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Časopis pro pěstování matematiky, roč. 107 (1982), Praha 

GENERAL REPRESENTABILITY PROBLEM FOR THE LAPLACE 
TRANSFORM OF EXPONENTIALLY BOUNDED 

VECTOR-VALUED FUNCTIONS 

MIROSLAV SOVA, Praha 

(Received February 8, 1980) 

The purpose of this paper is to study general test sequences permitting to decide 
whether a given function is the Laplace transform of an exponentially bounded 
measurable vector-valued function. These test sequences will be called later Laplace 
representative sequences (see Section 4). Special cases were studied earlier in [l] 
and [2]. Related results connected with our special case of the so called summatory 
representative sequences (see Section 25), but concerning integrable originals, are 
to be found in [3]. 

We attempt to axiomatize the properties of Laplace representative sequences in the 
form as general as possible, or more precisely, as we can. This means that certain 
simplifications or modifications are not excluded. But our conviction, based on 
careful analysis of the situation, is that the possibility of essential changes in the 
characteristic properties of Laplace representative sequences seems very improbable. 

Our main result, Theorem 13, is given for reflexive Banach spaces. The reason for 
this restriction to reflexive Banach spaces is to direct the attention to the properties 
of Laplace representative sequences rather than to the technical problems connected 
with nonreflexivity which involves sizable complications and probably necessitates 
a strenghtening of the notion of Laplace representative sequences. 

1. We shall use the following notation: (1) R — the real number field, (2) (co, oo) — 
the set of all real numbers greater than co for co e R, (3) C — the complex number 
field, (4) (Re > co) — the set of all complex numbers whose real part is greater than co 
ifcoeR, (5) Mx -* M2 — the set of all mappings of the whole set M t into the set M 2. 

2. In the whole paper, E denotes a Banach space with the norm |j • ||. 

3. The functional analysis (including the theory of vector valued functions) is 
used in the extent of the first three Chapters of [6] except for certain special topics 
(e.g. II.4,111.3). The reader interested only in the numerical case needs nothing more 
than the basic facts from the modern differential and integral calculus. 
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4. Let $k e (0, co) x R -» C, fc e {1, 2,...}. The sequence $fc, fc e {1, 2,...}, will 
be called a Laplace representative sequence if 

/•oo 

R,) |#k(f, 0)| dp < oo for every t > 0 and fc e {1, 2,...}, 
J — oo 

(R2) f °° I f°° e _ I " 4>k(t, p) dp dx ^ 1 for every f > 0 and k e {1, 2,...}, 
J — oo I J — oo 

(R3) f" f p e " 1 " *k(f, jB) d ^ dT - - — 1 for every / > 0, 

(R4) f J Q~ixP $k(t, p) dp dT -j^ 0 for every t > 0 and S > 0, 
J { T . | T - f | } ^ J -00 

(R5) J e_JfT T | f | ^ ( T , J8)| dj8 j dT < oo for every x > 0 and fc e {1, 2,...}, 

(R6) for every / > 0, g e {1, 2,..} and e > 0, there exists N > 0 such that 

Г I | e - - V Ф*(т, ,9) dт dj? g є, ľ I ( " V - V Ф*(т, /?) dт 
JJV I J o J -oo I J o 

dß g є 

for every fce {1, 2,...}. 

5. Remark. In the whole paper, the properties (Rj) —(R6) of Laplace representa­
tive sequences stated in Section 4 will be referred to simply by their symbols without 
specifying the section. 

6. Lemma. Let <Pk, fce {1, 2,...}, be a Laplace representative sequence. Then 

**(', P) = M ° ° e1" ( p e-1* *lu n) dff̂  dT 

/or euery f > 0, PeR and fce{l, 2,...}. 

Proof. Immediate consequence of the Fourier inversion theorem which is valid 
in virtue of (R-) and (R2). 

7. Proposition. Let <Pk, fce {1, 2,...}, be a Laplace representative sequence. Then 

(a) \<Pk(t, p)\ ^ — for e^r j t > 0, p e R and ke {1, 2,...}, 

(b) the function <Pk(t, •) is continuous on R for every t > 0 and ke {1, 2,...}, 
(c) the function &k is measurable on (0, OO) x R for every fce {1, 2,...}. 
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Proof. The statements (a) and (b) immediately follow from Lemma 6 and pro­

perty (R2). The statement (c) follows from (b) and property (R5). 

8. Lemma. Let <Pk, fee {1,2,...}, be a Laplace representative sequence. Then 

Q~itp <Pk(t, 0) > 1 for every t > 0 and fieR. 

Proof. For the sake of simplicity, let us denote 

/•co 

(1) (pk(t, T) = e_iT/* <Pk(t, p) dp for t > 0 and T e R. 
J — 00 

According to (R2), (R3) and (R4) we can write with respect to the definition (1) 

/*00 

(2) \cpk(t, T)| dT g 1 for every t > 0 and fce {1, 2, ...}, 
J — 00 

/•co 

(3) <pk(t, T) dT fc_^oo> 1 for every f > 0, 
J — CO 

(4) j \cpk(t, T)| dT ----^ 0 for every t > 0 and S > 0. 

It easily follows from the properties (2), (3) and (4) that 

/•co 

(5) eiT/* <pk(t, T) dT - j - - ^ eif/? for every t > 0 and P e R. 
J — CO 

Using Lemma 6 we obtain the required result from (1) and (5). 

9. Lemma. Let <Pk, fce{l,2,...}, be a Laplace representative sequence. Then 

І v ' *•*- (i - ispy 

for every s > 0, /? e ff and r e {2, 3,...}. 

Proof. According to Proposition 7 and Lemma 8 we have 

(1) \$k(r9 /?)| ^ — for every T > 0, P e R and fc e {1, 2,...}, 
2TI 

(2) e~ l T ' ^ ( T , 0) --^ 1 for every T > 0 and p e R. 

Moreover, as is well-known, 

(3) f V ^ ' - ^ V ^ d T - - ^ " ^ ' for every s > 0, peR and re{2,3, . . . } . 
J° (H*)' 
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Using (l) —(3) we obtain 

f ° ° e -T / v - r 0 ^ ^ d T = re-^/s-mhr-ie-ipr 0^T^dT__^ 

Jo Jo 

f - e - O / . - M y - i d - , ( - - Q ' =(r-l)ls' 

Jo ^ i _ ^ (1-i-ff 

for every s > 0, /Je R and r e {1, 2 , . . . } . 

But this was to prove. 

10. Lemma. Let <Pk, fee {1,2 , . . .} , be a Laplace representative sequence. Then 

e~*V|<Pfc(T,j3)|dj3dT < oo 
/•oo /•co 

Jo J -c 

for every % > 0, q e {l, 2,...} and fee {l, 2, . . . } . 

Proof. Immediate consequence of (R5). 

11. Proposition. Let M ^ 0, co = 0, Fe (Re > co) -> F and &k, fee {1, 2, . . . } , 
be a Laplace representative sequence. If 

(a) the function F is analytic in (Re > co), 

(P) ||F(z)|| = — for every Re z > co, 
Re z — co 

1 II f °° II 
(y) — *k(r, )8) F(a + ijS) dj8 =* M for every t > 0, a > co and fe e {1, 2 , . . . } , 

2 * I I J - « , II 
then 

_1_ Il f" f(a + i 
2 T C | J _ 0 0 ( 1 - Í S / 

^ dß\ ^ M 
2 K | | J _ 0 0 ( l - i s J 8 ) ' 

for ever.); s > 0, a > co and r e {2, 3 , . . . } . 

Proof. With regard to (a) and (p) we obtain by means of Lemma 10 and of the 
Fubini theorem that 

(1) f V ' V - 1 ( T «*\(T, p) F(a + iff) dp) dT = 

= J0" ( f V " V - ' #t(T, P) dT ) F(a + ip) dp 

for every s > 0, a > o and r e {2, 3 , . . . } . 
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By Lemma 9 we have 

(2) f Y ' / V 1 *k(T, j8) dT -—-> ( r " 1 ) ! 5-
V) Jo * ^ ( l- i^) r 

for every s > 0, /? e R and r e {1, 2,...}. 

Using Proposition 7 (sub (a)) we get 

(3) Г°°e-</ү-i ф j t( т > ^ d т = JL í"%-./v-i d т = 
J o 2л J 0 

= — (r - 1)! sr for every s > 0, fi e R, r e {1,2,...} and fee {1, 2,...} . 
2TT 

It follows from (R6) that 

(4) for every s > 0, r e {2, 3,...} and e > 0 there exists N > 0 such that 

dj3 = e, J
* 0 0 I /»00 

e -*/v--* i k (T,/9dT 
N Uo 

/•-N I poo 

e-^V-^^T.jSjdx 
J -oo I J 0 

for every ke {1, 2,...}. 

Using (a), (P) and (2), (3), (4) we obtain by the Lebesgue dominated convergence 

theorem that 

(5) J" (jVv-'̂ MjdtjFfa + i ^ ^ f r - ^ j ^ M ^ 

for every s > 0, a > co and r e [2, 3,...}. 

On the other hand, it follows from (y) that 

(6) I f Y ^ V 1 ( f <2>*(T, 0) F(a + ip) j djS dT = 2TUM °° e ^ ' V 1 = 
II Jo VJ-oo / Jo 

= 2jcM(r — 1) sr for every s > 0, a > co and r e {1, 2,...}. 

The desired estimate is now an easy consequence of (l), (5) and (6). 

12. Theorem (auxiliary). Let M = 0, co = 0 and F e (Re > co) -> E. If the space E 

is reflexive, then the following statements (A) and (B) are equivalent: 

(A) (I) the function F is analytic in (Re > co), 

(ii) 1^)11 = 
M 

Re z — <w 
for every Re z > co, 
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1 II г° 

(иi) f ľ 
2л || J _ 

г±±2ћåß 
:(í-isßГ 

_S M for every s > 0, 

a > co and r e {2, 3,...}; 

(B) there exists a function fe (0, 00) -> E such that 

(I) f w measurable on (0, co), 

(II) ||f(r)|| 5? Mew ' for a/mosf every t > 0, 

e""fW dr for every Re z > co. 

Proof. Use the same method as in the proof of [1], Theorem 7. The necessary 
modification of [1], Proposition 5 is in fact given in its proof. 

13. Theorem. Let M ^ 0, co ^ 0, F e (Re > co) -> E and let 4>k, k e {1, 2,...}, 
be a Laplace representative sequence. If the space E is reflexive, then the following 
statements (A) and (B) are equivalent: 

(A) (I) the function F is analytic in (Re > co), 

(II) ||F(z)|| _5 — for every Re z > co, 
Re z — co 

_? M for every t > 0, (in) i - i r 0k(t,p)F(oi+i(i)df} 
2 * I I J - O O 

a > co and fce {1, 2,...}. 

(B) there exists a function fe (0, co) -> E such that 

(I) f is measurable on (0, oo), 

(II) \\f(t)\\ ^ Me"' for almost every t > 0, 

(III) F(z) = J Q~zxf(r) dr for every Re z > co. 

Proof. (A) => (B): Immediate consequence of Proposition 11 and Theorem 12. 

(B) => (A): The properties (A) (I) and (II) are elementary easily provable properties 
of the Laplace transform. 

Thus we have to prove (A) (III) only. 
According to (Rt) we can apply the Fubini theorem in the following integral 

obtaining 

r *&, ft) F(a + ifi) dfi = f" <Pk(t, p) ( fY<* + i »V0) dr) dfi = 
J -oo J -oo \ J o / 
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= Г ( Г e-"" Фk(t, ß) dß\ e-"/(т) dт 

for every t > 0, a > co and fee {l, 2,...}. 

Using (R2) we obtain from the preceding inequality that 

J
*oo /*oo /*oo 

*»(»•, p) F(a + i/J) d/? £ sup (e-a1/(T)||) e" '" <*>*(t, j8) d/, 
- o o II «>0 Jo J - c o 

g sup(e-at||/(T)||) g sup (e~"Me0") ^ M 

dт < 

t>0 

for every t > 0, a > co and k e {l, 2,...}, which proves (A) (III). 

14. Remark. The implication (B) => (A) of Theorem 13 was proved directly 
while the implication (A) => (B) was reduced to the known Theorem 12 (precisely to 
its part (A) => (B)). It is natural that it is also possible to proceed directly which will 
be done elsewhere. 

15. Remark. We have seen in the course of the proof of Theorem 13 that the 
implication (B) => (A) necessitates only the properties (Rj) and (R2) of Laplace 
representative sequences. 

16. Remark. In the light of Theorem 13 we can perform a certain evaluation of* 
axioms (Rj) —(R6) of Laplace representative sequences. 

It is clear that (Rt) is necessary even for the formulation of the condition (A) (III) 
in Theorem 13. 

Let us now denote q>k(t, T) = j ! 0 ^ e~iT/? <Pk(t, j?) dp. The axioms (R2)-(R4) say 
that the sequence <pk(t, •) is essentially an approximation of the delta function at the 
point t. In the classical approach, such sequences are called singular integrals (see 
[6], Sec. 3.9 and [7], Chap. 10). If the functions cpk depend only on the difference 
t — T, one speaks about approximate identity, which is a concept closely connected 
with the notion of Friedrich's mollifier. These properties (R2) —(R4) seem also in­
dispensable for proving Theorem 13 even if (R2) is formulated in a somewhat restric­
tive form. The boundedness with a bound greater than 1 would be also sufficient 
but our restriction permits to retain (in a simple way) the constant M in Theorem 13 
in both directions and, moreover, if the functions qjk are nonnegative (as is usual), 
then the choice of the bound 1 is only a matter of normalization. Moreover, let us 
call the attention to the fact that axioms (R2) —(R4) are sufficient to produce a restric­
ted form of the inversion theorem (cf. Theorem 31a Remark 32). 

Axioms (R5) and (R6) are probably formulated for the first time and may seem 
a little involved. It is true that they were established to facilitate the proof of the 
implication (A) => (B) in Theorem 13. At present, we are not able to say anything 
about their necessity and even independence of the remaining axioms but a careful 
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analysis of the above mentioned proof (and other procedures) indicates that it is 
improbable that they could be omitted even if certain improvements are not excluded. 
A weakening of the property (R6) at the cost of an additional assumption on the 
function F in Theorem 13 is sketched in the following Remark 17. In the special case 
of the so called summatory representative sequences (cf. Sec. 25), axioms (R5) and 
(R6) are dependent on (Rx) —(R4) as shown in Proposition 26. 

17. Remark. Let us add the following condition in Theorem 13: 

(A) (IV) F(a + ij8) - — * 0 for every a > a>. 

This is admissible since, as is well-known, (A) (IV) follows from (B) (see e.g. [4], 
Prop. 5.1.2). But with the condition (A) (IV), Theorem 13 remains valid for a (at 
least formally) larger class of Laplace representative sequences, namely, we can 
replace the property (R6) by 

(R6) for every x > 0 and q e {l, 2,...}, there exists a constant c — 0 such that 

I I ľ V * V Фk(т, ß) dт dß ѓ c 

for every ke {1, 2,...}. 

Indeed, the reader himself easily establishes that the decisive Proposition 11 
then remains valid if we add (A) (IV) to its assumptions. 

18. Let us define 
_1 

2TI 
widfc(í, ß) = — ^ N t ł l e^y 

1 r °-
19. Lemma. — — dp = -- - - - e - , / ,<* 

2TT J . " • -"-' P •• l i l 

fort > 0, 0 e f f and fee {1,2, . . .}. 

Sometimes, the sequence wid*, k e {1, 2, . . .}, will be called the Widder representa­
tive sequence. 

e~itp 1 1 
S dp = -i — 

(1 - isj8)*+1 k! sk+1 

for t > 0, s > 0 and fee {1,2, . . .}, 

= 0 

for t < 0, s > 0 and fee{l, 2,...}. 
Proof. Immediate consequence of the Fourier inversion theorem (after simple 

substitution) since 

f V Y - —- e-"sA dr = - — f V<-'«-W dT = 
Jo Vfc!s*+1 / fc!s*+1J0. 
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/•oo 

fi) I 
J - c 

- 1 J _ fc! _ 1 
" k!s*+1 /^i-iA^1 " ^ " i s ^ + 1 

for every s > 0, jS e W and fc e {l, 2,. . .}. 

20. Proposition. The sequence widk, fee {1,2,...}, is a Laplace representative 
sequence. 

Proof. The property (Rt) is immediate. 
By Lemma 19 we can write 

(1) V e-" widt(., /?) dj? = ± ( ^ Y * 1 e-^+1>'V 

for every t > 0, T > 0 and fce {1, 2,.. .}, 

e~iT' widk(T, j3) dj3 = 0 for every f > 0, T __ 0 and fc e (1, 2, . . . } . 
0 

Now properties (R2) and (R3) are immediate consequences of (1) and (2) since 

fV t(*+ 1>'VdT = ^ - — - for t>0 and fce{l,2,...l. 

Jo A + iy + l 

Now we prove (R4). To this aim let us fix t > 0 and 5 > 0. Without loss of generali­
ty we can suppose <5 < f. According to (1) and (2) we have to verify 

(3) ± l_±lY + 1 r j " " ' e - t <*+ 1 ) l» t*d t+ f" e-**+1>/'T*d-l------*0. 

Since clearly (l/(52) (T — if _ 1 for every |T — t| _ d we easily get 

± /_±±Y+1 T f'+'e-^
+1>/»t*dT + I"" e-^+^Vdrl = 

= ± t_±iY+ 1 f e-t(k+i)/.Tfc dT = 
^' \ ' / J(t:t>0,|t-t|a«) 

= ± l_±±y+* r e-x*+DV ± (T _ ,)2 dT < 

_ ± ± t_±lY+ 1 f V * + i M , - A- dT = 
-<52fc!\ t j J0 

_ ± ±f_±iY+ 1 f°°e-t(t+l)/.(T* + 2 _ 2 . T k + l + . 2 T * ) d T = 

S 2 k \ \ I 1 Jo 
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- - - lfc + 1 V + 1 

~«52fc!V í . j 
(fc + 2)! _ _ (fe + 1)! | 2 fcj_ 

Ш ЄтT (-н 
= 4 T — " 2 + -1 = 4 — ^ — for every fce {1,2,...}, ^[fc-l-l J <52fc + 1 l ' 

which proves (3). 
Further, (Rs) follows from the following estimate for q = 1 (the full wording will 

be used later): 

(4) f V * V ( f" |wid4(T, /?)| d/A dT = 

/•OO r /•<» 4 

e~*V dB 

/•oo /•oo i 

= (fc + 1) e _ - V _ 1 dT • 
1 Jo J-oo(i + / 3 2 r + i ) / 2 

dт = 

dØ _ 

(k + l)(q-í)\ 

j - o o l + ^ 
dß 

for every x > 0, _ e {1, 2,...} and fce {1, 2,...}. 

It remains to prove the most complicated property (R6). 
We begin with some auxiliary considerations. 
It is easy to see that 

f °° 1 4- R2 f °° 1 
(5) e~*V - ^ - — d T = e"*V dT 

1 o - i7T ' r J - ( '-rri 'r 
x d* 

e-jr . ţ f-1. 

0-Th'r 
for every x > 0, J?e /"V _ e {1, 2,...} and fee {1,2,...}. 

The first term on the right hand side of (5) can be estimated as follows 

(6) I f V*V — drl < fV*V = -^7 

for every x> 0, /Jeff, qe{l,2,...} and fce{l, 2,...}. 
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We need a similar estimate also for the second term on the right hand side of 
(5) but this will be essentially more laborious. 

To this aim we first recall two elementary identities 

d_ 1 _ . fc- 1 p 

5o-íTí'r",t+,(i-.Ti')" 

Ч - Ï T Ï ' ) 

fc(fc - 1 ) 

*-x " (k +1) 2 

( - - T Ï ' Г 
for every T > 0, j5 e R and fc e {1, 2,...}. 

Integrating by parts and using (7) we obtain 

P2 foo 

(8) e - * 
Jo Л _ . 

(fc + l ) 2 Г" 

" l ) J o 

(--Tï'J 
fc(fc 

- I ) 2 Г00 

(* + i ) ' j 

fc+1 

dт2 

dт = 

(--Tï'У 
dт 

_ (fc + 1) 
fc(fc 

Г ( - Ï T T ' П 
Г l 

fc(fc-l)ЛJoЄ ( l - І ^ Д 

Дţ__i)!, + i___î  

dт + ì ß 

dт + 

w í 

fc(fc-i)" fc 

for every % > 0, J3 e ff and fc e {2, 3,...}, 

/32 

e Alт (-^'r 
dт -

_ ___+__! Г 
fc(fc-l)Jo 

2 ľ» d 2 

~ " т Є Л 'T 

rO-rrifl 
dт = 
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_ _ _ _ _ _ _ 
fc(fc 

•Jt^. 

Ѓ(-ÎTÏ'Г. 
dт = 

гSí,V*-2'> (fc + l ) 2 t*00 

fc(fc (-rh'J 
for every / > 0, /Jeff and kG {2, 3,...}, 

Í— i- îd.+-t-
*-' * ( * - ! ) 

< I O ) Í : e -«ť _ i -

(-»TÍ'J 
Li_! f 
- 1 ) J « 

dт = 

(fc + 1) 

fc(fc~Ъjo 
e - x т т « - i 

*Ҷ-ÏÏÏ 'У 
dт = 

|^j-V-V-' -(,-.),-) 
= ( - Î T T ' J T 

• - ^ T Ч f ^ - ^ V - 1 - 2X(fl - l)т«-2 + 
— V Jo fc(fc 

+ ( a - l ) ( c 7 - 2 ) т « - 3 ) 
v * - l 

dт 

(-ITI'J 
for every / > 0, jSeff, q G {3, 4,...} and fee{l, 2,...}. 

It follows from (8) that 

( Ц ) 
àx 

'**.- £ — - * ' 
J* ( - Ï T T Ғ . 

(fc + 1 ) 
fc(fc + 

(fc + 1 ) 2 

fc(fc - 1 ) 

for every x > 0, p e R and k e {2, 3,...}. 
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Further, by (9) and (10) 

(12) f 
dx I e^v-1 

(-'^Г 
- i £ f V - * ( Z V - 2OTT'-1 + q(q - l)т*- 2 )- * — 

) h '"'řTî') 

_ (fc + l) 2 t-00 

~ fc(fc 
dт 

for every x > 0, fieR, _G{2, 3,...} and fce {2, 3,...}. 

We obtain from (11) and (12) that 

(13) J 
dx 1 ßг 

(-ïh'Г 
dт 

(fc + l) 2 

fc(fc - 1) 

(14) 

- S ^ 1 ^ fV-tz a T + 2 )̂dT + 
fc(fc-l)J0 

_ (fc + 1 ) 2 / > i , 2 1 \ , (fc + i y - ^ f c + . i ) 2 

*(*-i)V z2 V %-i ) Kfc-i) 
for every x > 0. 0 e R and fc e {2, 3,...}, 

d 
<tø г e-^V"1 

o-iii'r 
_ (fc + ^)2 f V - t ø V + г^т '- 1 + q(q - l)г*"2)dт -

— 1) Jo fc(fc 

__+j) 2 

fc(fc - i )V ł - + 1 ŕ K ] ŕ-1 ) \k-i)f-* 
for every x > 0, jSe H, qe{2,3,...} and fee {2, 3,...}. 

Summarizing (13) and (14) we get 

.15) J 
dx Jo 

e *V _ 1 ß2 

— i- -df 

('-'^f • 
_ 4 _ _ + i ) _ _ _ _ _ 4 > 6 ^ _ = = 2 4 _ i L 
- fc(k-i)x4-1 z , _ 1 x*-1 

for every * > 0, )3 e ff, <j e {1, 2,...} and fc e {2, 3,...}. 
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It follows from (5), (6) and (15) that 

1 I г a 

(16) 
IJo 

e"-V wid*(т, ß) dт 
2л J . ' ~X*~<1 . 1 - -dт 

(-ïh'Г 
1 1 

2я 1 + )32 

f°° 1 

Є"-V 

J° Л - І . 

+ ЃJ 

(-^f 
dт 

2ní+ß-\f+1 x*-

for every x > 0, p e R, qe{l, 2,...} and fce{2, 3,...}. 

Now the property (R6) immediately follows from (4) (for fc = 1) and from (16). 

21. Remark. Proposition 20 shows that Theorem 12 is a formal consequence 
of Theorem 13 since the difference between the inequalities (A) (III) in Theorem 12 
and (A) (III) with $k = widfc, fc e {1, 2,.. .}, in Theorem 13 is only formal. 

22. Let us define rook(t9 B) = — -&1 e-2v* V(*+ir« for t > 0, p e R and 
ky'P) 2nJ{k + itfi) 

ke{l,2,...}. 
The sequence rook, fce{l, 2,. . .}, will be called the Rooney representative se­

quence. 

23. Lemma. 
1 Г00 

2ÍJ -0 

-ixß y/ki 
e-2V*V(fc + ií/J) (JO _ g2* / _ g-Цт/. + f/t) _J_ 

i yjnt ,/т V(fc + I-tjBf) 
for every t > 0, T > 0 and fc e {1, 2,...}, 

= 0 far ever;; * < 0, % 5g 0 and fc e {1, 2,...}. 

Proof. Use formulas [9] 4.5 (3) and (27) and Fourier inversion theorem. 

24. Proposition. The sequence roofc, fce{l,2,...}, is a Laplace representative 
sequence. 

Proof. The property (Rx) is obvious. 
The properties (R2) —(R4) follow from Lemma 23 by using Laplace's asymptotic 

evaluation treated in [10], Ch. VII, Section 2. Cf. the proof of Theorem 1 in [11]. 
Now we have to prove (R5) and (R6). But this can be done in a very similar way 

as in the proof of Proposition 20 and thus we omit the details. 

25. A Laplace representative sequence $k, fce{l, 2,...}, is called a summatory 
representative sequence if the function e~ir/? 4>k(t, /?) is independent of t > 0 for every 
fieR and fce{l,2,...}. 
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26. Proposition. Let <Pke(0, oo) x R -> Cf0r erery ke {1, 2, . . . } . The sequence 
<Pk, ke {1, 2,. . .}, is a summatory representative sequence if and only if 

(a) the function e~itfi <Pk(t, /?) is independent of t > 0 for every peR and ke 
-{1,2,...}, 

(b) the conditions (Ri) — (R4) are fulfilled. 

Proof. We only have to prove that the conditions (R5) and (R6) hold if the as­
sumptions (a) and (b) are fulfilled. 

Let us denote Wk(p) = eitp <Pk(t, p) forPeR and fc e {1, 2,.. .}, which is admissible 
according to (a). 

It follows from (Rt) which is valid according to (b) that 

(1) p \Vk(p)\ dp = I " le"1^ $k(t, p)\ d/? < GO for every k e {1, 2,. . .}. 
J — 00 J — 00 

Using (l) we obtain 

(2) f" V e-ffifaflh dPdz = f"e-"Tdt f" \<Fk(P)\ dp = A f°° |«ffc(B)| d/J 
Jo J-00 Jo J -00 X j - o o 

for every 7 > 0 and fc e {1, 2, . . .}. 

But (1) and (2) prove (R5). 
Further, we can write 

(3) f °V*V <£*(T, P)dT = ! e"*V eiT/? Vk(P) dr = 
Jo Jo 

= re-(-i^v dr n(/0 =, *' +1 y*08) 
Jo (X-W 

for every x> 0, PeR, qe{l,2,...} and fce{l, 2,. . .}. 

Using the Fourier inversion theorem we obtain from (Rt) and (R2), which are 
applicable according to (b), that 

(4) \<Fk((})\ = 11 r c««'( f" e"1" y ^ d i , ) dtl = 

1 r°° i r°° i 1 r°° i r°° 
< — e""' f^i,) dij dr = — e-^e""1" **(*, if) d/j 

1 r°° i r°° 
= - e - ' - ' ^ . f i J d , 

2 j t J - o o l J - o o I 

dт = 

dст < — 
~2л 

for every ft e ff and fc e {1, 2,...}. 
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Now (3) and (4) give 

(5) |[V*V$fc(T,/?)dT 
I J 0 

< ± _ _ 1 _ _ < J _ <l! l 

cesti 

2K (X2 + /?2)<*+1>'2 - 2% X
q+1 X2+P2 

for every x > 0, PeR, qe{l,2,...} and fce{l,2,...}. 

But (5) implies (R6). 
The proof is complete. 

27. Remark. An easy inspection shows that the conditions (1^) —(R4) from the 
preceding Proposition 26 are almost identical with (Ai), (C), (D), (E) of [3], p. 224 
and 225. The only difference is in (R2) and (C). As to this difference, see Remark 16. 

28. Examples of summatory representative sequences: 

(C) Cesaro representative sequence: 

k(t9p) = ±ewfi-\n\ for r > 0 , \p\gk and fce{l,2,...}, 
2K \ k J 

= 0 for r > 0 , j8>fc, fce{l,2,...}, 

(A) Abel representative sequence: 

2ibek(t,p) = —Q^Q-mik for r > 0 , peR and k e { l , 2 , . . . } , 
2K 

(G) Gauss representative sequence: 

gauk(t,p) = —eltpQ-p2/k2 for f > 0 , PeR and fce{l,2,...}, 
2K 

(N+) Nemo right representative sequence: 

1 fc2 

nem+(f,j?) = — e 1 * — - — - for f > 0 , fieR and fce{l,2,...}, 
2K (fc - i/?)2 

(N") Nemo left representative sequence: 

for f > 0 , PeR and k e { l , 2 , . . . } . nem;/(í, ß) = i - ei,ß 

2it 

k2 

(k + iß)2 

29. Lemma. We have 

) - î - Г . - Цi-t)ß Л -Щäß l!_^d« = ±l_Í__lY 
V k) 2n\ ifc(í - T) ) ' 

84 



« i í 
« i í 
^ií 

p „ i + (*(. - z)f 

e-i(t-»we-í-/*- djS = —___ e-w*-'))2!* , 

2V^ 

e -K. -o í _______— d / S = k
2 ( T - f) e - t ( t - ( ) , T > t, 

(fc - i/3) 
= 0 , t __í, 

( n - ) _L Q-*-w e
 djS = k2(t - T) e"k(f-T), T < t, 

v y 2TT (k + ip)2 

= 0, T = t, 

for every t > 0, r e l ? and fce {1, 2 , . . . } . 

Proof. The identities (c), (a) and (g) are frequent, see e.g. [4], p. 407. 

In the case of (n+) and (n~) it is easy to calculate the Fourier transforms of the right 
hand sides of these identities and then use the Fourier inversion theorem. 

30. Proposition. The sequences cesfc, abe*, gaufc, nemfc
+, nem^~, k e {1, 2,. . .} are 

Laplace representative sequences. 

Proof. Use Proposition 26 and Lemma 29. 

31. Corollary. Let M = 0, co = 0 and F e (Re > co) -> E. If the space E is re­
flexive, then the following statements (A) and (B) are equivalent: 

(A) (I) the function F is analytic in (Re > co), 

(II) \\F(z)\\ = — for every Re z > co, 
Re z — co 

(III) one of the following inequalities holds: 

< M, (w) i - iг ғ±±iћ dß 
K } 2 Л | | J _ Л l - i ( # + l))jSľ+1 

( R ) _ _ _ | Ґ " V f e e 2 * Є-WW+W>F(<X + iß)dß 
2к\\)_xs/(k + itß) 

(C) -L I ľ e'»' (í - Щ FUt + iß) dß\ __ м, 

(A) — I Г é*^-wik Ғ(a + ijí) dß\ й M, 
2 л II J - 00 II 

__ м, 
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idØ (G) - i I V e^e-"2/*2 F(a + ip) 
2lí IIJ-OO 

( N" )š|D ,"(rrW f ("+ i«d ř 

< м. 

< м, 

<м 

C,fcє{l,2,...}. 

for every t > 0, a > a> and fce {1, 2,...}, 

(B) as w Theorem 13. 

Proof. Use Theorem 13 and Propositions 20, 24 and 30. 

32. Theorem. Letco^0,fe (0, oo) -> E and <Pk e (0, oo) x i 

// 

(a) the function f is measurable on (0, oo), 
(P) there is a constant M ^ 0 such that \\f(t)\\ ^ Mew' for almost every t > 0, 
(y) the sequence <Pk9 fce {1, 2,...}, satisfies the conditions (Rj) —(R4), 

then r o o 

e" **(*, P) ( e-<«+i^VW dT) d/J — >f(t) 
J-oo V J o / ke{l,2,...} 

for every continuity point t > 0 of the function f and every a > co. 

Proof. According to Fubini's theorem we get from (Rx) and (a), (P) that 

(1) P ^(,j)!)/'r00e-(«^«V(T)d^d^= n r e-
i^(.,/0d/Ae-«V(T,dT 

for every t > 0, a > co and fce {1, 2,...}. 

Let us now write 

(2) (j)k(t,T) = f°° e-'lxP<Pk(t,p)dp for t :> 0, i e U and fce{l,2,...}. 
«y — 00 

According to (R2), (R3) and (R4) we obtain from (2) that 

/•oo 

(3) |0fc(f, T)| dT ^ 1 for every t > 0 and fc e {1, 2,...}, 
J — oo 

/•oo 

(4) </>k(t, T) dT - ^ ^ * 1 for every t > 0, 
J — 00 

(5) I |<M'> T)| dT -r-^ 0 for every t > 0 and 5 > 0. 
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Let us now consider the integral J* <t>k(t, T) e"at/(T) dT for some a > co and t > 0, 
at which the function / is continuous. Splitting the integral in question into two 
parts, on a small neighborhood of t and on the rest, and using (3), (4) and (5) we get 
after a little computation that 

/•oo 

(6) <t>k(t> *) e ""*/(*) dT fc_^oQ> e"a / /(0 for every continuity point t > 0 of / and 
Jo 

for every a > co. 

The desired result follows from (l), (2) and (6). 

33. Corollary. Let co ^ 0 and / G (0, OO) -> E. If the assumptions (a) and (P) 0/ 
Theorem 32 hold, then 

(w) iL^m^ 
(R) yi^^lf^ 
(c) JL J"^+i">< (i - M) ( J V - w / W &) <n ̂ — /(o, 

(A) — P e(«
+i")'e-l"l/" ( f V ( l + i»7(T) dA d/J — >f(<), 

2^J-oo VJo / k7{?,2,...) 

(G) J - [" e<«+w<e-*
2t*2 C f V ( « + " > * / ( T ) d ^ dj? — >/(*), 

2rcJ-«, VJo / tell°,2,...) 

(N*> 5 f r ' " <^w dv'"""/w d')" ^ z : m 

(N-> s j_r"" arm (Lv,"""/W di)d« K Z ; /W 

for every continuity point t > 0 of the function f and for every a > co. 

Proof. Immediate consequence of Theorem 32 and Propositions 20, 24 and 30. 

34. Theorem. Let co ^ 0, fe (0, oo) -> F, <Pke (0, oo) x R -> C, fee {l, 2, . . .}, 
and 9 e C.If 
(a), (p), (y) as in Theorem 32, 

(5) f ( p e"1^ <Pk(t, p)dfi\ d T - - — 3 for every t > 0, 
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then 

e" T *&, /J) ( fV< ' + 1 «vW dt) d/» — •Mm (9/(s)) + lim ((1 - »)f(s)) 
J — \Jo / *.{i.2....) £ { ;-» 

/or efery f > 0 suc/i f/iaf lim(9/(s)) and lim((l — 5)f(s)) cxisi and for every a>co. 
s-*t S -+Í 
s < ř s > ř 

Proof. We proceed similarly as in the proof of Theorem 32. It is only necessary 
to split the integral J^ <f>k(t, T) e~ **/(*) dT into two parts: J£ and Jf°° and utilize the 
additional assumption (8). 

35. Proposition. We have for every t > 0: 

(a) f' ( r e - " mdk(t, p) dp) dt ^ — » * 
J - o o \ J - o o / *e{l,2,...} 

and ffte same relation for roofc, cesfc, abefc and gaufc, 

(b) f' ( f" e-«" nem+(., /?) dB) dt j ^ — * 0, 
J -oo \ J - o o / fce{l,2,...} 

(c) f' ( r e-1* nem,-(., /?) d/A dr -------* 1. 
J - o o \ J - o o / *e{l,2,...} 

Proof. An easy consequence of Lemmas 19, 23 and 29. 

36. Corollary. Let co ^ 0 and fe (0, oo) -» £. / / fhe assumptions (a) and (P) 0/ 
Theorem 32 hold, then the statements of Corollary 33 are true with the following 
extensions: 

(a) the relations (W), (R), (C), (A) and (G) hold with \(f(t+) + /(r_)) instead 
of f(t)for every t > 0 at which f(t+) andf(t-) exist, and for every a > co, 

(b) the relation (N+) holds withf(t+) instead of f(t)for every t > 0 at which f(t+) 
exists and for every a > co, 

(c) the relation (N") holds with f(t~) instead of f(t) for every t > 0 at which 
f(t-) exists and for every a > co. 

Proof. Use Theorem 34 and Proposition 35. 

37. Remark. The preceding Theorem 32 (or 34) is a restricted form of the so 
called inversion theorem. The restriction consists in the requirement of continuity 
(or of the existence of certain limits) of the given function at the point of approxi­
mation. A more complete statement, the approximation almost everywhere or at the 
Lebesgue points requires a strengthening of the property (R2)- Such conditions are 
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known from the closely related theory of the so called singular integrals, see [6], 
Section 3.9 and [7], Ch. 10. The most complete answer to this problem was given by 
D. K. Faddeev in [8]. 

38. Remark. Notice (cf. Remark 15) that the descriptive part of Theorem 13, 
i.e. the implication (B) => (A), requires only the properties (Rj) and (R2), but the 
existence part, (A) => (B), needs the whole set of properties (R^—^g). Theorem 32 
on the restricted inversion stands in the middle and is based on the properties 
(R.)-(R4). 
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