A be an HT-algebra. We denote by GA the graph defined as follows: V(GA) = 
= V(A) and vertices w and v are adjacent in GA if and only if |[w, v\A\ = 2. 

In the proof of the next lemma we use only Axioms I—IV together with the fact 
that V(A) is finite. 

Lemma 1. Let A be an HT-algebra. Then GA is connected. 

Proof. (The idea of our proof is similar to that used in the proof of Proposition 7 
in Mulder and Schrijver [3].) Consider arbitrary w, v e V(A). We wish to prove that 
there exists a w — v path in GA. Denote n = |[w, v\A\. The case n ^ 2 is obvious. 
Let n = 3. Assume that for any u',v'eV(A) such that |[w\ v'\A\ < n we have 
proved that there exists u' — t/ path in GA. Since n ^ 3, there exists x e [w, v\A — 
- {w, v}. According to Propositions 7 and 9, [w, x]A u [x, v\A c [w, v\A and 
[w, x\A n [x, v\A = {x}. It follows from the induction assumption that there exist 
a w — x path and a n x - u path in GA. Hence, there exists a w — v path in GA, 
which completes the proof. 
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Lemma 2. Let A be an HT-algebra, let u,ve V(A), and let P be an induced u — v 
path in GA. Then [u, v\A = V(P). 

Proof. Denote n = |V(P)|. The case n = 2 is obvious. Let n = 3. Assume that 
for any induced u' — v' path P' in GA with |V(P')| < "> w e h a v e proved that V(P') = 
= [u', v'\A. Denote 

P: u = w l5..., wn_l5 wB = t>. 

According to the induction assumption, [wl9 w^.J^ = {wl9..., w,,--}. Obviously, 
[w„-i,wM]A = {wn-uwn}. Since w ^ . ^ e [wls ww_x]A n [wn, w , . . ^ , we have 
that WtWn-iWn = W^-. 

We wish to prove that wxwnwn-i = wn_x. On the contrary, let w^WnWn-i # wn-u 

Since [wn_uwn\A = {wn-uW„}, we have that w^Wn-i = wn. Since w^-^ * 
4= WiW-.Wn̂ j, it follows from Proposition 6(e) that wn-lw1wn${wn-1,wn}. Since 
[wn-u Wt\A = {w lf..., wn_!}, we have that there exists fc, 1 = fc = n - 2, such that 
W/.-1W1W,. _ Wfc j t f0uows from y that for any x e V(-4), 

w*w„x = (wn-xwxwn) (w^w,,.-) x e {wk, wn} . 

Therefore, \[wk, wn\A\ = 2. We have that wkww e E(G^), and thus P is not an induced 
path in GA, which is a contradiction. This means that wlwnwn-l = wn-\. Since 
WiWn-iW/. == wrt_l9 it follows from Proposition 6(e) that w^-^-^w.. = wn-x. 

Since ww_! e [wl5 ww]^, it follows from Proposition 7(d) that V(P) = {wl9 ... 
..., wn_J u {ww_l9 w„} _= [M, I/J^. We now wish to prove that [w, v\A _; V(P). 
Let x e [u, v\A. Then w ^ x = w ^ x = w^Wn = x. According to VI, we have that 

K ^ W ^ - i , WnWxX, Ytn-iWtxW =" 2 and {w^nWn-u H^X, Wrt_!Wnx}| _J 2 . 

Assume that x $ V(P). Then Wn-iW^x, wn-iWnx e {w„-l9 x}. If w ^ ^ x = w„-twnx9 

then it follows from Proposition 6(f) that w^n-^n = w^w,,, and thus x = wn-u 

which is a contradiction. If wn-iwxx 4= w ^ ^ x , then either Wn-iW^ = x or 
wn_!wwx = x, and thus x e V(P), which is a contradiction. Thus the proof is complete. 

Proposition 10. Let A be an HT-algebra. Then GA is a Husimi tree and A is the 
algebra of GA. 

Proof. According to Lemma 1, GA is connected. It follows from Lemma 2 that 
for any r,se V(A), there exists exactly one induced r — s path in GA and that [r, s\A 

is the vertex set of the induced r — s path in GA. According to Proposition 1, GA is 
a Husimi tree. Moreover, for any u, v _ V(A), [u, V\GA = [u, v\A. According to Pro­
position 9, for any u, v e V(A), [u, v\%A = [u, v\*. It follows from Proposition 8 
that A is the algebra of GA, which completes the proof. 
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4. THE MAIN RESULT 

Let U be an arbitrary finite nonempty set. We denote by 91 the set of HT-algebras A 
with V(A) = U, by © the set of Husimi trees G with V(G) = U, and by ©0 the set 
of graphs G0 with V(G0) = U. Moreover, we denote by y the mapping of 91 into ©0 

such that for every A e 91, y(A) = GA. 

Theorem, Y is a one-to-one mapping of 91 onto ©, and for every Ge ©, y~l(G) 
is the algebra of G. 

Proof follows from Propositions 4, 5 and 10. 
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