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Časopis pro pěstován! matematiky, roč. 101 (1976), Praha 

THE LYAPUNOV STABILITY 
OF THE TIMOSHENKO TYPE EQUATION 

JAROSLAV BARTAK, Praha 

(Received October 25, 1974) 

The purpose of this paper is the investigation of the global exponential stability, 
respectively the stability of the zero solution of the equation 

(1) i*""(0 + a um(t) + (btA
1/2 + b2l) u"(t) + (cxA

1/2 + c2l) u'(t) + 

+ (dtA + d2A
1/2 + d3J) u(t) = 0 

where A is a selfadjoint, strictly positive linear operator in a Hilbert space H; I is the 
identity operator in H; a9 bi9 b29 cl9 cl9 dl9 d2, d3 are real constants. 

Under the solution of (1) we understand a function u from the space % = 
= {u : <0, oo) -> H | uU) e C(2(u)9 @>(A<4-j)/4))9 j = 0,1, 2, 3}, fulfilling the equa­
tion (1) on <0, oo). 

Let us define the norm | • || B^A) x 9(A*I*) X (̂A-/-> X ®(A*/4) by the relation 

mOIUu) x 9(A*/*) x 9(AW) x &(A*/*) = 

= ||(W(0> " VbU"(0» U v))\\9(A)x9(AV4)x®(Ai/2)xg(Ai/*) = 

- t\\A u(t)\\2 + \\A3/4 u'(t)\\2 + \\A1/2 u"(t)\\2 + \\Ai/4 u'"(t)\\2Y/2 

for u e % and 1e <0, oo), ( | • | is the norm in the space H). 

Definition 1, We say that the solution v(t) of the equation (1) is stable with respect 
to the norm |*|̂ (it)x0(i|3/4)xB<i4-/2)x^( î/4) if to arbitrarily chosen e > 0 there exists 
a 8(&) > 0 so that the following implication holds: 

|tt(0) — v(0)\\mA)x9(A*/*)x9(At/*)x9(Ai/4) -S- <Hfi) =* 

«• |ll(r) — V\t)\®(A)xS(A*/*)xm(AV2)x&(AV4) =£- £ 

for I ^ 0 and for every solution u(t) of the equation (1). 
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Definition 2. We say that the solution v(t) of the equation (l) is exponentially 
stable with respect to the norm \91^A)X^(A^)X9(AU2)X9{A^^ if there exist positive 
numbers <5, K, a so that the following implication holds: 

||u(0) — v(0)l#iA)x &{AV*)x 9(A*/2)x 9(AV4) S # =* 

=> ||tl(f) — t\t)l&(A)x&(A3/4)X9(Ai/2)X 0(^1/4) —: Ke~" . 

. ||W(0) ~ t;(0)||^(v4)x^(^3/4)x^(i4
1/2)X^(^l/4) 

for t ^ 0 and for every solution u(t) of the equation (1). 
If $ = +oo in addition, we speak about the global exponential stability. 
Let u(t) be a solution of (1) and let the following initial conditions be fulfilled: 

(2) u(0) = <Po> u'(0) = <?i> u"(0) = q>29 um(0) = <p3, 

where q>{ e ^(Al1"l/4), * = 0,..., 3. 
Let us assume that 

(3) the solution of (1) fulfilling (2) is unique. 

The problem of the uniqueness is studied in [1], [2]. 
Let us denote E(s) a spectral resolution of the identity corresponding to the 

operator A, 8 = inf o(A). By the assumptions on the operator A, we hftve 

(4) 5 > 0 . 

Let us write the solution of (1) fulfilling (2) in the form (we shall show that this 
is possible) 

3 /•«> 

(5) "(0 = 1 mi(t,s)dE(s)<pi, 
i=-0 Jd 

where mt(t9 s), (i = 0,..., 3) are solutions of 

(6) m"% s) + a m"% s) + (bts
1/2 + b2) m% s) +(cxs1/2 + c2) m% s) + 

+ (dxs + d2s
1/2 + d3) m(t, s) = 0 

fulfilling the initial conditions 

(7) mf)(09s) = Sk
i, *,fc = 0 , . . . , 3 , s^S. 

The symbol of derivative means the derivative with respect to the variable t; s ^ S 
is a parameter. 
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Suppose that Xt « Aj(s), i « l , , . , , 4 are solutions of 

(8) A4(s) + a X3(s) 4 (f>lS

1/2 + b2) X2(s) 4 (cxs
1 / 2 4 c2) X(s) 4 

+ diS 4 d2s
1/2 4 d 3 = 0 . 

For the sake of simplification we shall further use the following notation 

(9) b - bxs
112 + b29 c = c l S

1 / 2 + c2 , d = dl5 + d2s
1/2 4 rf3. 

Then 

(10o) 

(100 

(юa) 

(10.) 

t,s) •-

4 

-I 
A3 + aA2 + i>Лř + c 

t,s) •-
4 

-I 4 
І~- 1 im-

І = I 
І*i 

Ч) 

»l(*. . » ) -
y, Ař 4- aAř 
ZJ 4 

+ * «-.. 
Í = 1 П ( A , -

i = l 
j*i 

*,) 

m2(í, 
• » ) - •ř, / ' + a e*" 

' • ' П ( » . -
І = l 
J * l 

• ^ ) 

»b(ť . « ) -
4 1 

•Zт1 c*" 

im-
J = I 
j * < 

-Ъ) 

if Af - A; # 0 for i 4= j . 
It will be advantageous to express the functions mf(f, s) in the following form: 

(110) m0(t, s) = (A3 + ak\ + M. + c) [ > - / - > f > < * - > . 
Jo Jo 

r eA3( f f- e) eA4, d e d f f d T + j - A 2 + ; 2 + A i A j + 

+ a(A, +A2) + fc] fVj('-*> ( " V ' ' " ^ d g d t r + 
J O J 0 

+ (Al + X2 + A3 + a) f c^('-«)e

A<« de + ex", 
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(11,) m1(t,s) = W + akl + » ) J ^ t ) J / , ' , " * > ' 

. fV3('-e)eA<e d<? dff dT + (A. + A2 +
 tf) * 

. f ><'-"> f><*-«V<« de d<r + f V*'"'**4* d<? ' 
Jo Jo Jo 

(112) m2(f, s) = (A, + a) f ><"<> f > " ' ' ' 
Jo Jo 

r ^ ' - ^ e ^ de d«r dT + fV2(r*"ff) f 
Jo Jo J° 

(n3) m3o, s)=rV i < r -T > f Va(t-*> r^ ( - f f ) . 
Jo Jo Jo 

M{*~ûieUe àg àa, 

-<?)e*4<? d ^ d c d T . 

Lemma 1. Le* the following conditions be fulfilled: 

(12) a > 0 , 

(13) cxs
112 + c2>0 for s^S, c^O, 

(14) d,s + d2s
1/2 + d3 > 0 for s ^ <5, d2 + ^ > 0 , 

(15) a(.V1/2 + fc2)(Cls
1/2.+ c2) - a2(d,s + d2s

i/2 + ^3) -

- (Cls
i/2 + c2)

2 > 0 /or s ^ , 

(16) ab1cl - a2dt - c2 > 0 . 

Then there exists a constant co > 0 sweh *ha* 

(17) ReAf(s) £ ~<tf 

for a/I solutions A;(s) of *he equation (8) and a// s §: <5. 

Proof. We can easily derive by means of the Hurwitz theorem that the necessary 
and sufficient conditions that the inequality Re Aj(s) Si — a> (for s 2> <5) holds are 

(18^ -4a> + a > 0 , 

(182) (-4c» + a) (6a>2 - 3aco + 6) - (-4a>3 + 3ao>2 - 2bco + c) > 0 , 
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(183) (-4co + a) (6m2 - 3aco + b)(-4co* + 3aco2 - 2bco + c) -

— (—4co + a)2 (co4 — aco3 + bco2 — ceo + d) — 

- (-4a>3 + 3ato2 - 2bco + c)2 > 0, 

(184) * co4 - act)3 + bco2 - ceo + d > 0 ; 

the inequalities (18) must be fulfilled for all s J> <5. It follows from (12) that the con­
dition (I8t) holds for sufficiently small co > 0. (182) follows immediately from (13), 
(14), (183), (184). The condition (184) is also fulfilled for sufficiently small co > 0 because 
of (14). Further it follows from (16) that there exists S0 ^ 5 such that (183) holds 
for s <> S0. Using (15) we can guarantee also (183) on the interval [<5, S0], if we 
consider sufficiently small co > 0 only. 

Lemma 1A. Suppose that it holds (12), (13), (14), (15). Then 

(19) Re Xt(s) <: 0 

for all solutions Xt(s) of the equation (8) and all s ^ 8. 

Proof. It can be proved that to each SQ g: 8 there exists co = co(S0) > 0 such that 

(17) holds for all solutions Xt(s) of the equation (8) and all s e [<5, S0] similarly as 
in the proof of Lemma 1. This proves Lemma 1 A. 

Lemma 2. There exists a constant At > 0 such that for each solution A,(s) of 
the equation (8) (which can be written in the form 

(20) X4(s) + a k3(s) + b X2(s) + c X(s) + d = 0 

when we use the notation (9)) it holds 

(21) M-)| * - v / 4 

for s J> <5. 

Proof. If we put 

(22) A = y - \ 
4 

we can transform the equation (20) to 

(23) . y4 + ey2 +fy + g = 0 

where 
. 3 2 , a3 afc , 3 4 , a2fe ac 

e « f e a 2 , / - « + c, f̂ = - * — a 4 + — + a . 
8 8 2 256 16 4 
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All solutions of the equation (23) are: 

(240 ^i=i(-! / 2 + -l / 2+ z»/-), 

(242) ^ - K - ^ 2 - - ! 7 2 - - ! / - ) , 

(243) J 3 - K - Z i 1 / 2 + - 2 / 2 ^ z » / - ) , 

(244) >'4 = i ( - - l / 2 - Z I / 2
s . z ^ ) , 

where zu z2, z3 are solutions of a cubic equation 

(25) z3 + 2ez2 + (e2 - 4g) z ^ ^2 ^ 0 . 

We choose values of the square roots such that zJ/2 -1/2 , %* = —/• Let u s Pu* 

(26) z = x e . 

Then the equation (25) can be transformed to 

(27) x3 + 3px + 2q ^ 0 

where 

= __!!_4«? = _ £_. 4e0 •£-• 
P 9 3 * * 27 + T " 2 * 

Let us denote 

(28) « - » / ( _ « + vte2 + P3)) , v = V ( - i - V(«2 + P3)) • 

The square roots are chosen such that uv = — jp. 
Further let us put g = e2wi/3. Then solutions of the equation (27) are 

(29A) x^u + v, 

(292) x2 = eu + e2v, 

(293) x3 = e2u + ev . 

Substituting for p, q to (28), we get 

(30) u «- JC-s1'2 + o(s1/2), 0 = K,s1/2 + o(s112), 

where KU9 Kv are constants and o(f(sj) means any expression such that 

l i m ^ - O . 
s-> + 00 / ( s ) 
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We get from (22), (24), (26), (29), (30) 

(31) kj(s) - K//4 + o(sl/*), i = 1,... 4, 

Kt are constants. We can easily find with help of (4) that 

(32) to each S0 J> 8 there exists a constant K(S0) such that |A;(S)| £ K(S0)<51/4 

for se[<5, S0], i = 1,...,4. 

The assertion of the lemma follows immediately from (31), (32). 

Lemma 3. Suppose that 

(33) dt+0, 

(34) ' b\ - 4dt + 0 . 

Then there exist constants A2 > 0, S0 ^ 8 such that 

(35) \kt(s) - kj(s)\ £ A2s
1/4 for s £ S0 , * + I , i, I = 1,..., 4 . 

Proof. We use all notations from the proof of Lemma 2. Then 

(36) Aj_ — /-2 =-- z2 + --"3 » A2 A3 = z± -~ z2 , 

Aj - A3 - Zj "t Z3 , A2 A4 —- Zt —• Z3 , 

Aj - - A4 sss Z.J + Z2 , A3 — A4 = Z2 — Z3 

So if (35) is to be proved it suffices to prove 

(37) (2J/- + z j /-) s-i/4jf___f__.i^ + o , for i+j, 

(Zr-z}/2)s-^-^i^2Xy + 0, for .* ; • ; 

the existence of finite limits is clear, cf. (31). 
The conditions (37) will be fulfilled, if 

(38) ± Mm z J ' V 1 ' 4 + lim z)/2s~m , for i+j 
at-* + oo s-+ + oo 

(the existence of finite limits is clear again). 
Using (26) we get the following sufficient condition that (38) is fulfilled 

(39) Urn xts"m + lim Xjs"m , for i + j9 i9j = 1,2, 3. 
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Let us denote 
b\ 4 ^ - b\ 4 . " 

P= - — - -dlt q = - —; + - M i , 
9 3 27 3 

" = V ( - s + V(«2 + P3)) > 5 = V(-$ - V(«2 + P3)) , 
then 

(40) lim x̂ s~ -1/2 'sss ü + v, 
*-* + oo 

łim x2s" -1/2 = eӣ + e2v , 
s-> -Ь 00 

lim x3s~ "1/2 sss e2ü 4- ev. 
5-* + 00 

It follows from (40): the condition (39) is fulfilled if 

(41) q1 4- p3 # 0 . 

We can easily find that (41) follows from (33), (34). 
This proves the lemma. 

Proposition 1. Suppose that (12)—(16), (33), (34) hold. Then there exist constants 
L > 0, co > 0 such that 

(42) ' |mf>(r,s)s(i-k)/4| = Le-^ 

for t = 0, s ^ <5, i = 0,..., 3, k = 0,..., 4. 

Proof. It follows from (10), (17), (21), (35) that (42) is fulfilled for s = S0. If we 
take into consideration the boundedness of Af(s) for se [<5, S0] and use (11), we 
easily prove that (42) holds on [5, S0], too. 

Proposition 1A. Suppose that (12)—(15), (33), (34) hold. Then there exists 
a constant L > 0 such that 

(43) \m?Xt,s)s«~kvA\£L 

for t = 0, s = 5, i = 0,..., 3, fc = 0, . . . ,4. 

Proof. It is similar to the proof of Proposition 1. 

It follows immediately from Proposition 1A: 

Theorem 1. Let (12)-(15), (33), (34) be fulfilled. Then the function u(t)9 defined 
by the relation (5), is the solution of the equation (1) and fulfils the initial con-
ditions (2). 
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Theorem 2. Let (12)—(16), (33), (34) be fulfilled. Then the zero solution of 
the equation (1) is globally exponentially stable with respect to the norm 
I • || 9(A) x 9(A$/*) x 0(AV2) x 9(A*/*)* 

Proof. Using (42) we get from (5) 

(440) \\A«(t)\\2 £ 4 jjjm0(.-, sf s2 d\\E(s) <p0\\
2 + j jm.( . , s) «-/*|* . 

. s*'2 d\\E(s) <Pl\\
2+ r\m2(t, s) s»2\2 s d\\E(s) <p2\\

2 + 

+ r\m3(t, s) »-/«|a s1'2 d\\E(s) <p3\\
2\ g 4[Le-«"]2 . 

. (\A9o\* + M s /Vi|a + \A"2<p2\
2 + \\A^cp3\\

2) = 

= 4[Le *"] ||u(O)|0(y4)X^(X3/4)X^(iii/2)x^(x-/'<) • 

We can prove similarly 

(440 IM1-*'4 u<*>(r)||2 S 4 L[e-<°']2 \\u(0)\\l(A)X9(A>/*)X*(AU>)X9(AU<), 

k = 1, 2, 3 . * 

If we add (440)—(443), we get the global exponential stability of the zero solution. 

Theorem 3. Let (12)—(15), (33), (34) be fulfilled. Then the zero solution of the 
equation (1) is stable with respect to the norm l*l9(A)x9(AV*)x9iAv*)*9(Ai/*y 

The proof is similar to that of Theorem 2. 

Remark 1. Suppose that v(t) is any solution of the equation (1). Then under 
the assumptions of Theorem 2, respectively Theorem 3, v(t) is globally exponentially 
stable, respectively stable with respect to the norm ||*\@(A)XQ(AV*)X9(AU*)X9(Al/<y 

Proof. Let u(t) be a solution of (1). Then the function w(t) = u(t) — v(t) satisfies 
equation (1), too. Now our assertion immediately follows from Theorem 2, respec­
tively Theorem 3. 

Example. The following problem is often investigated: 

(45) exe2 utttt(t9 x) + aexe2 uttt(t9 x) - (et + e2) uttxx(t9 x) + 

+ (1 + cete2) utt(t9 x) - ae2 utxx(t9 x) + a ut(t9 x) + uxxxx(t9 x) -

— ce2 uxx(t9 x) + c u(t9 x) = 0 , 

where et > 0, e2 > 0, a > 0, c are real constants, 

u(t9 0) = u(t9 n) = uxx(t9 0) = uxx(t9 n) = 0. 
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Using Theorem 3, we get sufficient conditions for the stability of the zero solution 
of the problem (45). 

Put H = L2(0, n) and define the operator A by the relation 

(46) A v(x) = vxxxx(x) , for v e 2(A) = {v e W*2(0, n) 11<0) = v(n) = 

= vxx(0) = ^(TT) = 0} , 

(in the sense of distributions). 
We easily find that the operator A is linear, selfadjoint, strictly positive and 

5 = 1. 
Now, we can rewrite our problem into the form 

(47) u""(t) + a u'"(t) + {[(e, + B2) A
i/2 + 1 + c e ^ / e ^ } u"(t) + 

+ [(aB2A
l/2 + a)/el£2] u'(t) + [(A + ce2,4

1/2 + C)\BXB2~\ u(t) = 0 . 

Simple calculations show that the conditions (12)—(15), (33), (34) are fulfilled, if 

(48) s, + e2, c> - (1 +f i 2 ) _ 1 . 

Theorem 4. Lef (48) 6e fulfilled. Then the zero solution of the problem (45) is 
stable with respect to the norm \\'1@(A)X®(A*/4)X®(AI/2)X®(AI/4)> (^e operator A 
is defined by (46)). 
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