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Časopis pro pěitování matematІky, roč. 101 (1976), Praha 

BEHAVIOUR OF SOLUTIONS OF AN INTEGRAL EQUATION 

JERZY MUSZY&SKI, Warszawa 

(Received June 10, 1975) 

1. INTRODUCTION 

Let B be a Banach space, J = [0, oo), Q = {(t, s)eR2 :tel, s e [0, *]}, QT = 
= {(t, s)eQ, te [0, T]} for T > 0. We shall consider two functions p and W with 
the following properties: 

A 1 peC(l x B,B), (VM e B) p(0, u) = u , 

(3M, k = const) (Vf e J) (VM, veB) \\p(t, u) - p(t, v)\\ = Me"kt\\u - v\\ . 

A 2 We C(Q x B,B), W(t, s, 0) = 0 , 

(3L e C(I, R)) (V(f, s) e Q) (VM, yeB) || W(t, s, M) - Jf(*, s, t?)|| g 

á^(s) e - t ( f - s ) j i ы _ v 

where fc is the same as in A 1. 

For any M0 G B we shall consider the equation 

(1) w = p(U u0) + J W(t, s, u) ds 

and the problems of existence, uniqueness and asymptotic behaviour of its solutions 
under the assumptions A 1, A 2 and some others. The equation (1) in particular 
describes the mild solutions of the Cauchy problem: u = A(t) u + f(t, u), M(0) = M0. 
In this case W(t, s, M) = U(t, s) u, p(t, u0) = U(t, 0) M0, U(t, s) is Green's function, 
the assumptions A1 and A 2 are satisfied if/is Lipschitz continuous in u, \U(t, s) | fj 
_g Me~kit~s) and so on. The equation (1) is connected with the problem u = A(t, u) + 
+ f(t, u), where 

P(t, M0) = X(t, 0, M0) , W(t, S, M) = ***> **>»)/(!, U) , 

du0 

x(t910, u0) is the solution of x = A(t, x) [2], and also with similar problems. The 
results obtained in this paper are a generalization of those already known, see for 
example [1, 3]. 
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2. EXISTENCE AND UNIQUENESS 

Theorem 1. If the assumptions A 1, A 2 are satisfied then for any u0eB the 
equation (1) hasji unique solution on I (and on every interval [0, T], T > 0). 

Proof. Consider for any T > 0 the interval [0, T] and the Banach space CT = 
== C([0, T], B) of the continuous functions from [0, T] to B with the sup-norm. 
Proving that for any T > 0 the solution (1) exists on [0, T] and is unique, we also 
prove the same on J. 

Let us fix any u0 e B and consider on CT an operator K which is defined by the 
formula 

(Kq>) (t) = p(t, u0) + f V(f, s, <p(s)) ds , t € [0, T] . 

From Al , A 2 it follows that if cp e CT then Kcp e CT, KCT cz C r. Now we want 
to prove the existence of a positive integer n such that the operator Kn is a contrac­
tion. Let (p9 \jf e C r, then for * e [0, T] 

||(K9)(0 - (-^MOII = I f W s, <Ks)) ds - fV(t, s, *(*)) ds 
II Jo Jo 

I «-«-"•> 1(^(5) - ^ ( S ) | | d 5 . l L ( S ) ' 
Since L(s), e~*('~s> are continuous on QT there exists such L = const that for all 
(r, s) e QT we have L(s) g~fc(f"s> g L, then for f e [0, T] 

11(^(0 - (KiAXOI ^ £LIW5) - ^(s)»ds ^ Lt\W - *!*,. 
and for n e JV, 

| |(x»(0 - (KVKOI ^ JO'L||(X-V)(S) - (JP-V)(*)| * . 

It can be shown by induction that for n e JV and * e [0, T] 

|(K"») («)-(-->) (01 - 5 - ^ | 9 - * | c T . 
n! 

hence 

n! 

Since (LTffnl -» 0 as n -* oo, there exists such n e N that (LTfjnl < 1. For this n 
the operator K* is a contraction. From a corollary to the Banach contraction theorem 
[4] we conclude that there exists one and only one point UGCT such that Ku = t*. 
This point u € CT is a (unicpe) continuous solution of the problem considered. 
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3. PROPOSITIONS 

Let 

<*>(*) . « - * * + f L(s) ds , q(t) = d f 1 p(f, 0)|| , 

<P,qe 0(1,11), <J>(0) = 0, 4(0) = 0. 

Proposition 1. If the assumptions A 1, A 2 are satisfied then for any solution u 
of (l) and for any t e I, 

||«(0|| = q(t) + \M\\U0\\ + (",(-) L(s) e-*<*> dsl e*«> . 

Proof. For a solution u of the equation (1) we have 

H O I = ||p(i. wo) - P(t, 0)|| + \\p(t, o)|| + j V ( < . -. «(-))l ds = 

= Me-*'||u0 | | + cj(t) + |"L(s)e-*('-s) | |u(s)|| ds , 
Jo 

hence 

||u(f)|| e*< = M||u0« + q(t) e*' + | " L ( S ) ||«(s)|| e**ds . 

From this inequality we have [3] 

|«(r)|| e*' = M||«0 | | + q(t) e*< + (*L(s) (M||u0 | | + <j(s) e*s) e ^ ( t ) d t ds « 

= ,(0 e*< + M|„o« e ^ ) d s + J L(s) q(s) e* « " - > * e ^ ds 

and hence 

||u(í)|| = q(t) + M||u0 | | e*<«> + ľL(s)<г(s)e-*<s>ds e Ф(Г) 

Proposition 2. If the assumptions A 1, A 2 are satisfied then for any solutions M, V 
of the equation (l), M(0) = M0, V(0) = v0, and for any t el 

\\u(t) - v(t)\\ = Me*c>«u0 - ro|| . 

Proof. From (l), A 1, A 2 we have 

||u(0 - <0II = IK'. «o) - P(t, v0)\\ + {'\\W(t, s, «(s)) - W(t, s, t>(s))|| ds = 
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= Me-*'||«0 - t)0|| + TL(S)C-*( '-I)||U(S) - v(s)\\ ds 

and 

\\u(t) - ,(0|| P = M\\u0 - v0\\ + f L(5) |u(s) - ,(s)|| e** ds. 

From Bellman-Gronwall's lemma we have 

| « ( 0 - 1,(011 * = M||«0 - t,0|| ^
t ( S ) d S 

and this proves the above proposition. 
Let us introduce another assumption 

A3 (3P e R) (V* 6 /) q(t) = \\p(t9 0)|| £ P . 

Then we have 

Proposition 3. If the assumptions A 1, A 2, A 3 are satisfied then for any solution u 
of (1) and for any t e I, 

\\u(t)\\ £ \M\\U0\\ + P + kP f V0 ( $ ) dsl e*{t). 

Proof. From Proposition 1 and A 3 we have 

(*) ||u(0|| £ P + [M||U0 | | + P f L(s) e*^L ( T ) d t dsl e*^ . 

Integration by parts gives 

fVL(s ) C - ^ W d r ds - -e*e-&LMit\ + k f W&*** ds = 
Jo |o Jo 

= -*-*«> + 1 + fc|V*(s)ds 

and the required inequality is obtained from (*). 

Let us introduce an assumption 

A 4 (3f0 eI) (3e e R)(Vf £ f0) #'(0 = -fc + 1(f) £ ~e . 

Notice that fc — e 2> L(f) ^ 0. We have now 

Proposition 4. Ifthe assumptions A 1, A 2, A 4 are satisfied then for any solution u 
of (1) and for any tel, 

IK01 £ €(0 + \M\\uo\\ + f%(s)L(s)e~0(s)dsle0(f)+(fc-e)^ef f ^ ( s )^ds . 
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Proof. From Proposition 1 we have 

\\u(t)\\ £ q(t) + [MIUOI + rq(s)L(s)e-*^ds~\e*V + |%(s)L(s)e*(<>~*(*>d^ . 

Since for se [t0, f] we have $(t) - #(s) = $'(0)(t - s) = -e(f - s) for some 
0 e (s, *), it is 

f \(s) L(s) e*(t)-*<s) ds £ ['«(s) L(s) e~£('-s> ds . 
J t0 J to 

t 

Taking in account that L(s) g fe - e for s ^ f0 we obtain the desired result. 

4. BOUNDNESS AND STABILITY 

Let 

A5 e > 0 , 

where e is from A 4. 
Theorem 2.1/ fhe assumptions A 1 — A 5 are satisfied then 

(i) eoery solution of (1) is bounded, 
(ii) (3N eZ) (Vu0 e £) (3?0 e l ) (V* > ?0) KOI ^ N> w/l*r* u fa the solution of (1) 

suc/i that u(0) = u0, 
(iii) (Vu0, %

 e -B) Hm ||u(f) — t;(*)|| = 0, where u, v are the solutions of (1) with the 
t~*oo 

initial data u0, v0, 
(iv) every solution of (1) is asymptotically stable. 

Proof, (i) Using Proposition 4 and the assumptions A 4, A 5 we have for t *z t0 

\\u(t)\\ ^ P + [M| |U 0 | | + f%(s)L(s)e-0(s>dsle0(f) + P(fc--8)~(l - *-««-*») S 

S~ + \M\\U0\\ + rq(s) L(s) e~*(s> dsl e*(<> . 

From A 4 we have for t ;> t0 and some 6 e (t0, t) that 4>(f) = #(f) - #(f0) + 
+ #(r0) = *'(*)(' ~ 'o) + *(*o) £ -«( ' ~ 'o) + *(*o). Then 

(*) ||u(r)|| £ — + [Mfluoll + f°q(s) L(s) <T*(S>dsl e^^^e^ . 

Since e~E' £ 1, (*) implies that u(t) is bounded for t 2j *0. Since u(r) is a continuous 
function, it is bounded on /. 

(ii) Since e~*£f -+ 0 as t -• oo, then for every N = const, N > Pfc/e, and every u0 

there exists ?0
 such that for t > l0 we have ||tt(f)|| -5 -V-
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(iii) In part (i) we obtained that #(f) £ -s(t - t0) + #(*0), hence A 5: e > 0 
implies #(t) ~* ~oo as * -> oo. We have e*(r) -> 0 when * -> oo. The following as­
sertion results from Proposition 2. 

(iv) Since e*(f) ~> 0 as t -> oo, there exists S such that e*(0 <* S for * e l . For 
any y denote 5*= y/SAf. If ||ti0 - v0|| < 5 then by Proposition 2 ||i#(f) - v(t)\\ «£ 
:g AfS<5 = y. Every solution is stable. The asymptotical stability may be obtained 
from (iii). 

Remarks. 1. Some properties of solutions of (1) do not require assumptions so 
strong as A 4, A 5. It is easy to see that for stability it is sufficient that <[>(t) be bounded 
(see proof of (iv)), to prove the properties (iii) and (iv) it is sufficient that #(f) -> — oo 
as t -> oo. However, this is not sufficient for boundedness. Consider for example 
the scalar equation 

I 1 - «"' + u0e-' + | —— e-('-s)u ds 
s + 1 

possessing solutions of the form 

w 2 r + l v J 

All these solutions tend to infinity as t -> oo. In this case we have 

p(t, u0) = 1 - e'* + u0e~%, W(t, s, u) = — e~(t~s)u , 
s + 1 

the assumptions A 1, A2, A3 are satisfied with k = 1, M = 1, L(s) = sj(s + 1), 
P = 1. The assumption A 4 is satisfied with any e ^ 0 since 4>'(s) = — 1 + [sj(s + 1)] = 
== — [l/(s + 1)], the assumption A 5 is not satisfied; however, 4>(t) = — ln(f + 1)-> 
-> — oo as t -* oo. Some weaker assumptions than A 4, A 5 will be given below (in 
parts 5 and 6). 

2. If the equation (l) has at least one bounded solution and if A 1, A 2, A 3 are 
satisfied then: if $(t) is bounded then all solutions are bounded and stable, if 4>(t) -> 
-> — oo as t -> oo then all solutions of (l) have all properties mentioned in Theorem 1. 
This is implied by Proposition 2. In particular, we have 

Corollary 1. / / A 1, A 2 are satisfied; p(t, 0) = 0 and #(f) is bounded then all 
solutions of the equation (l) are bounded and stable, if moreover #(t) -> — oo as 
t -* oo then all solutions are asymptotically stable and tend to zero as t -> oo. 

Indeed, in the case considered the equation (l) has the solution u = 0. 
Let us change the assumption A 3 to 

A y q(t) - |Xf, 0)|| -* 0 as t -> oo . 
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Theorem 3. If A 1, A 2, A 3', A 4, A 5 are satisfied then the solutions of (l) have 
all properties mentioned in Theorem 2 and, moreover: every solution of (1) tends 
to zero as t -> oo. 

Proof. By A l we have p(t, 0) e C(l, B). Hence A3'=> A 3 and the solutions 
have the properties of Theorem 2. Applying Proposition 4 we have for t ^ t0 

\\u(t)\\ £ q(t) + \M\\U0\\ + !tq(s)L(s)e-^s)dsle^t) + (k - a)*"*' ('q(s) e*s ds . 

Similarly to the proof of Theorem 2 we conclude that #(*) -> — oo. Two first terms 
on the right side of the inequality tend to zero when t -» oo. Using the rule of de 
THospital in the form of Stolz we obtain 

lim 
Í-+O0 

f q(s)eesds 
J to __ HmSÍOfГÜ = 0 , 

e f-><» Be 

hence the last term tends also to zero (by A' 3). 

Remark. The scalar equation 

u = q(i) + e~'u0 + — — e~(t s)u ás, 
J o s + 1 

«(0« 
(- í for í є [0, 1), 

1 

L/< 
for t є [1, oo] , 

with the functions p(t, u0) = q(t) + e"fu0, W(t, s, u) = [sj(s + 1)] e" ( t ' s ) w fulfils 
the assumptions A 1, A 2 (with M = 1, k = 1, L(s) = [s/(s + 1)]), A 3, A 4 (with 
any e ^ 0), but does not satisfy A 5. In this case we have $(t) -» — oo as t -+ — °o-
but the solutions of the equation are of the type 

_(0« (Mo~i)77T + 3 ( í + 1)2 for Í6C0,1)' 
/ 1\ 1 2 tJt 1 . r< v 
(„ _ _ ) - + _ _ v _ + for í e [ l , oo) 
\ 311 + 1 3 t + 1 Jt ' 

and tend to infinity as t -+ oo. 

5. PARTICULAR PERIODIC CASE 

In this part we shall consider a "linear" periodic case of the problem. Let 

B 1 Ue C(Q, L(B, B))\ 
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U is an evolution operator: (Vf, s, xe J, * Jgj s g; T ̂  0) U(t9 s) U(s9 T) = U(t9t), 

B2 feC(IxB9B) 

and consider "the linear" case of the problem (1) 

(V) u » l/(*, 0) «0 + f l/(*, s)/(s, u) ds . 

Proposition 5. J/ B 1, B 2 are satisfied, {tn} is a sequence from J, 0 = t0 < tt < 
< *2 < ..., {un} is a sequence of functions un e C([tn„i9 tn]9 B)9 n = 1, 2,.. . , such 
that for te[tn„l9tn] 

un(t) = t % tm-i) «i,-i(*»-i) + J l/(r, s)/(s, w„(s))ds, 

f/iew thi function u composed from the functions un(u = unfor te[tn„t9 tnJ) is the 
solution of the equation (V) with with u0(t0) = w0. 

Proof. It is easy to see that the function u is continuous and that for t e [0, f j 
the assertion is satisfied. Let it be satisfied for n. We have now for t e [0, tJ 

(*) u(t) = U(t9 0) u0 + f E/(f, s)/(s, u(s)) ds 

and for * e [*,,, tB+1] 

(**) u(r) - nw+1(0 - U(t9 tn) u(tn) + (*U(t9 s)f(s9 u(s)) ds . 
Jtn 

From the equation (*) we have 

" ( 0 - U(tn9 0) u0 + f Vft-, s)/(s, M(S)) ds ; 

putting u(tn) into the equation (**) for any t e [*„, *„+J we conclude 

if(r) - U(t9 tn) U(tn9 0) «0 + U(t9 tn) [tnU(tn9 s)f(s9 u(s)) ds + 

+ f U(t9 s)f(s9 u(s)) ds _ U(t9 0) u0 + f fV(l, s)f(s9 u(s)) ds + 
J*n Jo 

+ f t/(r, s)/(s, u(s)) ds - t/(t, 0) II0 + f V(*, s)/(s, II(S)) ds . 

The proof is complete. 
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Consider the following assumption: 

B3 (3T>0)(V(s,f)eO)(V<pe£) U(t + T, s + T) = l/(r, s) , 

/ ( l + r , V ) . / ( * , * ) 

Notice that 1/ has this periodicity property in particular when U(t9 s) = V(t — s). 

Proposition 6. / / B 1, B 2 and B 3 are satisfied, if u is a solution of (V) on [0, T] 
then the function v defined on [pT9 (p + 1) T], p = 1, 2, 3 , . . . , £ry fAe formula 
v(t) = w(r — pT) is a solution of the equation 

u = U(t9 pT) u0+( U(t9 s)f(s9 u)ds9 re [pT9 (p + 1) T] . 
JpT 

Proof. As M is a solution of (1') for t e [0, T], 

"(0 = */(', 0) u0 + f C/(r, s)/(s, u(s))ds 

and hence for t e [pT9 (p + 1) T] 

v(t) = w(r - pT) = l/(* - pT, 0) u0 + f P U(t - pT), s)/(s, w(s)) ds . 

After changing the integration variable (s = x — pT) we have 

t>(f) = l/(f - pT, 0) u0 + J U(t - pT9 x - pT)f(x - pt9 u(x - pT)) dx, 
J pT 

and taking into account B 3 and the definition of v we obtain 

v(t) = U(t9 pT) u0 + f l/(f, T)/(T, I;(T)) dT . 
JPT 

Corollary 2. / / B 1, B 2 and B 3 are satisfied, if u is a solution of (V) on [0, T] 
such that u(T) = u(0) = u09 then the periodic prolongation vofuonl is a solution 
0/(1')-

Indeed, v is continuous, v(pT) = u0 for every p = 1, 2,..., by Proposition 6 t; is 
a solution of 

t> = U(t9 pT)v(pT) + f l/(*, T)/(T, V) dx 
JpT 

on [pT9 (p + 1) T], and Proposition 5 completes the proof. 

Proposition 7. / / B 1, B 2 and B 3 are satisfied, if u is a solution of (V) on /, then 
the function v defined on [0, T] by the formulae v(t) = u(t + pT)9 peN is the 
solution of (V) with initial value v(0) = u(pf). 
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Proof. Since u is a solution of (1') we have 

u(pT) = U(pT, 0) H0 + T U(pT, s)f(s, u(s)) ds 

and B 3, B 1 imply that 

U(t, 0) u(pT) = U(t + pT, pT) u(pT) = U(t + pT, 0) «0 + 

+ f' U(t + pT,s)f(s,u(s))ds. 

Since u is a solution of (1') we have 

v(t) = u(t + pT) = U(t + pT, 0) «0 + f ' U(t + pT, s)f(s, u(s)) ds = 

- U(t + pT, 0) u0 + f" U(t + pT, s)f(s, u(s)) ds + 

+ [' ' U(T+pT,s)f(s,u(s))ds = 
JpT 

= U(t, 0) u(pT) + f U(t + pT, x + pT)f(x + pT, u(x + pT)) dz 

and 

v(t) = U(t, 0) u(PT) + f U(t, T)/(T, D(T)) dT 

which proves the proposition. 
Introduce the following assumptions: 

B 4 (3M, k = const) (V((, s) e Q) \\U(t, s)\\ < Me-ki'~s) ; 

B 5 (3* eC(I,I))(V*eI)(V<?>, ^ B ) \\f(t, <p) - f(t, <fr)|| = R(r) |«?) - ^|| , 

«(t + r ) = « ( 0 ; 

B 6 -kT + I M K(s) ds = [ (-fe + MJR(S)) ds < 0 . 

Jo Jo 

Theorem 4. If B 1 — B 6 arc satisfied, then the equation (V) has a unique periodic 
solution, Us period is T, and all solutions of (V) have the properties mentioned in 
Theorem 2. , ' ' 

Notice that in this case all solutions of (1') tend to the periodic one as f -> oo. 
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Proof. 1. The equation (V) can be written in the form of the equation (1) after 
the following transformations 

u = U(t9 0) u0 + f U(t9 s)f(s9 0) ds + f U(t9 s) [f(s9 u) - f(s9 0)] ds 
Jo Jo 

and definitions: 

p(t, u0) =df U(t9 0) u0 + f U(*, s)f(s9 0) ds , 

W(*, s, u) =df l/(*, s) [f(s9 u) - f(s9 0)] . 

In this case we have the following implications: B l , B2, B4=>A1, Bl , B2, B4, 
B 5 => A 2 with L{s) = MR(s). Then in the case considered, Propositions 1 and 2 
hold. 

2. Since R(s) is periodic, — k + MR(s) is also periodic and for every positive 
integer p we have J$ r + 1 ) r ( -k + MR(s)) ds = JJ ( - /c -F Af#(s)) ds, thus 
JoT(-k + MJR(S))ds = p JJ(-fe + M,R(s))ds. Defining <*>(*) = J0 ( - k + M#(s))ds 
we have $(pT) = p $(T). In virtue of #(T) < 0 (by B 6) there exists a positive 
integer p such that $(pT) = P #(f) < —In M; let us fix this p. 

3. Consider in the space B the operator K of translation along the solution of (1') 
from t = 0 to t = T It seems that if «0 € J3, « is a solution of (V) such that M(0) = 
= M0, then Ku0 = w(r). It is evident from Theorem 1 that the domain of the 
operator K is B and that KB c 5. Consider the iterations K2,K3, ...,KP of the 
operator K. Let t)0e5, v is such solution of (V) that t;(0) = t;0; then Kv0 = t>(T), 
K2p0 = K(Kv0) = K v(T), which is the value at t = Tof the solution of (V) starting 
from v(T) at t = 0. Proposition* 7 implies that this solution can be obtained from 
the solution v by its translation from [T, 2T] to [0, T]. Then K2v0 = £ K r ) =* 
= i?(2T) and so on. By induction we have that Kpv0 = v(pT). We want to prove 
that the operator Kp is a contraction. 

4. From Proposition 2 we have for any solutions u9 v with the initial data u09 v0 

that 

\\u(t) - v(t)\\ S M\\u0 - v0\\ *v 

and 

||K^0 - Kpv0\\ = \\u(pT) - t<pr)| S M\\u0 - t;0|| e
0(pT) = a||ti0 - v0\\ , 

where a = Me*(pT) < Me~lnM = 1, Kp is a contraction. Hence there exists a unique 
point w0 e B such that Kw0 = w0. Denoting the corresponding solution of (1') by w 
(w(0) = w0) we have w(T) = w(0). In virtue of the uniqueness of the point w0 and the 
uniqueness of solutions of (1') it follows that the equation (V) has at most one 
periodic solution with period T. Existence of that solution follows immediately from 
Corollary 1 (it has the initial point w0). 
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5. Consider the behaviour of the function #(r) = -fcf + j 0 MR(s)As as * -» oo. 
Defining 

A = — Г Я(s) ds , ф(t) ш MЯ(í> - Л 
^ Jo 

we obtain that V(f) -s a T-periodic function and j*J i/f(f) df = 0. Then <P(t) = 
= (-fc + A) t + | 0 \l/(s)ds, #(T) = (-fc + A) T. B 6 implies that -fc + A < 0. 
Since \j/ is continuous on [0, T], there exists a constant C that for t e [0, T] we have 
Jo ^(s) ds S C; as ^ is continuous on i and JJ *//(*>) At = 0, it holds J0 ^(s) ds g C 
for all tel. Finally #(*) <* (-fc + A)t + C, -fc + A < 0 and #(*) -> -co as 
t -* oo. 

6. Let M be any solution of (1'), let w be the periodic one. Proposition 2 yields 
for tel: 

\\u(t) - w(0|| S M\\u0 - Wo|| e«« 

and 

(*) . •••-• l«(0fl^, Ht) - w(t)|| + HOI = * - K - wol e*<«> + H O I • 

Since w is a periodic solution it is bounded and since <P(t) -• — oo as t -» oo (hence 
e-*(o j s b o u n d e c i ) We obtain that u is bounded. 

7. Let w = max §w(f)||, and let R be any constant such that R > w. From (*) it 
i 

results that for this JR and any w0 there exists such t0 _• 0 that for any t 2> t0 we 
have |u(r)|| £ R (because e0(t) -» 0 as f -> oo). 

8. Proposition 2 implies that for any two solutions w, t; we have \\u(t) — t?(*)|| -• 0 
as t -* oo. If we take t; = w — the periodic solution, we obtain that all solutions 
tend to the periodic one as t -*• oo. Hence the equation (V) has only one periodic 
solution (with period T). 

k 9, For any a > 0 and <5 = e/M max e0(t) (this max exists because #(f) -> — oo 
i / 

as t -+ oo and #is continuous) let u0, t;0eBbe such that ||w0 — %|| < <5.Then Proposi­
tion 2 yields for t £ 0 that \\u(t) - t>(r)| £ M|w0 - v0\\ e

0(r) < M m * x e0(f)<5 = e. 

Any solution of (!') is stable. Asymptotic stability results from 8. 

"6. THE CASE Le -S^(0, oo), p ^ 1 

Now we turn back to the general "nonlinear" case. Assume that 

A 6 fc > 0 , 

A 7 (Bp £ 1) f°°Lp(s)ds"< oo . 
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Define (for such p) goo \ l / p 

. * • > * ) " • • > 
Theorem 5. / / the assumptions A 1, A 2, A 3, A 6, A 7 are satisfied then the solu­

tions of(i) have all properties mentioned in Theorem 2. 
Proof. Let T e [0, i], consider #(f) - #(T) = -k(t - T) + JiML(s)ds. If p = 1 

then $(t) - $(T) S -k(t - T) + MN, if p > 1 then for g = (p - i)jp we have 

<f>(r) - <I>(T) = ~k(t - T) + / T M 1 / C dsY H Lp(s)ds\ * = 

£ -k(t - T) + MN(* - T)C. 

Then for any p = 1 and T e [0, f] 

(*) <f>(f) - <J>(T) = -k(* - T) + MN(t - if , # = 1 - i e [0 ,1 ) 
P 

and in particular (for T = 0) 

(**) #(r) S -kt + MNt*. 

Let f0 =df (2NM/fc)p, then for r = r0 we have *1/p
 = 2NM/fc, NMt6

 = (fc/2) *c+1/p = 
= (k/2) t. From (**) we obtain 

(***) t = t0 => <f>(t) = -fcf + MNt* = - - f 

and then #(t) ~> — oo as t -> co (from A 6 fc > 0). From Proposition 3 and (*) we 
have for t el 

\\u(t)\\ S[M\\u0\\ + P] *•<*> + fcP [V ( f )-* ( s )ds = 

= [M||u0|| + P] e0it) + kP I exp (-k(t - s) + MN(* - s)«)ds . 

Change the variable in the last integral (T = t — s). Then we have for t e I 

\u(t)\ S [M| |M 0 | + P] e*(t) + kP J exp(-kT + MNTc)dT 

*o 

HOI = [Af||i#oj| + P] e0(r) + fcP J °exp (-fcT + MNT*)dT + 

+ fcP J exp (-fcT + MNTe) dT . 
J 'o 
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From (*»*) we have 

H«(0D .S [iVJuol + I3] c*(0 + kP r°exp (-/CT + MNx9) dt + 

•-'JX-I')*-
- [M|u0|| + P] e*(f) + fcP f °exp(-fcT + MNTff)dT + 2P(e~W2)t° - e"

(k/2)t) 

and 

||f*(*)| £ [M||w0|| + P] e*(t) + fcP r°cxp(-fcT + MNTe)dT + 2Pe~(k/2)'° 

for f £r *0. It is evident that this inequality holds also for t e [0, f0]. Hence it is satisfied 
for teL Since #(*) -» — oo as t -» + oo, the last inequality implies that every solution 
of (1) is bounded and that for any i? = const > fcP /0° exp (-fcT + MNx6) dx + 
+ 2Pe~(k/2)t<> there exists ?0 such that for t ^ l0 we have ||t*(*)|| <; 1? (l0 depends 
on u0). The other properties follow from Proposition 2 (similarly as in the proof of 
Theorem 2). 

Theorem 6. If the assumptions A 1, A 2, A3', A 6, A 7 are satisfied then the 
solutions of (1) have the properties described in Theorem 5 and tend to zero as 
t -> oo. 

Proof. The first part of the assertion results immediately from Theorem 5 because 
A 1, A 3' => A 3. From Proposition 1 we have 

KOI -S q(t) + M\\u0\\ e*(t) + f \(s) L(s) e*'>-«.> d s . 

As in the previous proof $(t) -> — oo as t ~» oo, q(t) -» 0 as t ~> oo by A 3', to com­
plete the proof of the theorem we have to show that 

- [« ( - ) - * )< / = q(s)Us)e^-OMds 

tends to zero as t -> oo. We have 

Š ( [').«(-) e * ( ř ) - * ( s ) ] 1 / e dsY ( f'L"(S) daY" š 

š JV ( f(.7(s))1/e ed/^W'")-^) dsY 
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Í: 

and as in the previous proof 

liY/8
= ("(.rfs))1" exp (-(kle)(t - s) + (MNIQ)(t - s)>)d5. 

After changing the integration variable (s — t — x) we obtain 

( - ) " S f 0( t - t)]1 / e exp [(l/e) (-fcT + MJVT')] dT = 

\q(t - T)]1"1 exp [(1/g) (-fcT + MiVT*)] dT + 

+ I L>(' - *)]1/<? exp [(1/e) ( - t o + MNT«)] dT , 

where f0 is the same as in the proof of Theorem 5. In the first integral we have (fc > 0) 

j t = f \q(t - x)YlQ exp [(1/g) (-fcT + MNT«)] dT S 

£ exp [(1/0) MNrS] f '°[<?(r - T)]1^ dT. 

Take any e > 0 and jy = z*\t% exp MN^. Then to this r\ > 0 exists T ;> *0 such that 
q(t) < rj for t > T - f0 (#(*) -• 0 as * -• oo). Then for * > Tand s e [0, *0] we have 
r — s > T — r0 and q(t — s) < rj. Finally, for any e > 0 there exists such T that 
It <; exp [(Ijg) MNf0]rj(1/e) j0° dj = e for t > T Hence J t -• 0 as * -• oo. Consider 
the other integral satisfies 

h = f' [q(t - T)]17* exp [- (-fcT + MNT*)! dT £ f [q(t - T)]1/C e(-fc/2<?)t dT 
J-o U J J to 

and hence, for s = * — T + *0 

rWs-ro)]1^72^^ 
/ , < I tq(s - t0)Y

/e
 e-(-/-tM..+»-.) d s = e-W2e)«0Jjo 

z — J L-n W/J eW2t)t 

From the rule of de PHospital (in Stolz's form, fc > 0) we have 

Xait - uWQ eW2Q)t 

limJ2 = e^^Mim^ blL-1 « o 
ř-»oo f~+oo fc (k/2Q)t 

Єx 

2Q 

ebcause q(t) -• 0 as t -> oo Then J t , I 2 -> 0 as t -• oo and (ljN)i/Q <* J t + J 2 tends 
to zero as f --> oo. Finally, J -* 0 as * -> oo and the proof is complete. 
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