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ON THE SHORTEST LATTICE VECTORS IN A THREE-DIMENSIONAL 
TRANSLATIONAL (BRAVAIS) LATTICE 

BORIS GRUBER, Praha 

(Received September 9, 1966, in revised form September 3, 1968) 

A linear space Vover the body of real numbers is given. The elements of the space V 
(vectors) are denoted by o, b,..., integral numbers by a,b,... and real numbers 
by a, J?,... (â l eventually with various indices). A scalar product a . b is defined in V; 
a2 is written instead of a . a. By the length of the vector o the number jo[ = yja2 is 
understood. 

The set M cz V is referred to as a (three-dimensional translational or Bravais) 
lattice, if it may be written in the form 

(1) M = ${x = aa + bb + cc; a, b, c arbitrary) 

where the vectors 

(2) o, b, c 

are linearly independent. The vectors belonging to M are also called lattice vectors 
of M. If (1) is correct, then the vectors (2) are said to form a basis of the lattice M. 

We call (2) & fundamental sequence of lattice vectors of M, if 

1. (2) are linearly independent lattice vectors of M, 
2. M * M ̂  14 
3. the inequality \a\ + \b\ + |c| <; |x| + \y\ + \z\ holds for any triplet x, y, z of 

linearly independent lattice vectors of M. 
It is readily seen that (2) is a fundamental sequence of M, if and only if 

1. o is the shortest non-zero lattice vetor of M, 
2. b is the shortest of all lattice vectors x such that o, x are linearly independent, 
3. c is the shortest of all lattice vectors x such that o, b, x are linearly independent. 

If (2) as well as 

(3) a\ b\ C 
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are fundamental sequences of lattice vectors of M, then 

(4) M - M . M - M . W - M . 
The symbol [<*] denotes the integer defined by inequalities 0 <£{ — [£ ]< 1. Con­
sequently, 

(5) * 2\ri - *[,/{ + ±]| ^ 

holds for £ > 0, fj. 
The object of the present paper is the proof of the following theorem. 

Theorem. The vectors (2) constitute a fundamental sequence of lattice vectors ofM, 
if and only if they form a basis of M and satisfy the following inequalities: 

(6) H < M < |«|. 
(7) 2 | o . b | < o 2 , 

(8) 2|(so + tb) . c| <. (sa + tb)2 for Max (|s|, |t|) = 1 . 

The proof of this theorem is preceded by six lemmas. 

Lemma 1. Let 

(9) 2|o . b\ > a2 > 0 . 

Then, denoting 

(10) r = \a. b/a2 + | ] , b' «- b - ra , 

the inequalities 

M < W. 
(11) |b'| ^ |b - so| (s arbitrary) 

hold. 

Proof. The relations (9), (10) and (5) imply 

(12) r * 0 

(13) 2|o . b'| < o2 . 

Bearing in mind that 

b *- so = b' + (r — s)a (s arbitrary), 

inequality (11) is equivalent to 

(r-s)2a2 + 2 ( r - s ) o . b ' = 0 . 
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Here (see (13)) the left-hand side is at least (r — s)2 a2 — \r — s\ a2 which is non-
negative. Thus (11) is proved. If |fc'| were equal to |f>|, we should get ra2 = —2a.b' 
from (10), (12). This would necessitate \a . fc| = \a . b' | and (9) would contradict (13). 

In the next five lemmas the following assumptions are made. Linearly independent 
vectors (3) satifying 

(14) 

(15) 

(16) 

l-'l = M = M 
2\a'. b'\ = a'2 

2|(so' + tb') . c'j = (sa' + tb'f for Max (|s|, |f|) = 1 

are given. Further the linearly independent vectors (2) satifying (4) are given. The 
following equalities hold: 

x = aa' + bb' + cc', 

a = axa' + bxb' + c t c ' , b = a2a' + b2b' + c 2 c', 

(17) c = a3a' + b3b' + c3c', 

n = Max (|a|, \b\, \c\) , m, = Max (|a,|, \bt\, |c,|) (i = 1, 2, 3) , 

m = Max (m l 5 m2, m3) , 

(18) 

(19) 

Lemma 2. 

(20b) 

(20c) 

Lemma 3. 

(21b) 

(21c) 

o = 
at bг ct 

a2 b2 c2 

<*ъ b3 c3 

J ) - | D | . 

ЬФ.O, c = 0=>jx| = \Ь'\, 

c Ф 0 => |x| = |c ' | . 

b ф 0, c = 0, |x| = |b'j => п = 1 

c Ф 0, |x| = |c'| => n = 1 . 

These two lemmas are proved simultaneously. Let us denote by K the set of all 
points [{, rj9 £] satisfying the inequalities 

|{| = b'2, |n| = o '2 , |C| = <.'2, 

r£ + sn + tC = a'2 + b'2 for r s f = - l . 
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K is a convex dodecahedron. Therefore the linear form 

L(£, 1> C) = bc£ + acr\ + abt, 

assumes its minimum \i on K in one of the 16 vertices of K. Comparing the cor­
responding values, we find that 

>i = {\bc\-\ac\-\ab\)a'2-\bc\b'2, if n = \a\, 

H - - |ofc| a'2 - |bc| b'2 , if n = |t?|, 

H = - |ac| a'2 - |6c| b'2 , if n = |e| . 

Let us denote v - a V 2 + 62b'2 + c2c'2 + j*. Since x2 = a2a'2 + b2b'2 + c2c'2 + 
+ U2b'. c\ 2a'. e', 2a'. b') and [2b'. c', 2a'. c', 2a' .b']eK according to (7), (8), 
we have x2 _• v. 

Later .the implications 

(22) Max (s, t) = 1 =*» s2 + t2
 = st + 1, 

s2 + t2 = st + 1 => Max (s, r) = 1 

referring to non-negative integers s, f will be applied. 
Now let us suppose c 4= 0, n = |a|. Then the inequality v _ c' can be written in 

the form 

(23) (n - |b|) (n - |e|) a'2 + b2b'2 + (c2 - 1) c'2 = |be| b'2 

and it is enough to prove 

(24) b2b'2 + (c2 - 1) b'2
 = |bc| b'2 . 

But this is true according to (22). If |xj = |c'| (our assumptions being fulfilled), then 
the equaUty occurs in (23) and consequently (see (24)) \c\ > 1, |c'| > \b'\ cannot 
hold. If |c| = 1, then 

( « - H ) ( « - i ) c 2 + H(H-i)b'2 = o 

which necessitates n = 1. If |c'| = |b'| we have 

(» - \b\) (n - |c|) a'2 + (b2 + c2 - |6c| - 1) b'2 = 0. 

Here both terms on the left-hand side are non-negative again. To nullify the second 
of them Max (|b|, \c\) = 1 must hold and then the first term vanishes only if n = 1. 
Thus (20c), (21c) are proved for n = |a|. Other cases as well as the implications (20b), 
(21b) are analogous. 
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Lemma 4. m = 1. 

Proof. If cx 4= 0, then (20c), (4) and (14) imply |c'| = \a\ = |o'| g |c'| and accord­
ing to (21c) mx = 1. If b2 = c2 = 0, then either ct 4= 0, which implies \a\ "g |c'|, or 
bx 4= 0, cx = 0, and then |o| = |b'|. In both cases |b| = |o'|, which necessitates \a2\ = 
=-= m2 = 1. If b3 4= 0, c3 = 0, then either cx 4= 0 with the consequence |o| = |c'|, 
or c2 4= 0 resulting in |b| = |c'|. In both cases |c| = |b'| and (21b) is applied. If 
b3 = c3 = 0, then either cx 4= 0 and then |o| ^ |c'|, or cx = 0, fet 4= 0, c2 4= 0 and 
then |o| = |b'|, |b| = |c'|. Thus |c| = |o'| always holds and \a3\ = m3 = 1. The 
remaining cases are analogous. 

Lemma 5. |D*| = 1 for any second-order subdeterminant D* of the matrix D. 

Proof. Let 

(25) rxa' + S lb' + txd , r2o' + s2b' + f2c' 

be any two of the vectors (17), let us denote 

D' = 5t tx 

s2 t2 

The inequality 

(26) |D'] = 1 

is obvious if sxtxs2t2 = 0. Further let this product be different from zero. From the 
inequalities (15) and 

2|o'. c'| = a'2 x) 

it follows 

(27) - 2 r l S l o ' . b' ^ rW2 , -2r1r1o' . c' = r\a'2 . 

Since 

(28) h o ' + s.b' + f lc ' | = |c ' | , 

we have according to (27) 

(29) 2s1t1b'. c' = -r\a'2 - b'2 - 2r1s1o'. b' - 2r1f1o'. c' = 

^ -r2o'2-b'2 + ry2 + r
2

a ' - ^ o . 

Analogously 

(30) -2s 2 t 2b' . c' = r\a'2 + b'2 + 2r2s2o'. b' + 2r2t2o'. e' = 

= r2o'2 + b'2 - r
2o'2 - r\a'2 = 0 . 

x) This is the inequality (16) for s = !,«•== o. 
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Let us suppose now that (26) is not true. Then 

(31) M i M 2 = - 1 , 

the left-hand sides in (29), (30) are equal and equality sign is valid throughout. If 
rtr2 = 0, the contradiction is obvious. If rxr2 =t= 0, we have according to (29), (27) 

-2r_s_a' .b' = a 

and also according to (30), (27) 

f2 -2rítíď . c' = a'2 

2r2s2a'. b' = - a ' 2 , 2r2t2a' • c ' = -<-"2 

Consequently s_f_ = s2t2 in contradiction to (31). Thus (26) is proved. For the 
'rtti déterminant 
r2h 

a slight modification is necessary, for r. S. 

r2s2 

the equality 

(32) (Гlď + SlЬ' + í.c')2 = Ь'2 + ř2(c'2 - Ь'2) 

is to be applied instead of (28). Proving (32), we need only pay attention to the case 
t_ = 0, rxa' + s^' = c. Here one of the vectors o, b has the form ra' + sb' + tc', 
t * 0, so that 

|c'| ^ \ra' + sb' + tc'\ = |b| = |c'| 

and consequently |r ta' + s_b'| = |b'| which was to be proved. 

Lemma 6. |D | = 1. 

Proof. If the matrix D involves two zeros in one row or in one column, then the 
result is obvious. Let us suppose further that there is no more than one zero in any 
row and any column of D. 

a) Every row of D involves a zero. Then D has the form (except, perhaps, for the 
order or the rows) 

s_ s2 0 
(|Sl...s6| = l) 

sl s2 o" 
s3 

0 s4 
0 s5 > -

l-̂ l = \s2s3s6 + SiS4S5\ 

so that 

(33) 

It is 

(34) |s.o' + s2J»'| - |b'|, |s3o'+ s4c'| = |c'|, |s5b'+ s6c'| = (c'| . 

This may be shown in a similar way as (32). From (34) it follows 

a'2 = -2s.s2o'. b', a'2 = -2s3s4o'. c', b'2 = -2s5s6b'. c', 
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and summing we get 

(35) 2a'2 + b'2 = - 2 ( S l s 2 a ' . b' + s3s4a
f. c' + s5s6b

f. c') . 

Putting s = t = 1 and s = — t = 1 in the inequalities (16) we obtain 

2(^a ' . b' + t2a'. c' + f3b'. c') = a'2 + b'2 for ttt2t3 = - 1 . 

Thus if 

s i . . . s e = 1 > (36) 

thвn 

2a'2 + Ь'2 = a'2 + Ь'2 

according to (35); if (36) is not true, then D == 0 by (33). This results in a contradiction 
in both cases. The matrix D cannot have a zero in every row. 

b) Just two rows of D involve a zero. Let us suppose these zeros be in the first and 
second columns, other cases being analogous. Then D has the form (except, perhaps, 
for the order of the rows) 

0 sl s2 

(|s....s7| = l) 

and 

(37) 

Lemma 5 implies 

so that 

(38) 

s 3 0 s 4 

s5 s 6 s 7 

|D| = J S J ^ S S + s 2 s 3 s 6 - s ^ s ^ l 

S l S 2 

s 6 s 7 

s3 s 4 

s5 s 7 

= 0 

S 1 S 2 S 6 S 7 "~ S 3 S 4 S 5 S 7 "*" -• • 

According to (37) and (38) 

1 2 2 2 2 21 

_ S 1 5 3 S 4 5 5 5 7 + S 1 S 2 S 3 S 6 S 7 "~ S l S 3 S 7 l _ 4 
l " 1 | S 1 S 3 S 7 | 

c) Two rows of D are without zeros. Then two of the vectors (17) have the form 
(25) where 

|riSi*iras2r2 | = 1 . 

Applying lemma 5 once more we get 

* I I c * I 

= 0 ; 

but (25) are linearly independent. Thus eventuality c) cannot occur and lemma 6 is 
proved. 

r. S. 
= Гl h s. í. 

r2 s2 rг h H h 
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Proof of the theorem, a) Let us assume that (2) is a basis of M, that inequalities 
(6), (7), (8) are correct and that x is an arbitrary lattice vector of M. Then integral 
numbers a, b, c exist in such a way that x = aa + bb + cc. To prove that (2) is 
a fundamental sequence of M we must show that 

H + H + | C | > O - M - 5 M . 

|ft| + | c | > 0 - r . | x | - : | » | . 

| c | > 0 ~ | * | £ | e | . 
» 

For this purpose it is sufficient (see (6)) to show that 

a 4= 0 , 6 = 0 , c = 0 => |x| ^ \a\, 

b 4= 0, c = 0 => |x| ^ \b\ , 

c #= 0 => \x\ = |c| . 
But this follows from lemma 2. 

b) Let us assume that (2) is a fundamental sequence of lattice vectors of M. Then 
inequality (6) is fulfilled. If any of the inequalities (8) do not hold, a lattice vector c' 
may be found according to lemma 1 in such a way that a, b, c' are linearly independent 
and |c'| < |c|. But this contradicts the fact that (2) is a fundamental sequence. In the 
same way inequality (7) can be proved. 

Thus the only thing which remains to complete the proof is to show that (2) is 
a basis of M. Let us construct a sequence of bases 

(39) <•„-.„€, fle.,1 £ |b,| S |ei|) 

(i = 1,..., s) in the following way. For i = 1 (39) is an arbitrary basis. If (39) is 
known for a certain i ^ 1, we proceed as follows. If the inequalities 

(40) 2|af. b£| <; a? , 

(41) 21(50, + tbt) . Ci| £ fa + tbt)
2 for Max (|s|, |f|) = 1 

are fulfilled, we put s = i. If (40) does not hold we find the vector V = bx — rat 

fulfilling |b'| < \bt\ according to lemma 1. If (40) holds but (41) does not for a certain 
pair of numbers s, t9 we find the vector c' = c{ - r(sat + tb() fulfilling |c'| < |c,|. 
In the first case the vectors ah b\ cx are relabelled 

(42) ai+l9 b i+1 , c i+1 

in such a way that |<f,+i| ,.§ |^i+i| -S |c<+i| -s correct; in the second case the same is 
done with the vectors ah bh c'. Thus (42) is a basis of M and the inequality 

|«i+il + lb*+il + lc*+i| < N + N + N 
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holds so that the sequence (39) must be a finite one. Further on the notation 

a' = a b' = b c' = c 

is applied. 
The vectors (3) form a basis of M and fulfil the inequalities (14), (15), (16). Accord­

ing to the part a) of this proof (3) is a fundamental sequence of M. Equalities (4) are 
true and integers ax... c3 may be found in such a way that (17) holds. Then |_D| = 1, 
using the notation of (18), (19). Accordingly the vectors (3) may be expressed as inte­
gral linear combinations of the vectors (2). But this means — (3) being a basis of M — 
that (2) is also its basis. Thus the proof of the theorem is completed. 

Corollary 1. The above proof involves, moreover, an algorithm for determining 
a fundamental sequence of lattice vectors of M, if an arbitrary basis of M is known. 
Inequality (11) guarantees a good efficiency of this procedure. 

Corollary 2. If (2) is a fundamental sequence of lattice vectors of M, then in­
equalities 

|cos a| ^ \ , [cos P\ <̂  \ , |cos y\ ^ \ 

hold where 

a = arc cos (b . c/|b| |c|) , etc. 

In other words the angle between two vectors of a fundamental sequence cannot be 
smaller than 60° and greater than 120°. This follows from inequalities (7), (8). 

Corollary 3. The system of inequalities (6), (7), (8) is the best one in the following 
sense. Let us choose real numbers 

(43) Q, <T, T, £, rj, C 

in such a way that 

(44) 0 < Q = o ^ T , 

(45) 2|£| = a 2 , 2\n\tkQ%, 2|C| = Q2 , 

(46) 2(rf + sq + tt) ^ Q2 + <x2 for rst = - 1 2) 

are fulfilled (but otherwise arbitrarily). Then there exists a lattice M with funda­
mental sequence (2) satisfying 

\a\=Q, jfc| = o , |c | = r , 

k . c - - { , o . c s q , o . b = £ . 

This may be shown by an example of the arithmetical vector space. 

Author's address: Praha 2, Ke Karlovu 3 (Matematicko-fyzikalnf fakulta UK). 

2) (44), (45), (46) are inequalities (6), (7), (8), where (43) are written instead of |o|, |6|, |c|, b . c, 
a . c, o . b, respectively. 
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