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éasopis pro péstoviani matematiky, ro&. 89 (1964), Praha

SOME PROPERTIES OF NON-CANONIC SYSTEMS OF
LINEAR INTEGRO-DIFFERENTIAL EQUATIONS

VAcLAvV DOLEZAL, Praha
(Received December 19, 1963)

This article deals with a certain class of non-canonic systems of linear
integro-differential equations with variable coefficients; theorems concerning
the existence, uniqueness and stability of the solution are given.

0. In the paper the vector equation
14

(0.1) (L) %) + R@)x + S(0) f x dr = f(i),
0o

where L(t), R(t), S(f) are square-matrices defined for ¢ 2 0, will be considered.
Such an equation describes the behavior of every linear physical system with lumped
time-varying elements, pgf{icularly of every electrical network. From the physical
point of view the most important case occurs if the matrices appearing in (0.1) and
certain matrices related to them are symmetric and positive semidefinite.

1. First let us consider a more general equation than (0.1). For the sake of brevity
we shall introduce the following notation:

Let 4, B be constant r x r matrices and let det A = 0; the matrix B will be called
subjoint to A, if there is a constant r x k matrix U whose columns u,; constitute
a complete set of linearly independent solutions of Au = 0 and a constant k x r
matrix ¥ whose rows v; constitute a complete set of linearly independent solutions
of vA = 0 such that the k x k matrix VBU is non-singular.

Obviously, if B is subjoint to 4, then for any matrices U, ¥ with rank k which
fulfill the equations AU = 0, V4 = 0 we have det VBU + 0.

Let A(f) be an r x r matrix which has a continuous derivative A'(f) everywhere
in €0, o), f(t) an r-dimensional vector defined in <0, o).

a) A(?) and £(f) will be called compatible, if f(1) is integrable and if for every
1 x r matrix Y(f), | £ r, which has a continuous derivative on an interval <ty, £;> <
< (0, o) and fulfills the equality ¥(t) A(f) = 0 there, the vector Y() f(t) is absolutely
continuous on %y, t,)-
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b) A(f) and f(t) will be called strongly compatible, if f(f) is continuous on (0, c0)
and if for every matrix Y(z) with properties stated in a) the vector Y(t) f(¢) has a con-
tinous derivative on <t,, ,).

Let A(f) be an r x r matrix defined for t = 0, W(t, ) an r x r matrix defined for
01t=<t< o0, and f(t) an r-dimensional vector defined for t = 0. The r-dimen-
sional vector x(t) will be called the solution of the equation

t

(1.1) () x(2) + j Wi, ©) *(2) dr = £(1),

0o
if (1.1) is fulfilled almost everywhere in €0, c0).
Then we have

Theorem 1.1. Let the following assumptions be satisfied:

1) The r x r matrix A() has a continuous derivative A'(f) everywhere in <0, )
and there is a fixed integer h < r such that rank A(t) = h for everyt 2 0.

2) The r x r matrices W(t, 1), OW(t, 1)/0t are continuous everywhere in the
region 0 £t <t < 0.

3) For every t 2 O the matrix W*(t) = W(t, 1) is subjoint to A(t).
4) The matrix A(t) and the vector f(t) are compatible.
5) There is a constant r-dimensional vector & such that

(1.2) A(0) & = £(0).

Then there is a unique integrable solution x(t) of (1.1). If in addition A(t) and f(t)
are strongly compatible, then x(t) is continuous in <0, ).

Moreover, assumption 3) is fulfilled, if both A(t) and W*(t) are symmetric and
for every t = 0 either W*(t) or A(f) + W*({) is positive definite.

Note 1. If rank A(f) = r for every ¢ = 0, (1.1) is obviously equivalent to a Vol-
terra’s equation; then, of course, for the existence and uniqueness of a solution it
suffices to assume that A(f), W(t, 7) are continuous and f(r) is integrable.

Proof of Th. 1.1.: Referring to the Theorem in [1], construct r x r matrices
M(1), N(t) which have a continuous derivative in {0, co) and fulfill the conditions

det M(i) + 0, det N(t) + 0 in <0, o) and A(f) M(f) = [B(i)} 0], N(i) (1) = [-_()_]
where B(1), C(r) is an r x h and h X r matrix, respectively. Using substitution

(1.3) x(t) = M(t) ¥(t),

it is obvious that (1.1) is equivalent to the equation
(14) N AR M) »(0) + J N(2) W(t, %) M(s) y(3) dr = N() 102,

471



t > 0. Let us subdivide matrices M(#), N(z) into blocks as follows
(1.3) M(1) = [ﬁ‘faﬁfﬁ%z@], (i) = [’_V_l_iﬁ‘_)_f{‘ﬁ}@],
‘ M;,(1)] Mas(?) N21(2){ Nas(9)

where M, (t), Ny,(t) are h x h matrices, and denote
M, ,(t )
(19 i) = [F220]. W) = DY)} a0

moreover, let

(1.7) B(r) = [El_l_(i)], W(t, 1) = [_‘tlsﬁéf)?_‘fza(fLi)],

B, () wa1(, 7) i was(t, 7)

N(5) W(t, 7) M(z) = [El.lﬁ‘:f)ffﬁz(_"_i)] ,

W (8. 7) | Waa(t, 7)

where By;(f), wyq(t, 7), W14(t, 7) are h x h matrices.
Then from the equation A(f) M(?) = [B(z) i 0] we have

(1.8) Byy = Ay Myy + ApMyy, Ay Moy + ApMyy =0,
By = Ay My + A3oMyy, Ay My, + A5,M,, = 0.
Analogously, from the equation for N(f) A(t) it follows that

(1.9) N21A11 '+‘ N22A21 = 0 ’ N21A12 + N22A22 = O .
Thus we have
4,410
(1.10) N(t) A(r) M(1) = | S22 ],
A;1,10
where
(1.11) Agp = NyBiy + NyyByy =

= Ny Ay My + NyyAipaMyy + NypAy Moy + NyppAyaM,, .

From (1.9), however, we get immediately 4,(f) = 0, and consequently, det 4 RGES
% 0 in (0, c0).
On the other hand, (1.5) and (1.7) yield
(1.12) Waa(t, 7) = Nay(t) wya(t, ©) Mya(z) + Noy(t) wia(t, 7) Myy(7) +
+ Naao(t) was(t, ©) Myp(t) + Noo(t) wao(t, 1) Myy(7) .

Next observe that for any t 2 0 we may put U = M,(t), ¥V = N,(t), since
A(?) My(t) = 0 and N,(f) A(t) = 0 identically and both M,(f) and N,(f) have rank
r — hfor every t = 0; thus, by assumption 3) we have

(1.13) det N,(t) W(t, 1) My(t) + 0
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for t = 0. However, (1.6), (1.7) yield

No(2) W(t, t) My(t) = NyywiiMy, + NaywioMy, + NypowiiMys + Nypwi,My,
with w}, = wy(1, 1), J, k = 1, 2; consequently, by (1.12),
(1.14) det Why(1) + 0

for every t = 0.

(1.15) g2() = Nas(1) £1(1) + Naoff) £o(1) -

On the other hand, since the matrix N,(7) satisfies the requirements given in the
definition of compatibility, we may put Y(f) = N,(t). But N,(t) f(t) = g,(t); con-
sequently, g,(7) is absolutely continuous in <0, c0) by assumption 4) of the theorem.
If in addition A(7) and f(f) are strongly compatible, g,(f) possesses a continuous
derivative in <0, c0).

Furthermore, it is readily seen that condition (1.2) is equivalent to the condition
g2(0) = 0. Indeed, (1.2) has a solution &, if and only if @'f(0) = 0 for any solution @
of @'4(0) = 0. Since N,(0) A(0) = 0, the equality N,(0) /(0) = g(0) =0 is the
necessary and sufficient condition for the validity of (1.2).

h-dimensional vector, we can split (1.4) into the following equations
t

(1.16)  Ay,(7) y1() +I

0

wya(t 7) yo(7) dt + J:Wu(t, 7) yo(7) de = g4(1),

(1.17) J\tva”(t, ) y4(r) dt + J"ﬁ;zz(t, 1) yo(7) dz = g,(2) -

0 0
In view of the above facts, however, (1.17) is equivalent to

(1.18)

~ ~ * Owaq(t, T * Wty T ,
F300) 1) + () val) + f ——;(T—) yi(s) de + f —2;5——)%(1) & = g3(i),
0 0

so that both (1.16) and (1.17) are equivalent to
(1.19) (1) (1) + f W(t, 1) y(c) dr = h(3)
0
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. o= [Eisal - [50)

Because det A(f) = det 4;,(r) . det w,(f) + 0 in <0, o0), (1.19) is equivalent to
a Volterra’s equation; thus there is a unique integrable vector y(t) which fulfills
(1.19). Moreover, y(?) is continuous, provided h(z) is continuous, i.e. if A(z), f(¢) are
strongly compatible. Hence, the same is true for the solution x(¢) of (1.1).

It remains to prove the last statement of the theorem. If for a # = 0 the matrix
W*(i) is positive definite, then obviously U'W*(Z) U is positive definite for any r x
x (r — h) matrix U with rank U = r — h; thus det U'W*(?) U = 0. If in addition
the matrix U fulfills the equation A(f) U =0, we have also U"A(f) = 0. Consequently,
W*(%) is subjoint to A(7) by definition.

Next, let A(f) + W*(7) be definite for a 7 = 0. Since A(f) is symmetric we may put
N (t) =M ‘(t); moreover, using the above notation we have

(1.20) M) (A(H) + WHE) M(3) = [:“_l_lgi)_f_’l’la(f)_g_z_lzg_)]
() | w3a()
Because the left hand side of (1.20) is positive definite, w3,(F) is positive definite, and
consequently, det w3,(7) # 0.
On the other hand, it was shown earlier that wj,(f) = N,(f) W*(z) My(1), ie.
Ww3a(f) = M(7) W¥(i) M,(7) in our case. However, we may put U = M,(i), V =
= M)(F) so that W*() is subjoint to A(). Hence, Theorem 1.1 is proved.

Theorem 1.2. Let the matrices A(f), W(t,1) and vectors fi(t), k =0,1,2,...
satisfy the assumptions of Th. 1.1; moreover, let fi(t), k =0, 1, ... be absolutely
continuous in {0, o). If x,(t) denotes the solution of

(121) A% + [ We 906 & = 40,
k=0,1,2,..., and if fora T> 0
(1.22) rufk’(r) — F@ldt >0
and £(0) - £o(0), then ’
(1.23) | J :|lxk(z) — ()l dt > 0.
Proof. First observe that if (1.22) and £(0) — f,(0) are true then f£(2) — fo(7)

uniformly on <0, T». Moreover, since eq. (1.21) is linear it suffices to prove Th. 1.2
for a sequence (1) such that each fi(f) fulfills condition (1.2) and

(1.24) f Wl de =0, 7(0) 0.
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Referring to the proof of Th. 1.1, the solution X,(f) of (1.21) with fi(f) = Flp) s’
given by x(t) = M(z) 5,(t), k = 0, 1,2, ..., where y,(z) is the solution of

(125) A1) ) + f "W, 9) ) de = Ri)
with
(1.26) Rii) = [ Nis(6) Fisl®) + Niaf) Farl?) ] _

(NZI(t) f1k(t) + sz(t) fzk(t))l

From (1.26), however, it is clear that [3 ||A(?)l dt = 0. Moreover, since (1.25) is
equivalent to Volterra’s equation, we have also [ || 7(#)ll df » 0, and consequently,
[T %)l dt - 0, QED..

Example 1. Let A(f), B(f) be r x r matrices defined on <0, ), f(t) an r-dimen-
sional vector defined on (0, c0), ¢ an r-dimensional constant vector; as in the theory
of differential equations, the vector x() will be called a solution of the equation

(1.27) A(?) x'(1) + B(2) x(t) = (%)

with initial condition ¢, if 1) x(f) is absolutely continuous in {0, o), 2) x(0) = ¢,
3) equation (1.27) is satisfied almost everywhere.
Then from Theorem 1.1 we have immediately the following assertion:

If 1) A(%), B(t) have a continuous derivative everywhere in {0, ) and A(t) has
a fixed rank h < r for every t 2 0, 2) for every t = O the matrix B({) is subjoint to
A(1), 3) A(¢) and f(t) are compatible, 4) there is a constant vector ¢ such that

(1.28) AQ0) & + B(0) ¢ = £(0),
then there is a unique solution x(t) of (1.27) with the initial condition c.

Indeed, putting x(?) = [ u(z) dr + ¢, eq. (1.27) is equivalent to
(1.29) () u(t) + j " B(t) u(x) dr = £(i) — B(i) .

However, applying Theorem 1.1 to (1.29) we get immediately the assertion just
stated.

2. Theorem 1.1 can easily be extended to a case that f(f) is a vector having
distributions as its components.

Let n = 0 be an integer and let the system D, be defined as follows: for every
fe D, there is an r-dimensional vector function F(f) which is locally integrable in
(— o0, ) and vanishes almost everywhere in (—co, 0) such that f = F® (distri-
butional derivative), i.e.

@y (hoo) = (-1 [ Flyo™)ar, olneK
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for each component -f; of f, where F(t), i = 1,2,...,r are components of F(z)
and K is the set of all infinitely differentiable functions with compact support.

It can be easily verified that for each fe D, the vector function F(¢) is determined
uniquely up to a set of measure zero. (See [2])

Let W,, n = O be the set of all r x r matrices W(t, -r) which are defined for 0 =
< 1 =t < oo and have the following properties: if W(t, 7) € W,,, then a continuous
"W(t, t)jor" exists everywhere in 0 St <t < oo and (0'W/dt')* possesses a
continuous n — i — 1-th derivative in <0, o) for i = 0,1,...,n — 1.

If W(t,t)e W,, xe D, with x = X, let

22)  [w] ="§:(— 1)1'(%@)*)(@—"—1) (=1 J 0%’_1) X(z) d

Obviously, [Wx] € Dyyuya—1,0; and appears as a generalization of the integral
{6 W(t, 7) x(r) dr.

Defining finally the product Ax, where x € D, and the matrix A(t) possesses a con-
tinuous derivative of n-th order, in the manner commonly used in the theory of
distributions, then the following assertion is true:

Theorem 2.1. Let fe D,,, m = 1, and let the following conditions be satisfied:

a) The matrix A(t) possesses a continuous derivative of m + 1-th order every-
where in {0, o) and there is an integer h < r such that rank A(f) = h for every
t=0.

b) W(t,t) € W,,., and for every t 2 O the matrix W(f) is subjoint to A(2).
Then there is a unique x € D, which fulfills the equation

(2.3) Ax + [Wx] = f.
For the proof the following assertion will be useful:

Lemma 2.1. Let the r x r matrix A({) satisfy the conditions: A(t) has a continuous
derivative in {0, ) and there is an integer h < r such that rank A(t) = h for
every t = 0. If for every t = 0 the matrix B(t) is subjoint to A(t), then for every
t 2 0 the matrix B(t) + A4'(t), A being any number, is subjoint to A(f).

Proof: Referring to the Theorem in [1], there are matrices M,(2), N,(?) possessing
a continuous derivative in €0, c0) such that rank M,(f) = rank N,(f) = r — h and

(2.4 A(t) M,y(t) =0, Nz(t) Al) =0
for every t = 0. Thus, by definition,
(2.5) det N,(¢) B(t) M 2(t) +0

for every t = 0. On the other hand, from (2.4) we have A'(f) M,(f) + A(t) M5() = O,
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and consequently, N,(f) 4(f) M,(¢) = 0. Therefore, for every t = 0,
(2.6) det N,(t) (B(2) + A4'(t)) M,(t) = 0,
i.e. B(f) + A4'(f) is subjoint to A(f), Q.E.D.

Proof of Th. 2.1. Let us choose any % € D,,., with £ = X™* 1), and consider the
expression A% + [Wx] = AX™*D 4+ [WX™*V]. Using formulas (5) and (8) in [2],
which are obviously true also for the matrix conception, we easily obtain the following
equality in the distributional sense:

@) AR [WEO] = (X + [QXTY,
where
@8) 0t ) = = na (@) + W) + [Pa ).

P(t, ) being continuous for 0 < 7 < t < 0.
Consider now the equation

29) A() X(1) + J ;Q(t, 9 X(7) de = f ;F(T) g,

where F(t) is given by f = F™ e D,,. By assumption, W*(f) is subjoint to A(z) for
every t = 0; hence by Lemma 2.1, Q*(f) = — nd'(f) + W*(¢) is subjoint to A(?)
for every t = 0. Since the remaining assumptions of Th. 1.1 are also satisfied, there
is a unique solution X(#) of (2.9). Because (2.9) is fulfilled almost everywhere in
<0, oo), it is also true in the distributional sense; thus, taking the m + 1-th distri-
butional derivative of both sides of (2.9) and using the identity (2.7), we have

(2.10) AXHD 4 [WXmD] = F™ = f,

Thus, x = X™*D e D,,, , is the unique solution of (2.3) and Th. 2.1 is proved.
3. Throughout this paragraph equation (0.1) will be treated.
Let L(f), R(?), S(#) be r x r matrices defined on <0, o0), () an r-dimensional

vector defined on <0, ), ¢ an r-dimensional constant vector; the locally integrable
vector x(t) will be called the solution of the equation

@3.1) (L) <) + R() x(1) + S() f ;x(f) dr = (9

with intial condition c, if x(¢) fulfills the equation

(32) L{)x(1) + f " R(x) x(x) de + f ;S(t) j ;x(a) do dt = f 0 A() de + L(0) ¢
almost everywhere in <0, ).
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Observing that (3.2) can be written as

(3.3) L) x(i) + ﬂg(:, ?) %(2) dv = J 0 A1) de + L(O) ¢
with

(3.4) 0(t,7) = R(3) + J 'S(z) dz,

we have by Th. 1.1: t

Theorem 3.1. Let L(2), R(t), S(t) be continuous in 0, o), and let an integer h < r
exist such that rank L(t) = h for every t 2 0. Moreover, if h < r, let R(t) be subjoint
to L(t) for every t 2 0. Then for every integrable f(f) and c there is a unique in-
tegrable solution of (3.1) with initial condition c.

Let us now investigate the properties of (3.1), if the matrices L(¢), R(t), S(t) are
subjected to certain specific conditions.

Let #2 be the set of all r-dimensional vectors x(f) defined on <0, c0) such that
{3 Ix(2)I1> d¢ < oo for any finite T

Lemma 3.1. Let A(f) be a symmetric r x r matrix which has a continuous
derivative everywhere in {0, ), and let a fixed integer h < r exist such that
rank A(f) = h for every t = 0; moreover, let x(t) € £* be a vector such that there
is an absolutely continuous vector {Ax} (f) equal to A(f) x(t) almost everywhere
in €0, ). Then 1) x'(t) {Ax}'(?) is integrable, 2) there is an absolutely continuous
function {x'Ax} (f) which is equal to x\(t) A(t) x(t) almost everywhere in 0, ) and

(33) .E () {Ax) (1) de = H[{Ax} (), + 3 J; 2(e) 4'(2) x{z) de

for every t = 0.

Moreover, if {Ax}(0) = A(0) ¢, ¢ being a constant vector, then {x'Ax}(0) =
= c'4(0) c.

Proof. Consider first the case that h < r. For the sake of brevity denote y(t) =

= {Ax} (f). Then there is a vector u(f) which is absolutely continuous in <0, )
such that

(3.6) A7) u(?) = ¥(2)

everywhere in <0, ). Actually, by assumption we have A(f)x(f) = y(f) almost
everywhere in 0, c0); moreover, by the Theorem in [1] there is a non-singular matrix
M(t) = [M;(2) | My()], (M,(?) being an r x h matrix) which has a continuous
derivative in <0, o) such that A(f) M,(f) = 0 and M}() A(f) = 0 due to the sym-
metry of A(f). Consequently, we have

(37) My(0) () = 0
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almost everywhere in €0, co). However, since the left hand side of (3.7) is continuous,
(3.7) is valid everywhere in <0, o).

On the other hand, (3.7) is a sufficient condition for the existence of a vector u(r)
which fulfills (3.6) everywhere in <0, c0).

Thus, let u(f) be a solution of (3.6) and define the vector w(f) by

(3-8) u(t) = M(1) w(t) .

Then (3.6) yields M'(t) A(t) M(t) w(t) = M'(t) y(f), where, of course, M'(£) y(t) is
absolutely continuous in <0, ). But

where B(f) is a non-singular & x h matrix with a continuous derivative in <0, c0);

thus, puttihg w = [_:-8] M(1) y(f) = I:-l%{l we get B(f) w,y(£) = z,(t), z,(f) = 0.

Consequently, putting wq(f) = B=*() z4(t), w,(f) = 0 and defining u(f) by (3.8),
u(t) will be absolutely continuous in <0, 00) and our assertion is proved.

Next, for u(f) already obtained define the vector v(f) by »(f) = x(f) — u(t); then
we have

(39) A(d) v(t) = 0

almost everywhere in <0, ), and consequently, there is an r — h-dimensional
vector s(f) such that v(t) = M,(2) s(f) almost everywhere in <0, ). Thus we have
v\(t) 4'(t) v(f) = s'MyA'M,s; but from A(f) My(f) = 0 we get A'M, + AM5 =0,
and consequently, M34'M, = 0. Hence,

(3.10) N ) A'(H)v(t) =0

almost everywhere in €0, o).
Define the absolutely continuous function {x'Ax} (¢) by

(3.12) {x'dx} (1) = u'()) A() u(z) ;

then for almost every ¢t = 0 we have

(3.12) x(2) A(f) x(t) = (u* + v*) A(u + v) = w'du = {x'4x} (7).
Furthermore, by (3.9), (3.10) for almost every t > 0,

(3.13) {x'Ax} (1) — 2x(2) {dx} () + x'(t) A()) x(¢) =

— (A — 2+ 0 () + (0 4+ 2) At o) =
=2uVAu + u'd'u — 2u + v)' (4'u + Au') + u'd'u + 2u4'v = 0.
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Since both functions {x'Ax}’ (¢) and x'(r) A'(f) x(f) are locally integrable, the same
is true for x'(f) {4x}’ (f); thus, integrating (3.13) within limits 0, #, the equality (3.5)
follows immediately.

It remains to prove the last statement of Lemma 3.1. Thus, let {Ax} (0) = 4(0) ¢;
from (3.6) we have 4(0) u(0) = y(0) = {4x} (0). Consequently, A4(0) ((0) — ¢) = 0,
ie. u(0) = ¢ + & where ¢ satisfies the equality 4(0) ¢ = 0. By (3.11), however,

(3.19) {x*4x} (0) = u*(0) 4(0) u(0) = c*4(0) c,

Q.E.D.

Finally, if rank 4(¢) = r, then it suffices to put u(f) = A~Y(t) {Ax} (1), v(t) =
= A~'(1) (A(?) x(t) — {Ax} (7)) and repeat the procedure presented above. Hence,
Lemma 3.1 is proved.

Equation (3.1) will be called normal, if

1. matrices L(f), R(2), S'(f) are continuous in 0, o),

2. there is an integer h < r such that rank L(f) = h for every t 2 0,

3. for every t = 0 each of matrices (1), L() + 2R(?), S(t), —S'(t) is symmetric
and positive semidefinite.

Theorem 3.2. Let equation (3.1) be normal and for every t Z 0 let either the
matrix L+ L + 2R + S or S — S’ be positive definite. If (3.1) has a solution x(t)
with initial condition ¢ and x(t) € &2, then x(t) is the unique solution of (3.1)
with initial condition ¢ in &>

Proof. Since (3.1) is linear, then by the definition of a solution it suffices to prove
that x(f) € #? and

(3.15) L{t) x + ft

0

R() x(2) dr + J "S() I (@) do dr = 0

implies x(f) = 0 almost everywhere in {0, o). Thus, puttmg q(t) = [§ x(z) dz, we
have from (3.15):

(3.16) L) q + J ;R(r) ¢/(d) dr + J ;S(t) 4(®)dr = 0.

Referring to Lemma 3.1 it is obvious that L(t) and ¢'(f) fulfill its assumptions so that
we have

(3.17) {La'} () = —R() 4'(t) — S() 4(1)
and {Lq'} (0) = 0. Consequently, by formula (3.5),
(3.18) J ;q"(f) (~R@) ¢'(9) - S(2) a(e)) dx =

~ 3{e"Lg} (5 + %ﬂq"(r) L(2) 4/(x) de.
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On the other hand, integrating by parts,
(3.19) j ;q"@ S(:) a(s) de = [2'(2) S(2) (@) - j () (S(2) a(®)) e =
= ¢'(1) S(1) a(t) — ﬁtf(f) S'(z) g(z) dr — th‘(f) S(z) ¢'(c) de

i.., since S(t) is symmetric,
(3.20) j ;q"@ S() a(e) s =
=300 56 4) ~ 3 | ECECrOrS

Introducing (3.20) into (3.18) and rearranging, we have

(3.21) [{a"La'} @5 + j ;q"@ (L(2) + 2R@) '(5) d +
+ q'(1) S(2) q(2) — J:q‘(ﬂ S'(r) q(r) dr = 0

for every t = 0. But, since by Lemma 3.1 {g"Lq’} (t) = q"(¢) L(?) q'() almost
everywhere in <0, ), and {g"'Lq’} (0) = 0, we have for almost every ¢ > 0:

3 3
(3.22) q"'Lqg’ +J g"(L'+ 2R)q'dt + ¢'Sq — j\ q'S’'qdr =0.
) 0

Due to the assumption of normality for (3.1), however, each term involved in
(3.22) is non-negative so that for almost every ¢ = 0,

(3:23) q9'Lg’ =0, ¢'Sq=0,

¢ . t
fq"(ﬂ+2R)q’dr=0, J‘q‘S’qdr=0.

0 0

As the integrais in (3.23) are continuous, they are zero everywhere and we have
(3.24) g"(CL +2R)q'=0, ¢'S'q=0

almost everywhere in <O, oo). However, by a well-known theorem from algebra,
(3.23) and (3.24) yield

(3.25) Ly =0, S¢q=0, (L+2R)qg' =0, Sq=0

almost everywhere in <0, oo). At the same time, since both S and g are continuous,
we have Sq = 0 everywhere, and consequently, S'q + Sq’ = 0 almost everywhere.
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Thus,
(3.26) ' Sqg' =0

almost everywhere.
If now L+ L + 2R + S is definite for every ¢ = 0, then from (3.25) and (3.26)
we have

(3.27) (L+L+2R+8)q' =0

almost everywhere, and consequently, x(1) =.¢'(f) = O almost everywhere. Analo-
gously, if S — S’ is definite for ¢ = 0, then again (3.25) yields (S'— S’) ¢ = 0 every-
where, i.e. ¢’ = 0 almost everywhere. Hence, Theorem 3.2 is proved.

Let us now consider the stability of a solution of (3.1).

Let x() be the unique solution of (3.1) with initial condition ¢ corresponding to the
vector f{(t); the solution x(f) will be called stable with respect to the initial condition
if to every ¢ > O there is a § > 0 such that for every solution %(f) of (3.1) with initial
condition & corresponding to f(f), where & fulfills the inequality || — cl| < &, we
have ||%(t) — x(1)|| < & for every ¢t = 0.

Since eq. (3.1) is linear it is sufficient to investigate the dependence of the solution
on ¢ by the assumption that f(z) = 0. For this purpose, let us introduce the following
notation:

Equation (3.1) will be said to satisfy one of the following conditions C;, i = 1, ..., 3,
if there is a positive number a;, i = 1, ..., 3, such that for every ¢t = 0 and every
constant vector ¢ we have

C,: &Lt & = ayé)?,
C,: é‘(L'(t) + ZR(t)) &2 aylél?,
Cy: &ES() &= as)é)>.

Obviously, if a condition C; is satisfied, the corresponding matrix is positive
definite for every ¢t = 0.

Theorem 3.3. Let (3.1) be a normal equation with f(t) = 0; if any one ofcond}tions
Cyi=1,...,3,is fulfilled and x(t) € £? is a solution of (3.1) with initial condition c,
then x(t) is determined uniquely in #* and the following estimates are true:

1. If C, is true, then ||x(f)ll < (ay'c'L(0) ¢)* for every t Z 0.
2. If C, is true, then [§ |x(7)|* dr < a;*c'L(0) ¢ for every t > 0.
3. If both C, and C, are true, then
t
(3-28) 'f [x(7)|* dt < a5 * c'L(0) ¢ (1 — exp (—fl t))
0 az

Sor every t = 0.
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4. If C; is true, then || [5 x(7) dz|| < (a5 'c'L(0) ¢)* for every t = 0.

Note 2. If C, is true, then, of course, a unique solution always exists, is continuous
and x(0) = c.

Corollary. If (3.1) is normal and condition C, is satisfied then every solution of
(3.1) is stable with respect to the initial condition.

For the proof of Theorem 3.3 the following assertion will be necessary:

Lemma 3.2. Let a(f) 2 0 be non-decreasing in <0, ), ¢(t) non-negative in
{0, ©) and k > 0; if for every t 2 0

(3.29) oli) + x J" o(d) de < a(i),

then
(3.30) J " p() de < x-a(t) (1 — exp (—xt))

0
for every t = 0.

Proof. Chooseat = 0; fhen for every £ € {0, t) and &£ > 0 we have

(3.31) o(&) + x J ") dv S a(8) < o) + 5.
0

From this it follows that

(3.32) x9(£) <x:

a(t) + & — JCJj(D(T) dt

thus, integrating (3.32) between 0 and ¢, we get
a(t) + &

a(t) + & — xquo(t) dr

(3.33) In < xé,

ie.

j‘gqo(r) dr < x=Ya(t) + &) (1 — ).

0
Putting & = ¢ and letting & — 0, (3.30) follows.

Proof of Theorem 3.3: The first statement of the theorem is a direct consequence
of Theorem 3.2. In order to derive the estimates let x(f) be the solution of (3.1) with
initial condition ¢, i.e., by definition,

G34) L))+ f ;R(r) () dv + f ;S(z) f ;x(a) do s = L{0)¢
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almost everywhere in <0, o). Recalling Lemma 3.1, we have with the substitution
q(t) = [o x(v) du: |

t T
(335) 1} () =10 e - [ R a) e - j S(r) q(e) e,

4] (o]

so that {Lq’}(0) = L(0)c, and consequently, {g Lq'} (0) = c'L(0)c. Applying
formula (3.5) to (3.35), we obtain similarly as in the proof of Theorem 3.2 that

(3.36) q"'(1) L(?) 4'(¢) + jtq"(ﬂ + 2R) q' dt + q'(f) S() q(t) —

t
- f q'S'qdr = ¢'L(0) ¢

]

almost everywhere. Since all the terms in (3.36) are non-negative, we have

(3.37) a"() L) ) + f "L + 2R) ¢ & < CL0) c,

(3.38) 2'()'S() a(t) - f @'S'qdr = cL(0) ¢

almost everywhere.

Now, if C, is fulfilled, then ¢'(f) is continuous and (3.37) is satisfied everywhere
in €0, 0); hence

a;lg'(I* = aIx(®)|* = ¢'L(0) c,
QE.D.

If C, is satisfied, then from (3.37) it follows that
t
azj lg'(x)I* de < ¢'L(0) ¢
0

for every t = 0.
If both C; and C, are true, (3.37) is fulfilled everywhere and we have

(3.39) a g% + a J @2 dr < CL(0) .

But (3.28) follows from (3.39) by Lemma 3.2.

The remaining estimate can be deduced in the same manner from (3.38).

The method of proof of Theorem 3.3 permits us to establish an estimate for the
solution of (3.1) also if f(t) # 0.

Theorem 3.4. Let (3.1) be a normal equation fulfilling conditions C; and C,,
and let f(t) e 2. Then the solution x(t) with zero initial condition belongs to £*
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and

(3.40) f ;I]x(r)llz» dr < 4a;> <1 — exp (—i‘f t))z J'; 17212 dv

for every t = 0.

Proof. Since C, is satisfied, a unique solution exists and obviously x(f) € %2, BY
definition,

T 5 ]
(341) L)) + J” R(2) x() de + J’ S() f ¥(0) do dr = f £(3) de
0 0 0 | °
almost everywhere in <0, oo). In terms of Lemma 3.1 we have

(3.42) {La'y () = 7)) — R(H) 4'(5) = S(1) a(t)

with g(f) = [§ x(t) dr, and {Lq’} (0) = 0. Using again formula (3.5) and arranglng
the equation as before, we get

(3.43) a"() L(2) (6) + J' ‘(L + 2R) ¢ de + 2(2) S(2) a(d) -

t 3
— J‘ q'S'qdr = 2f q"fdr

0 0

everywhere in <0, ). (¢'(f) is continuous.) Since all the terms of the left-hand side
of (3.43) are non-negative, we have

(3.44) : fq"f dr 20,
0

and, at the same time, [§ ¢"fdr < [§ llg’ll 7] dv < {[§ Iq'I* d=}* {f 1f1% do} =
= h(f). Thus, (3.43) yields by C;, C,:

(3.49) a1 + a; J" I ()1 de < 2h()
0

By Lemma 3.2 we have from (3.45),

J' Ig'|? de < 2a51 (1 — e~ (ealenr {Jﬁ Rk dr}*{f lg'y? dt}é.
0 0 o

But from this (3.40) follows immediately.

Note 3. The integral (5 ¢"'fdr has the physical meaning of energy supplied by
outer forces to the system in the time-span 0 = z. Since it is non-negative for any ¢t = 0
by (3.44), the physical system described by (3.1) is incapable of producing energy.
Thus, the normality defined above characterizes the passivity of the system.
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4. The solution x(z) of equation (1.1), which satisfies the conditions of Th. 1.1,
depends, roughly speaking, on f(¢) and f’(f). However, the conditions given in Th. 1.1
may easily be generalized to the case that x(¢) depends on f(t), f'(£), ..., f™(t). For

this purpose let us introduce the following notation:
Let A(f) be an r x r matrix having a continuous derivative on I = {t;, t,), and

let W(t,7) be an r x r matrix continuous on I*> = E[t; <t <t £ t,], which has

a continuous derivative W/t on I>. BT
Let regular constant r x r matrices Cy, C, exist such that

(4.1) | Alt) = C, 431 €, = [14_1_19_)_':411_2_(5)]

Azy(1) ] Az5(2)

where rank A,,(f) = rank A(f) on I and [det 4,,(¢)] = ¢ > 0.
Let P() be a matrix fulfilling the equalities

(4.2) P(t) Ay4(t) + Ay(t) =0, P(1) Ay(t) + A2(H) =0
on I, and let
00
4.3 =]
) = | 511
(Obviously, P(t), (1) possess a continuous derivative on I). Moreover, let
(44) Ar) = A(t) + Y() W¥(r),

W, <) = W, ) + g(Y(t) W1, 9),

where W(t, ©) = Cy W(t, 1) C,. Then P = (4, W) will be called the derived pair to
P = (4, W) and this fact will be symbolized by P — P on I.

If particurlarly for a pair P = (4, W) we have [det A(f)] = d > 0 on I, P will be
called regular.

Furthermore, let f(t) be an r-dimensional integrable vector function defined on I.
Denoting f(f) = C; f(2), let Y(f) f(t) be absolutely continuous on I and let

(4.5) 70 = 7o + (¥ FO) -
Then the triple T = (4, W, f) will be called the derived triple to T = (4, W, f) and
we shall write T — Ton I. Ifin addition (¥f) (t,) = 0, then T will be called equivalent

to T, and we shall use the notation T<> T on I.
The triple T will be called regular, if [det A(f)] = d > O on 1.

Lemma 4.1. Let
(.6) A() (1) + J' W, ©) x(s) de = £(),
@) A 20) + f Wt 7 20 de = F(1), tel.
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Then
a) if x(f) is a solution of (4.6) and T— T, 2(t) = C5'x(t) is a solution of (4.7}

and (Yf) (t;) = 0.

b) if 2(2) is a solution of (4.7) and T<> T, x(f) = C,(?) is a solution of (4.6).
Proof: a) Putting x = C,% into (4.6) and multiplying by C;, we have

(4.8) A% + 'f: Wgdr = f.

Due to the equality

(4.9) Y(1) 4(z) = 0

we have

(4.10) J :lY(t) W(t, 7) 2(7) dt = (¥)) (1),

and consequently
(4.11) ¥(i) (1) £ + f 9 (¥(0) W(t, ©) 2(5) de = (YF) ().

Adding this to (4.8), we get (4.7). Moreover, from (4.10), (Yf) (t,) = 0.
In order to prove b), define the matrix N(z) on I by

12 W0 =517

obviously, det N(f) = 1 and N(z) Y(#) = Y(f). Now, let £(f) be a solution of (4.7) and
let T<> T. Multiplying (4.7) by N(¢), we get

@13) (NA+ YW + J

131

(NW+ N % (YW)) %£dt = Nf + N(Yf) .

But it can be easily verified that

- Ay, 4
4. N x = | 411412
(419 AW [U’:SU’;]’
W W,
(4.15) NW+N— (YW)-— SR S N I
v, + Yily, 4+ 2
I
(4.16) Nf+N(Yf')’=|:__f£__l], f=l:.f1_],
g+g Iz
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Where Ul = PWII + WZI! Uz = PWIZ =+ sz, g = P](l +f2 and
= [.’?_11_?_”[’1_2.] .
Putting £' = [%] | £5] and using (4.14), (4.15), (4.16), we have from (4.13)

¢ ‘ t
(4.17) Auﬁl + Alzxz + \[ WuRl dz +J lexz d'c =f1 5

t t ou
(4.18) UM%, + U2, +J (U1 + %)xl & +J (U2+ #)xzdf —g+g.

t t
However, with u(f) = [} U2, dz + [t U,%, dt we get from (4.18),
(4.19) : +u=g+g.

Consequently,u = g + cexp(— f)onl, c being a constant vector. Since by assump-
tion (¥f) (t;) = 0, i.e. g(t;) = 0, and u(t,) = O, it follows that ¢ = 0.

Hence, equations (4 17), (4.18) are equivalent to

14 T
(4.20) AR + A%, +J W2, d7 + _[ W%, dt = f,

(a.21) j" (PWy + W) 21 de + | (PWg + Wig) %, de = P, + .,

J ity

ie., by (4.12), to
ot
(4.22) NA% + | NW2dt = Nf.
J 1y

Finally, multiplying (4.22) by N-'(f) and putting 4 = C,AC,, W= C,WC,,
J = C,fand C,% = x, we get (4.6), Q.E.D.

Theorem 4.1. Let A(f) be an r x r matrix defined on <0, ), W(t,7) an r x r
matrix defined on 0 < t <t < o0; let an integer n = 1 exist such that
a) A(f) has a continuous n-th derivative in {0, oo),

b) 3"W(t, ©)/0t" is continuous on 0 St <t < oo and (8'W/ot)* has a conti-
nuous n — i — 1-th derivative in €0, ©) for i =0,1,...,n — 1. Let f(t) be an
r-dimensional integrable vector on 0, o).

Moreover, to each t > 0 let a closed interval I, containing t inside exist such that

(4.23) To=(AW,f)»Ti>Tf> ... > T on I,
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where 0 < n, < n and T, is regular; furthermore, let an interval I, = €0, )
exist such that
(4.24) Ty T o Ty ... T

w on I

with 0 < ny < n and Ty, regular.
Then the equation

(4.25) () +(1) + f ;W(t, 9 x() de = ()

possesses a unique integrable solution.
If in addition f(t) possesses an integrable n-th derivative in {0, ), then condition
(4.23) may be replaced by

(4.26) Py=(4,W)->Pi—>P,—>..>P, on I,.

Proof. From Borel’s theorem it follows that there is a sequence of closed intervals
I; = {t;, t¥>, i =1,2,... such that

a)ty =0, 1, <ty <t <thpi=12..,

b) T, Ti»Ti—...> T onl, i=23,...,

¢) oo Tie Ti<...< T onl,
where T, are regular and n; < n.

Assume that the solution x({) of (4.25) has already been established on <0, t;_,> =

k-1
= (JI;, that it is integrable and uniquely determined. Thus, almost everywhere on
i=1

€0, tf_;> we have
(4.27) () x() + f “W(t, ©) x(2) dr = gs(l)
with )

(4.28) Gerli) = 1) — f :W(t, 9 x() dr .

Observe that the vector [ W(t, t) x(t) dr in (4.28) is defined for every t = 0 and
possesses a continuous derivative of n-th order.
On the other hand, (4.27) should be satisfied on I, i.e. at least on {ty_y, &),
for it is satisfied on <%, t;_;» = I, by assumption. Multiplying (4.27) by Y{(z), we
have
T

(4.29) Y1) f W(t, ©) x(5) de = YX(2) gis(d) -
e

Thus, from (4.29),

(4.30) (Yigx-1) (1) =0
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so that by definition, T, = (4, W, gx_,) < (4,, W, gL_,) = T*.

Lemma 4.1, (4.27) is equivalent to

(431 40500+ [ W09 5, ac = g4
T

on I,.
Since (4.31) is satisfied on (, ol 1), we obtain further

(4.32) (YZgi_)(t) =0

so that T} <> T;. Continuing this process we get finally T, <> Tf < Tf <> ... <> T%;
hence, by Lemma 4.1, (4.27) is equivalent to

(4.33) An(0) o (8) + f W1, 7) 3 (2) de = g2 ()

Consequently, by

As |det 4,,(f)] = p, > 0 on I, by assumption, (4.33) has a unique integrable solution
on I, by Volterra’s theorem. Hence, there is a unique integrable vector x() on I,
which fulfills (4.27) and consequently, (4.25).

Repeating this procedure for I, making use of property c) instead of b), we easily
conclude that there is a unique integrable vector x(¢) which fulfills (4.25) on I,.

Finally, if f(f) has an integrable n-th derivative in <0, o), then obviously (4.26)
implies (4.23), since Y(f) f(¢) has an n-th integrable derivative, etc. Hence, Th. 4.1 is
proved.

Note 4. Observe that the following statement is true:

Let the assumptions of Th. 4.1 be satisfied; then there are fixed integers 1 <
Sro=ry,2ry, 2... < r,=rsuch that for any choice of ¥ Z 0 we have

(4.34) rank 4{(1) =1,
on I, with TF = (4%, W}, fi), Tk = (4, W, f).

Proof. From Borel’s theorem it follows that it suffices to prove the equality of
ranks only for intervals I, I, such that I, = <{a, b), I, = ¢, d),a<c<b <d.
Suppose that « = rank A(t) + rank A(f) = B and that, for example, o < f. Then,

of course, equalities (4 2) cannot be true on {c, b), i.e. they cannot be true on the
entire interval I,, which is a contradiction. Thus, we have rank A(f) = r, everywhere
on €0, ). By the same argument we get rank A4 (f) = rank A},(1), i = 1,2,...,n
The inequality r;, < 1y is an obvious consequence of (4.4).
It is apparent that the statement just proved may be reversed, i.e. that equalities
(4.34) imply (4.26).
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Résumé

/
NEKTERE VLASTNOSTI NEKANONICKYCH SYSTEMU
LINEARNICH INTEGRO-DIFERENCIALNICH ROVNIC

VAcLAv DOLEZAL, Praha

V préci se vySetfuje vektorova integralni rovnice (1.1) a jeji specialni p¥ipad (0.1).

V prvé &asti jsou stanoveny podminky pro existenci a jednozna&nost feSeni rovnice
(1.1) v ptipad®, kdy jeji prava strana je integrovatelny vektor, a je odvozena véta
o0 zéavislosti feSeni na pravé strané.

Druha &ast je vénovana podminkam existence a jednoznalnosti FeSeni rovnice
(1.1), kdy jeji prava strana je vektorem distribuci.

Ve tfetl ¢asti se uvaZuje rovnice (0.1), zejména jeji ,,normalni* typ, tj. kdy matice
L(¥), L(?) + 2R(2), S(t), — S'(¢) jsou symetrické a positivnd semidefinitni pro viechna
t 2 0. Je dokézana véta o jednoznaCnosti feSeni, jehoZ norma je lokaln& integrovatel-
nd s kvadratem, véta o stabilité a koneéné€ nékteré odhady pro étverec normy feSeni.

V posledni &Asti préce je pak pouk4zano na jedno zobecnéni vysledki prvé sti.

Pe3roMe

HEKOTOPBHIE CBOVICTBA HEKAHOHUWYECKUX CHUCTEM
JIMHEWHBIX UHTETPO-IUPOEPEHITNAJIBHBIX VPABHEHUN

BAIIJIAB JOJIEXAIJI (Véclav DoleZal), Ilpara

B paboTe ucciemyeTcs BeKTOPHOE MHTErpajIbHOe YpaBHEHHE (1.1) U €0 JaCTHBIH
cayqaii (0.1). .

B mepBoii 9aCTH YCTaHOBJIEHBL YCIOBHS CyIIECTBOBAHAS M €IMHCTBEHHOCTH PeIIle-
Hus ypasreHus (1.1) B ciydae, KOrja ero Opapas 4acTb — HHTEIPHPYEMBIH BEKTOP,
¥ BEIBOJJUTCS TEOPEMA O 3aBHCHMOCTH PEIIEHHASA OT IPaBOif YaCTH.

Bropas 4acTh IOCBSMIAETCS YCIOBHSM CyIECTBOBAHMA M €JUHCTBEHHOCTH peIlle-
Hust ypasrerwst (1.1) B cllydae, XOT/a IpaBasi 4aCTh — BEKTOP 060GIEHHBIX (QYHKIHiA.

B TpeTseii 9acTH Hecneyetcs ypasrerue (0.1), B 0COGEHHOCTH €0 ,, HOPMaJIbHBIA
THI, T.e. Cllydait, xorza marpumsl L(f), L(f) + 2R(t), S(t), — S'(t) cammerprdeckue
M TOJIOXMTENBHO MNOJIyoNpedeNleHHble Mg BeeX ¢ = 0. JIokasblBaeTca TEOpeMa
0 eTMHCTBEHHOCTH PENICHHS, HOpMa KOTOPOTO JIOKaNbHO MHTErPHpYEMa C KBaapa-
TOM, TeopeMa 06 YCTOHYMBOCTH M, HAKOHEI, AAOTCS HEKOTOPHIE OLEHKH IJIS KBaJpa-
Ta HOPMBI PEIICHHS.

B mocienmeit 9acTH pa6oTHl IPOBOAUTCA OJHO 0GOBIIEHHe PE3yNBTATOB IEPBOi
YacTH. :
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