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ON FELLER’S BRANCHING DIFFUSION PROCESSES

MILOSLAV JIRINA, Praha

v (Received November 24, 1967)

In [1] the following limiting procedure for branching processes is described: Let
in any one-type-particle branching process with finite second moments the time
parameter and the states of the process be transformed for each »n in such a way that
one new time unit corresponds to n time units of the original process and one unit in
the new state space corresponds to n particles of the original process. Then, according
to [1], the sequence of the transformed processes converges with n — oo to a branch-
ing diffusion process whose basic transition probabilities Q(t, 4) are absolutely
continuous on (0, o) with the densities

) o6 @) = exp [cx(e“' ta) s 1 < o2e™ )2>v+1 av]

Ble** — 1) v=o v! (v + 1)1 \B2(e — 1

and with

o 0 = o [ Z27].

where —o0 < & < 00 and 0 < f < oo; af(e* — 1) is to be replaced by 1/t if a = 0.
The density q(t, a) satisfies the Kolmogorov equation

0 02 0
2 —ql(t, a) = p—(aql(t, a)) — a« —(aq(t, a
0 = q(t,a) = B 6a2( q(t, a)) 6a( q(t, a))
and the corresponding characteristic function f(t, y) satisfies
0 PN
3 —f(t.y) = (ay + iBy*) —f(t. y) .
ot oy

(See [1], (5.1), (5.2), (5.6) and (12.9).)
The proof of the assertion stated above, as presented in [1], is not complete. It
shows only that the limit f (t, y) of the characteristic functions of the transformed
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procssses satisfies (3), provided that the limit exists in such a way that not only the
characteristic functions of the transformed processes converge to f(t, y), but also
their relative differences converge to the derivatives of f(t, y). The existence of these
limits is not proved in [1]. It is also not clear in [1] how the first and second moments
of the original process are to be changed before the n-th transformation is applied.
In the preliminary discussion in [1] (page 236) the moments are assumed to have the
form 1 + «/n, B/n; in the proof of (12.9) ([1] page 245), the second moment is con-
stant. To obtain the same results for the first and second moment (see [1], (5.11),
(5.12)), it is necessary to leave the particles at the beginning of the process unchanged
for the first alternative and to transform them in the same way as the states for the
second alternative. The asymptotic behaviour of the third moments indicates that
only the second alternative can lead to reasonable results.

Asymptotic properties of branching processes with transformed time and states
were studied in several papers by Lamperti (see [2], e. g.). It seems, however, that the
original assertion of [1] has not yet been proved completely. It is the purpose of this
paper to provide a correct proof for this assertion.

Since all probability distributions in this paper are concentrated on the non-
negative part of the real line, it is somewhat more suitable to use real Laplace trans-
forms or their logarithms instead of characteristic functions. We shall not be interested
in differential equations, but we shall prove directly that the logarithm of the Laplace
transform of the transition probabilities for the n-th transformed process converge
(with n — o0) to Y(t, x) defined by (7), which is the desired result (see remark following
the Theorem).

Let 2, be a sequence of homogeneous Markov branching processes with one type
of particles, with discrete time parameter te T = {0, 1,2,...} and with the state
space S = {0, 1, 2, ...}. The probability of the transition from the state a to the state b
after ¢ time units in the n-th process 2, will be denoted by P,(t, a, b). The probability
distribution induced by P,(t, a, b) on S will be denoted by P,(t, a, .). We shall suppose
that each 2, has finite third moments and we shall denote by M, and D, the mean
value and dispersion of P,(1, 1, .). To each 2, we shall assign a new Markov process
9, with discrete time parameter t€ T, = {0, 1/n, 2[n, ...} and with the state space
S, = {0, 1/n, 2/n, ...}. The transition probabilities Q,(t, a, b) of 2, will be defined by

4) Q.(t,a, b) = P(tn,an,bn), teT,, a,beSs,.

It is easily seen that 2, is really a Markov process and it is also a branching process in
the sense that for each te T, and a € S,

0t a, ) = Qt, 1/n, .)**",

where Q,(t, a, .) denotes the probability distribution induced on S, by. (1, a, b)
and the symbol =k indicates that the operation of convolution is to be applied k-times.
Let &,(t, a, x) be the Laplace transform of the probability distribution P,(t, a, .)
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and _(p,‘,(t:, a, x) its logarithm, ie. @,(t,a,x) =Y €® P(t,a,b) and ¢t a,x) =
T : b=0
= log (D,,(t, a, x) forallte T, ae S and x < 0. Similarly
| Y(t, a, x) = log ) e® Q(t, a, b)
beSn
forallté'I],,aeS,,andx <0.

By (4)
5 w(t, a, x)=(p,,(tn, ar;,i).

From the basic identity for branching processes

(6) @ult, @, x) = a @1, 1, x)

it follows by (5) that a similar relation holds for 2,:

Uit a,x) = ay(t, 1, x).

It is therefore sufficient to study the function ¥,(t, 1, x). For simplicity reasons
we shall write ,(t, x) instead of ,(t, 1, x) and similarly &,(t, x) and ,(t, x) instead
of @,(t,1,x).and ¢,(t, 1, x). We shall also ommit the value t = 1; hence @,(x) =
=,1,1,x), 0,(x) = 0,1, 1, x).

For each real ¢t = 0 let [], denote the largest 7 € T, less or equal to ¢, i.e. [{], =
= [tn]/n, where [y] = [y], denotes the integral part of y.

Theorem, Let us suppose that the limits

m . lmnaM,-1)=a, limiD, =

n—>oo n— o

exist wii,h -—.ob:< o< o0, 0<fB < oo and that the third moments db;:’(O)'are
bounded. with respect to n. Then for each fixed t = 0 and xo < 0

® {11 ) 7> W) =
< xe™ [1 + g(l —e*) x]i if a%0
x[1 - prx]™! if «a=0

uniformly with respect to x € {xg, 0).

Remark. Itis easily seen by straightforward calculation that y(t, x) is the logarithm
of the Laplace transform of the probability distribution Q(t, a) defined by (1). It
follows then from (8) that Q,([t],. .) converges (weakly) to Q(t, .).
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Proof of the Theorem. It follows from (7) that M, > 0 for all sufficiently large n.
Hence, we may assume without loss of generality that M, > 0 for all n. Let us write
«, = n(M,, — 1). Then a, — o according to (7). The proof of the Theorem will

consist of several lemmas. In all of them the real number ¢t = 0 is fixed.

[tn]
4] M = <1 + &) — €.
n

(I1) Ife, # 0, a, — O, then

a, [tn]
e 1 (”::) _

= —t.

n(M, — 1) o, "

(III) There exists n, such that
M: < ezlalt

foralln 2 nyand alls =0, 1,... [tn].
Proof of (III). Since a, —» «, there exists ny such that la,,l =< 2la| for n = n,.
Then for n = n, and s < [tn]

s s [tn] tn
M,‘,=(1 +ﬁ> §(1 +EM> g(l +%l°_‘l) g(l +EM) < erlalt
n n n n
(IV) There exists ny such that
0 = s, x) = el*ltx
forallm = ny, alls =0,1,...[tn] and all x < 0.
Proof of (IV). It is well known for branching processes that

© @u(s,0) = @;(5,0) = M; forall seT.

Further

B;(s, x) B,(s, x) — [3(s, )]* _
DX(s, x)

= [(3 % Pi(s, ) (3 ¢ Pss 1) = (5, be P BY] 9775, ).

Hence, by Schwartz inequality,

(11) @y(s,x) 20 forall seT and x 0.

(10) @n(s, x) =

Using Taylor formula, (9) and (11) we have
(12) 0 2 ¢,(s, x) = Mix + 39)(s, &) x* 2 Mx
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and (IV) follows from (III) for the same n,.
(V) There exists 5, < 0 and K, > 0 such that

Pn(x) <Ko, |ef(x)| < Ko
for all 5, < x < 0,and all n.

Proof of (V). According to the assumptions of the theorem, there exists K; > 0
such that 0 < &,(x) £ 9,(0) = M, < K,, 0 < &}(x) < #,(0) = D, + M2 < K,,
0 < &)(x) = #,/(0) < K, for all x <0 and all n. Using (12) with s = 1 we see
that |@,(x)| < K,|x| for all n and, consequently there exists 5, < 0 such that @,(x) >
> } for all §, < x < 0 and all n. The first inequality of (V) follows now from (10).
The proof of the second inequality is similar.

(vI) lim @(x) = 28..
x-0

Proof of (VI). By (V),

|loi(x) — 28] < |i(x) — @0)| + |0(0) — 28] =
= |oy(n) x| + |Dn — 28| < Ko|x| + |Ds — 28|

forall 6 < x < 0 and all n; the assertion now follows from the assumption D, — 2.

(vi) @u(5,x) <0 foralln, seT and x<O.

Proof of (VII). Let us suppose to the contrary that ¢,(s, x;) = 0 for some n, s and
x; < 0. Then @,(s, x) = 0 for all x; £ x < 0, because @,(s, x) is non-decreasing
and @,(s, 0) = 0. Hence, by (9), M = ¢,(s, 0) = 0, which contradicts the assumption
M, >0.

(VII) To each & > 0 there exist n, and §; < 0 such that
1 — (pn(s — 1’ x)
(s, %)
forallm = ny,alls =1,...,[tn]and all 6, < x < 0.
Proof of (VIII). It is well known that
(13) (s, X) = @u(@n(s ~ 1, %))

holds for branching processes (see [3], Chap. I1I, § 7, e.g.). Using (13) and the Taylor
formula we have

<e¢

(14) @5, X) = M, 9,(s — 1, %) + 30(L(s, X)) 0a(s — 1, %)
where, by (VII),
(15) @us = 1,x) < {fs,x) <0 for x <O.

88



Hence we may write for x < 0

- eleD) (2L e ) s - 1),

@us — 1, x)
Let us choose 3, < 0 according to (V) and put 8, = e~21#!*5,. Then, for all n = n,,
alls =1,2,...,[tn] and all 65 < x < O,
S0 £ @us — 1,x) < Lfs,x) <0
and
‘1 R CE)) + ;K 1%

ous — 1, x)

according to (IV) and (V).
The assertion of (VIII) follows now from the fact that the right-hand side of the
last inequality is arbitrarily small for sufficiently large n and sufficiently small |x|
We shall now finish the proof of the Theorem. Let us write for s < s,

Fo(s,50, %) S MP (s — 1,x) — MP7* 9,(s, %) .

The assertion of the Theorem is trivial for x = 0. We shall assume x, < x < 0 and
then, by (VIL), ¢,(s — 1, x) < 0. Hence, we may write then

1 1
16 =
( ) M’S'o—s (Pn(s’ x) M:o—s+l (P(S _ 1’ X)
where

(17) Go(5, 50, X) = F(5, S0, X)[ME® 2% ¢ (s — 1, x) (s, x) =

+ Gys, o, X)

= _‘i‘(P (Cn(s x)) (p,,(s 1 x) Mn—(so—s+l)

u(s, %)

according to (14). Summing in (16) for s = 1, ..., s, we obtain

1 1
= + > G5, Sps X
(Pn(so, x) Myx sZ ( ° )

and, finally, by (5), (6) and (17),

(18) L _ ! -

Vlltlo ), ([m]’ z)

X
(Pns_l’—
e e
= — | - - — (p" (Cn (s 5)) ._.__.._..__il._.M:_l
n n
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Let ¢ > 0. By (III), (IV), (VI), (VIII) and (15), there exists n, such that

x
1 (pn<s - 1,—)
-<p’.§(£..( , 5)) — Yt oMy <k
2 n ( x)
Pn| S, —
n

foralln > n,,alls = 0,1,..., [tn] and all x, < x < 0. Then also

X
Pn (S - 19 "")
[tn] [tn] __
i Z(P::<C<s’i))_§.___'_l__Ms_l _B_A.l."__l. < e
n

2n s=o0 o, (s, f) n(M, — 1)

n

for all n > n, and all x, £ x < 0; the second ratio is to be replaced by [tn]/n if
M, = 1 for some n. Hence, by (I), (II) and (18)

e""'[l — é(e“‘ - 1)] if a0
1 < x o
(LI RS

X

— Bt if «=0

uniformly in {x,, 0), which proves (8).
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