Casopis pro péstovani matematiky

Christos G. Philos

Oscillation and asymptotic properties of strongly sublinear differential equations with
deviating arguments
Casopis pro péstovdni matematiky, Vol. 108 (1983), No. 2, 122--132

Persistent URL: http://dml.cz/dmlcz/108418

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/108418
http://project.dml.cz

_ &asopis pro péstovani matematiky, ro¥. 108 (1983), Praha

OSCILLATION AND ASYMPTOTIC PROPERTIES
OF STRONGLY SUBLINEAR DIFFERENTIAL EQUATIONS
WITH DEVIATING ARGUMENTS

CHristos G. PHiILOs, Ioannina
(Received Juny 4, 1981)

This paper deals with the oscillatory and asymptotic behavior of the solutions of
the p-th order (n > 1) differential equation with deviating arguments

(E) [r(t) x*= V()] + a(t) D(x[g9:()], ---» X[9()]) =0, 210,

where the real-valued functions involved are subject to the following assumptions:

(i) r is a positive continuous function on the interval [t,, o) such that

(ii) a is a continuous function on [t,, o) which is of constant sign;

(iii) @ is a continuous function which is defined at least on R \J R™, where
R, = (0, 0) and R_ = (— 0, 0), and has the following sign property:

&(y)>0 forall yeRT, &(y)<O0 forall yeR™;
(iv) g; (j = 1,..., m) are continuous functions on [t,, ) with
limg,(t) =0 (j=1,...,m).
t— o0 ’

Smoothness sufficient for the existence of such solutions x(#) of the equation (E)
which are defined for all large ¢t will be assumed. In what follows, we consider only
such solutions x(t) which are defined for all large ¢. The oscillatory character is con-
sidered in the usual sense, i.e., a continuous real-valued function defined on an
interval [T, o) is said to be oscillatory if the set of its zeros is unbounded above,
and otherwise it is said to be nonoscillatory.

The oscillatory character and the asymptotic behavior of the bounded solutions
of the differential equation (E) are well described by the following theorem, which is
a particular case of a result due to the author [8].
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Theorem 0. Let (i)—(iv) be satisfied and suppose that
LY o f.—z o
(Co) either j |a(t)| dt = o0 or f ———f |a(s)| ds dt =
(1) Je

If a is nonnegative (nonpositive), then for n even (odd) all bounded solutions of
the differential equation (E) are oscillatory, while for n odd, (even) respectively
every bounded solution x of the equation (E) is either oscillatory or such that x'
(i=0,1,...,n — 2) and rx""~ " tend monotonically to zero at .

Our aim is to study the oscillatory and asymptotic behavior of all solutions of the
differential equation (E). Our interest is concentrated on the case when the equation
(E) is strongly sublinear in the sense that the function ® is increasing and such
that

j ——dy—<oo andj —-—2——<oo
+0 P(ys - ) 0 (... y)

Note that the increasing character of @ is considered with respect to the usual order
in B™ defined by the positive cone {y = (y, ..., y,)eR":(Vj=1,...,m)y; 2 0},
ie,ysz<e(Yj=1,...,m)y, £z, Moreover, it is noteworthy (cf. Staikos [9, 10])
that, if the equation (E) is strongly sublinear, then

lim 2055 %)
y=0 y

= 00 .

For our purposes, we need the following lemma which has originated in two
well-known lemmas due to Kiguradze [2, 3] (cf. also [1], [9, 10] and [7]).

Lemma. Suppose that (i) holds and let h be a positive and (n — 1)-times dif-
ferentiable function on an interval [t, 00), T = to, such that the function rh®@~1
is differentiable with its derivative of constant sign on [, ) and not identically
zero on any interval of the form [7', ®), ¢’ 2 7.

Then there existaT Z © and an integer 1,0 < 1 < n, withn + 1 odd for [rh®~ V]’
nonpositive or n + 1 even for [rh®~V7] nonnegative so that

ISsn—-1=(-1))"1>0 on [TLw) (j=1..,n-1)
I>1=hP>0 on [T,0) (i=1..1-1).

If, in addition, h is eventually increasing and h®~V[rh®=V]’ is eventually
nonpositive, then for every 3,0 < 8 < 1, we have:

h(t) 2

ifl<n-—1;

. )‘ |r(r) B~ (t)lf (s = tof™* t°) ds for all large t,
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h(t) 2

if l=n-1.

9 (-1 (e 3)2
"= 2) |r(£) B~ (2)] J.,o——_r(s) ds for all large t,

Proof. The first part of the lemma is a special case of a lemma given by the same
author in [7]. Furthermore, let us supvose that h is eventually increasing and
h®~Y[rh*=1] is eventually nonpositive. Then we must have 1 <l <n — 1.
Next, we consider the following two cases.

Case 1. | < n — 1. By using the Taylor formula with integral remainder, for every
t = T we obtain

-1

=3, =T oy 4

1
(-

2 (l 1)'J (t—s)~*hY(s)ds.

Furthermore, by applying again the Taylor formula with integral remainder, for
every s, t with T < s < t we get

f (t - 9~ h(5) ds 2

h(l)(S) = Z (S I)' (J)() j(s -2t pla- 1,(u) du =
5 (t +j pG)
= (- l)v [( 1) hS 0] +
1 l(u - s)"—2—1 _ - .
e e S A L O
UV i ol
2 g o MO0l [

Thus, for every t = T we have

n—2—1

h) (l_ It nl_ e "(t)lf(t—s)' ‘f =7 quas z

n—3

@ 3)' Lo ”(t)l J‘, (;) duds =

3), Int) B~ j [ f - f)n-sds]du _

LOLSE 1’(t)'j T)" du.

v

2)'
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Next, by the L’Hospital rule, we derive that

[ [ 55 o . o ]

and hence for every 3, 0 < § < 1, we have

J%iilljdszs )Ny
B to T(S)

for ¢ sufficiently large. Thus,

h(t) =

r(t) he=1(p)| J Gl to) ds for all large ¢ .
to

(n -

Case 2. | = n — 1. By the Taylor formula with integral remainder, for t = T we
obtain

h(r) = z“ nh%ﬂ+ J@—wzwnwm>

—2)

(t S)" 2 n—1) >
2), j [r(s) K~ ()] ds 2
r n—1) (t—s)
2 gy ool

But, by applying the L’Hospital rule, it is easy to see that

il [ -of .50 -] -1

and hence for every 3, 0 < 3 < 1, we get

()_( 2

Now, in order to present our main result we introduce the functions ¢; (j =
=1,...,m) and Ry, R, defined on [t,, ) as follows:

oft) =min{t,g(¢)} (i=1,...,m),

R(t) = t%ds and R,(t) = T(L"r—(?)f———fds

Moreover, for two vectors y = (yy, -.., ym), z = (24, ... Z,) in R™ we define

() h""”(t)IJ" gt_r(—z))"_j ds for all large ¢t .

vz =¥z, ..., VmZm) -
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Theorem. Suppose that (i)—(iv) hold. Moreover, let the differential equation (E)
be strongly sublinear and suppose that the function @ has the exponential property

P &(yz) 2 Kd(y) P(z) forall y,z in K7,
(P) “|-®(-yz) 2 K ®(y) ?#(z) forall y,z in R”,

where K is a positive constant.
Then, under the condition

©) J' 6| [(5R0s(1)], . SR dt = 0 (5 = 15 k = 1,2),

we have the following results:
(I) For a nonnegative and n even, every solution of (E) is oscillatory.
(IT) For a nonnegative and n odd, every solution x of (E) is oscillatory or satisfies

lim x(tf) = 0 monotonically (i=0,1,....,n —2),

t— o0
(¥o) lim r(f) x"~1(f) = 0 monotonically .
t— o0

(ITI1) For a nonpositive and n even, every solution x of (E) is oscillatory or satisfies
one Of (X0)9

(Xo) limx(t)=o0 (i=0,1,....n—=2) and limr(t) x"~ V(1) - w,
t—= o0

t— 0

(X_p) limxP(t)= -0 (i=0,1,...,n—2) and limr(t)x""V(t)= —o0.
t— t—o00

(IV) For a nonpositive and n odd, every solution x of (E) is oscillatory or satisfies
one of (X,,), (X-o)-

Proof. By (P), for all y > 0 we have
K&(y,...,y)® (l , ,1> < 91,...,1).
AN 4 y

But, because of the sublinearity of the equation (E), the function @ is such that

hmy¢(.l_, veey 1) = hmM = 00
y—=w y Yy z-0 4

and consequently for all large y,
‘ 1 1
K&(y,....,y) < Ko(y, ..., y) y® (; y s ;) <o(,..,1)y.

Therefore, since @ is increasing and lim R,(t) = oo, we have that for all large ¢
t—

Ko(Ry[a:(1)], ---» Ri[ow(t)]) < KB(Ry(2), ..., Ry(2)) < ¢(1, ..., 1) Ry(r).
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Thus, by (C), we obtain
J |a()| Ry() dt =

J. la(t)]'[' (s = (ts")) dsdt = .

Now itisa matter of elementary calculus to obtain

that is

B Gl Ia(s)] dsdt = o
r(t) t
provided that [ |a(f)| df < co. Thus, we have proved that the condition (C) implies
(Co)- Hence, by Theorem 0, it remains to 'study the unbounded solutions of the
equation (E).
The substitution w = —x transforms (E) into the equation

[r(t) w2 (1)) + a(t) BWw[g ()], ---» wlgu()]) = O,

where &(y) = —P(—y) for all y in the domain of @. This equation is subject to the
assumptions posed for the equation (E). Thus, with respect to the nonoscillatory
solutions of (E) we can restrict our attention only to the positive ones.

Now, let x be a positive unbounded solution on an interval [,, ©), 1o = to, of the
equation (E). Moreover, by (iv), let T = 7, be chosen so that

gty 21, forevery t21t (j=1,...,m).
Then, in virtue of (iii), (E) implies that
[r(6)x"= V(1)) 1(a) < 0 forevery t=1,
+1 if a0
Ia) = {—1 if a<0

is the so called sign index of the function a. Moreover, the function [rx®~"7’ is not
identically zero on any interval of the form [/, ), t’ 2 1, since, because of (C),
the same holds for the function a. Thus, by Lemma, there exist a T = 7 and an
integer I, 0 < I < n, with n + | odd for a nonnegative or n + I even for a non-
positive so that

Isn—1=(-1)"xU(t) >0 forevery t2T (j=1..,n—1),
I1>1=x%(1)>0 forevery t=2T (i=1,...,1~1).

where

Because of the unboundedness of x, we always have [ >-0.
Next, let us suppose that lim r(f) "~ () = 0. Then we must have
t— o

x®=1(r)I(a) > 0 for every t 2 T.
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Furthermore, by Lemma, for some T, = T and every t = T, we have
x(t) = M R(?) r(t) x*~ (1) I(a) ,

where M is a pqsitive constant,and R = R, forl <n — 1lorR = R,forl =n — 1.
Thus, since the function rx®~! I(a) is decreasing on [, ), we get

x[oA0] 2 MR[o,(0)] () X~ Y() (@) (j = 1,.., m)
for all t 2 T,, where T,, T, = T, is chosen so that
oty T, forevery t=2T, (j=1,...,m).

Hence, by taking into account the increasing character of @ and its exponential
property (P), for every t 2 T, we obtain

[r()) x*= V()] 1(a) = —|a(1)| 2(x[g:(1)]. - x[gm()]) <
—la(®)] 2(x[o1(t)], -, x[on(9)]) <
< - |a(t)| B(MR[o,(1)] r(t) x*~ V(1) I(a), ..., MR[o,,(1)] r(t) x*~ Y1) I(a)) <
—K?|a(t)| (R[o,4(1)], -..» R[o(1)]) (M, ..., M).
. B(r(t) x* (1) I(a), ..., () x*~V(t) I(a)) ,

Ja()] @(RL1(1)], - RIoal0)]) <
. ~[() x*~ (0] 1(a) ,
| =2 =) 1), 1) 2" 1)

where S = 1 [K*®(M, ..., M). Therefore, by integration, we derive that
d
/ [ 1o (R0, .. Rl 1 5 5 [ 2
; +0 D1 - Y)
where & = r(Ty) x*~Y(T;) I(a) > 0. Because of (C) and the fact that (E) is strongly

sublinear, the last inequality leads to a contradiction.
We have thus proved that lim r(r) x~")(t) must be nonzero. If lim r(f) x"~ (¢) <
t— o0 L

that is

A

< 0, then, by using (i), it is easy to derive that lim x(f) = — oo which contradicts the

t— o
positivity of x. Hence, we always have that lim r(f) x*~)(f) > 0. This by (i) gives
N t— 00
lim x®(f) = o (i = 0, 1,..., n — 2). Thus, by using the L’'Hospital rule, it is easy
t— o0

to obtain that

(= 2 lim x(t)[ I ) (Uinll) i s)" : s]—;= lm 1) x9() > 0.
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Therefore, we have for some t, > T and every ¢t 2 7, that

t 2
x() = L f (t—s)?
to r (S)
where Lis a positive constant. Hence,
x[o/(0)] 2 LR;[o}()] (j=1,....m)

for all ¢t = 1,, where 1,, T, = 74, is chosen so that

ds

LRy(),

oft) 21, forevery t21, (j=1,...,m).
Next, by the increasing chaiacter of @ and its property (P), for t = t, we get
[r()) x"= 2] 1(a) = —|a(t)] 2(x[g:(1)], .- x[gm(1)]) =
< ~Ja)] (xo1()], - [onl)]) S ~Ja(0)] S(LRo[o,(8)} ... LR[0n(1]]) <
< —K(L, ..., L) |a(t)] ®(R;[04(1)], ..., Ro[o.(1)]) -

Therefore, by integration,

I(a) tlirg (1) x"= V(1) — I(a) r(z) x*~V(z,) <

< —Ko(L,..., L) rla(m O(Ry[01(1)], -.» Rofon(1)]) dt

and hence, by the condition (C),

lim r(t) x*~(f) = —I(a) o .

t—= o
However, this is case where a is nonpositive and therefore (X ,,) can easily be derived.

Next, let us consider the special case where r = 1, i.e. the differential equation

(E) x®(t) + a(t) ®(x[g,()], ---» X[gm(t)]) = O -

Then we obviously have for k = 1,2
R(t) = ——1—1 (t—toyt 2 pu"~' foralllarge ¢,
n —_—
where p is a positive constant. Thus, if (i) — (iv) hold and the function @ is increasing

and has the exponential property (P), then the condition (C) follows from the follow-
ing one: :

© lea(t)l |¢(5[01(t)]"", cees 6[6,,,(t)]""1)| dt =00, 6= +1.
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So, in the special case of the equation (£) our theorem leads to some recent results
of Staikos [9, 10]. Note that the method used here patterns after that of Staikos
[9, 10]. For earlier oscillation results concerning sublinear retarded differential
equations we refer to Kusano [4], and Kusano and Onose [35, 6].

Now, we remark that in the case of ordinary or retarded differential equatlons of
the form (E) the condition (C) becomes

(c*) f |a(?)] |#(6R[g1(1)], - OR[gm(1)])| dt = 0 (6 = £1; k = 1,2).

For differential equations of the form (E) which are of advanced or mixed type our
theorem ceases to hold with the condition (C*) in place of (C). This is illustrated by
the following four examples of advanced differential equations. These equations
fail to satisfy the condition (C). However, they satisfy the rest of the assumptions of
Theorem and the condition (C*).

Example 1. The equation
[P x'()] + (1)9) 7P x3(P) =0, 121
has the nonoscillatory solution x(f) = t'/3, a contradiction to conclusion (I) of
Theorem.
Example 2. The equation
[2x"(6)] + 567331 + ©)" 2 x1B3(%) =0, t21
has the solution x(¢) = 1 + 1/t for which lim x(¢) = 1, a contradiction to conclusion

(IT) of Theorem. o

Example 3. The equation
[t1/2 xll/(t)]r _ (3/8) t-—7/2 xl/3(t3) =0 , t g 1

has the solution x(t) = r*? for which hm x(t) = lim x'(f) = 0 while lim x"(¢) =
t— oo t— o

= lim t'/2 x"(t) = oo, a contradiction to conclusxon (111) of Theorem.

t—o0
Example 4. The equation
[2x" ()] — (1f4) 2 x3(P) =0, t21

has the solution x(f) = ¢'/* for which we have lim x(f) = co while hmx(t) =
t— o

=1lim "?x"() = 0, a contradlctlon to conclusion (IV) of Theorem.

t— o

We now turn our attention to a particular class of differential equations of the
form (E), which includes the ordinary, retarded equations and some others of ad-
vanced or mixed type. This class is characterized by the condition
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Rilg(t .
(H) timsup R & o (o1, my k= 1,2).
t— o0 Rk(t)
For sublinear equations of the class considered the condition (C) can be replaced
by (C*) in our theorem. That is, we have the following corollary.

Corollary. Suppose that (i)—(iv) hold. Moreover, let the differential equation (E)
be strongly sublinear and suppose that the function ® has the exponential property
(P).

If (H) holds, then, under the condition (C*), we have the conclusions (I)—(IV)
of Theorem.

Proof. For any je {1, ..., m} and for all large ¢ we have

Ro,(1)] _ ! ,Rk(itf) gin) <t

(k=1,2)
Rk[g j(t)] R—k[;,—(t)] ’

if gjt)>t.

Thus, by virtue of (H), there exists a positive constant M so that for k = 1,2
Ri[of(1)] = MR,[gt)] foralllarget (j =1,...,m)

and consequently, by taking into account (iii) and the increasing character of ¢ and
its exponential property (P), we obtain that for all large ¢

|B(6R[01(1)]; ---, SR [0.(1)])] =
2 [®(SMR[g,(1)], ..., SMR[g.(1)])| 2 KL|P(5R[9:(1)], ---» SRi[gm()])] »

where L = min {&(M, ..., M), |®(—M, ..., —M)|} > 0. Thus, the condition (C*)
implies (C) and hence the corollary follows from our theorem.

Note that the condition (H) cannot be omitted from the above corollary. This is
demonstrated by Examples 1—4 of advanced differential equations which fail to
satisfy (H). Also, we notice that in the special case where r = 1 the condition (H)
is satisfied if

g,(1)

(H) limsup>>~ <0 (j=1,...,m).
t= o t

In the conclusion we remark that it would be desirable to study the oscillatory
and asymptotic behavior of the solutions of sublinear differential equations of the
form (E) without the condition of the exponential property (P). From the arguments
presented here it is apparent that the role of this condition is essential to our method.
Perhaps another method would be of significant importance. This is said in view of
the fact that in the superlinear case no such condition is imposed. We hasten to add
that as far as we known the sublinear equations that appeared in the bibliography
satisfy the exponential property mentioned above. So, one usually encounters sub-
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linear differential equations of particular forms of (E) with the continuous function @
defined by

B(y1s vees Ym) = 91| +oe |ym|™ sE0 ¥,

at least on R” &) R”. The simplest case where m = 1, i.e. ®(y) = | yl“ sgn y, drew
much attention in the literature. ' .

It remains an open question to the author whether our theorem can be extended
to more general strongly sublinear differential equations of the form

(E) [ra-1() [ra-2( [« [r2(0) [rs() ¥ (9] - 17T +
+ a(t) @(x[g.(1)], --» x[ga(1)]) = 0,

where r; (i = 1,...,n — 1) are positive continuous functions on the interval [t,, o)
such that [® [1/r{t)]dt = o0 (i=1,...,n — 1).
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