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ON A MODIFIED SUM INTEGRAL OF STIELTJES TYPE

STEFAN SCHWABIK, Praha
(Received January 27, 1972)

Let [a, b] be a bounded interval on the real line, —00 < a < b < +00. Given
a positive function & : [a, b] —» (0, + ), we consider finite sequences of numbers
A ={og, Ty, 0y, ..., Ty, %} such that

(1) a=ao<al<..-<ak=b,
(2) (Zj_l é'rj_s_aj, j=1,2, ...,k,
©) oy — ol < 8(c;), foy-1 — 7l S8(z)), F=12,..., k.

The set of all subdivisions A of [a, b] satisfying (1), (2) and (3) with a given
d : [a, b] — (0, + o) we denote by «(9).

Further, replacing (2) by the condition
2¥) oSt <o, o <7<, j=23.,k—=1, g <7 S
we denote the set of all A satisfying (1), (2*) and (3) with a given é : [a, b] — (0, + )
by o£*(9).

In [2] it was proved that &#(6)-#+ @ for any 6 : [a, b] — (0, + o) (cf. Lemma 1,1,1
in [2]). The proof is based on choosing a finite covering of [a, b] by intervals of the

form (t — &(7), © + &(t)) where 7 € [a, b]. By the same argument we can prove that
#*(0) + 0 for any 6 : [a, b] — (0, + ).

Definition 1. The function f : [a, b] — R is K-integrable (K*-integrable) on [a, b]
with respect to g : [a, b] > R if there exists a number I such that to every ¢ > 0
there is such a 6 : [a, b] - (0, + ) that

[K(4) ~ 1] < e
provided A € s#(8) (A € o4*(5)) where

K(4) = 21(5) (o) — o(0,-1)
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for A= {ao, Tys Ogs euey Ty ak}'

The number I (if it exists) will be denoted by K [%fdg (K* [;f dg) and will be
called the Kurzweil integral (the modified Kurzweil integral) of f with respect
to g on [a, b].

Remark. The concept of the K-integral was introduced and studied for the first
time by J. Kurzweil in [2], it is used in [2] and in a number of other papers to study
ordinary differential equations.

In [2] and [4] it is shown that if g is a function of bounded variation on [a, b],
i.e. g € BV(a, b), then the usual Perron-Stieltjes integral P.S. (2 f dg (cf. [3]) is equi-
valent to the integral K [? f dg.

In [4] we studied further the relation between K f ®fdg and the Young o-integral
Y [ f dg for g € BV(a, b) (for the Young integral see also [1]). In this direction we
have obtained that for g € BV(a, b) the existence of Y [ f dg does not in general imply
the existence of K [? f dg (cf. Sec 3 in [4]). In this note we prove that the modified
Kurzweil integral includes the Young o-integral, i.e. the following theorem holds:

Theorem 1. Let f:[a, b] = R, let g :[a, b] > R be of bounded variation on
[a, b] (g € BV(a, b)). Then if the Young c-integral Y [ f dg exists then also the mo-
dified Kurzweil integral K* [,',’fdg exists and both integrals are equal.

Proposition 1. If f : [a, b] - R, g € BV(a, b) and K [l fdg exists then K* [} fdg
exists and both integrals are equal.

Proof. It is easy to see that if 4 € &#*(8) for some 6 : [a, b] — (0, + o) then also
A € o(0) and the proposition is an easy consequence of Def. 1.

Proposition 2. If f : [a, b] > R, g € BV(a, b) such that g(a) = g(t+) = g(t—) =
= g(b) for all t € (a, b) then K* [} f dg exists and equals zero.

Proof. Without any loss of generality we can suppose that g(a) = 0. Indeed our
proposition evidently holds for g(f) = const. by definition and therefore the additivity
of the integral yields that in the case g(a) % 0 it is sufficient to consider the function
4(t) = g(t) — g(a) for which we have §(a) = 0.

Since g is a function of bounded variation there exists a countable set N = {¢,, ...
eees tms -} < (@, b) such that g(t) = O for te[a, b] — N and g(t) + 0 for teN.
Moreover, we have var,g = 23 |g(f)] < 4 0. Given now an arbitrary & > 0, we

teN "
define for fg and ¢ a function ¢ : [a, b] - (O, + OO) in the fo]]owing way:
IfreN,ie. 7= t,for some m = 1,2,.., then there is a §(z) > 0 such that

lo(®)] < &. 27" '[|1(x)] + 1]
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for 0 < |t — 1| < (7). This is a consequence of the existence of limits g(r—), g(z+)
for all 7e(a, b) and our assumption g(t+) = g(t—) = 0 for all te(q, b). FOr
7€ N let §(r) bg the positive number given above.

If r € [a, b] — N then we define the set

H ={te[a,b] -N; I|f(t) <1+1}
for all I =0,1,2,... Evidently U H, = [a,b] — N and H, n H,, = 0 for | ¥ m.
=0
Further we determine for alll = 0, 1, ... a set N; = N such that

teNZ—:N 2g(n)] < el + 1)~t.27t,

This is obviously possible since the series Y. |g(f)| converges. If 7 € [a, b] — N then
teN

there exists a uniquely determined integer ! = 0 such that 7 € H; and we define

5(7) = }o(r, N;) > 0

where ¢ is the Euclidean distance on the real line. This §(z) is positive since 7 ¢ N:.
By definition we have [t — &(7), © + 6(t)] " N; = @ for all te H,.

Now let 4 = {ao, Tis gy eeny Tho cx,,} be arbitrary and let us consider the corre-
sponding sum K(4). We have

|K(4)] - Ij:Zlf(TJ) (9(2;) — g(2;-1)| éj‘:illf(fj) (9(;) — 9(2;-1)] -
If 1;€N, ie., 1; = t, for some m = 1,2, ... then
1/(z)) (o) = 9= )| = 17(ta)] (l9(@)] + lg(2;-9)]) <
S |f(em)] - 26(1f ()] + 1)71. 27778 < gf27,
since A e o*(8) implies 0 < |o; — t,| < &(t,) and 0 < |a;_; — ta| < 5(t,). If

7; ¢ N then there is an integer I > 0 such that 7; € H, and we have |f(7,)| < I + 1.
Hence .

|7(e) (9(e)) — o(@;- | = (0 + 1) [o(2)) = g(oy-0)| < (F + 1) varz]_, g
and for the sum S; = Y [f(;) (9(¢;) — g(x;-4))| of all absolute values of sum-
tyeH; . .

mands in K(A4) with 7; € H, we can give the estimate

Sis(+1) Y var g<(I+1) Y 2lg(s)
teNnM;

tyeH;
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where M; = U [&;y, o;]. Let us mention that M; " N; = @ since M; = U [r; —
tjeH, tyeH

— 8(ty), t; + 8(r;)] and [t; — 8(t;), 7; + 6(r;)] " N, = 0 for any t;€ H,. Hence
NnM; =N — N, and we have

S;s(+1) Y 2g() <@+ )e.(I+1)t. 27 =¢.27
teN—N;
Therefore we have
K(4)| <X 27"+ 3 27") = 3¢
m=1 =0
and the proposition follows immediately from Def. 1.

Proof of Theorem 1. Let us define the set

Ns = {te(a, b); g(t+) = g(t—), 9(t) * g(t-)}

and the function g«(f) = 0, t€[a, b] — Ny, gs(t) = g(t) for te Ns. We put gz =
=g —Js

Since Y [2f dg exists by assumption and the existence of Y [ f dgs and also the
equality Y [2fdgs = 0 follows from Proposition 1,1 in [4] the integral Y [2fdgg
exists. Using Theorem 3,1 form [4] we obtain that K [? f dgg exists and Proposition 1
yields the existence of K* [?fdgg and the equality K* [2fdgs = K [2fdgg =
=Y [? f dgg. By Prop. 2 we obtain the existence of K* [ f dgs and K* [ fdgs = 0.
Thus the integral K* [? f dg exists and

b b b b b
K*ffdg =K*jfdgs +K*J.fd£lx - ijdga - Yffdg.
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