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ASYMPTOTIC BEHAVIOUR OF NONOSCILLATORY
SOLUTIONS OF THE FOURTH ORDER DIFFERENTIAL

EQUATIONS

MONIKA SOBALOVÁ

Abstract. In the paper the fourth order nonlinear differential equation

y(4) + (q(t)y′)′ + r(t)f(y) = 0, where q ∈ C1([0,∞)), r ∈ C0([0,∞)),
f ∈ C0(R), r ≥ 0 and f(x)x > 0 for x 6= 0 is considered. We investi-

gate the asymptotic behaviour of nonoscillatory solutions and give sufficient
conditions under which all nonoscillatory solutions either are unbounded or

tend to zero for t→∞.

1. Introduction

Consider the fourth-order differential equation with the middle term

y(4) + (q(t)y′)′ + r(t)f(y) = 0 ,(1)

where q ∈ C1(R+), r ∈ C0(R+), R+ = [0,∞), r ≥ 0 on R+, f ∈ C0(R) and
f(x)x > 0 for x 6= 0 and∫ ∞

0

r(t)dt =∞, lim inf
|x|→∞

|f(x)| > 0(2)

will be supposed.
A continuous function y : R+ → R is said to be oscillatory if it is nontrivial in

any neighbourhood of ∞ and there exists a sequence of its zeros tending to ∞.
A continuous function y : R+ → R is called solution of Eq. (1) if it has deriva-

tives up to the fourth order and fulfills (1).
A solution is called nonoscillatory if it is different from zero in a neighbourhood

of ∞.
This paper is concerned with asymptotic behaviour of nonoscillatory solutions of

Eq. (1). Sufficient conditions will be given under which all nonoscillatory solutions
either are unbounded or tend to zero for t→∞.

For q ≡ 0 the similar problems are hardly studied mainly under the concept of
Property A, see e.g. [4]. Recall, that (1) has Property A if every proper solution
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y is oscillatory. It is necessary to say that the structure of solutions of Eq. (1) is
more complex, by the reason, that for q ≡ 0 there is no nonoscillatory solution
y with an oscillatory derivatives y(j), j ∈ {1, 2, 3} (so called a weakly oscillatory
solution), see e.g. the set N0, defined below.

For q ≡ 1, Kiguradze proved that under certain assumptions nonoscillatory
solutions of Eq. (1) do not exist.

Proposition 1. ([3], Cor. 1.1, 1.2, 1.3). Let q ≡ 1 and |f(x)| ≥ |x| λ on R and∫∞
tµ(λ)r(t) dt = +∞, where

µ(λ) =


1 for λ > 1 ,
λ for 0 < λ < 1 ,
0 for λ = 1 ,

then every solution of Eq. (1) is oscillatory.

The following example shows that nonoscillatory solution of Eq. (1) may exist.

Example 1. Let α ∈ (0, 1). The equation y(4) + (q(t)y′)′ + y = 0, with q(t) =
(t+1)α+1

α (t + 1 − 1
1−α + 1

(1−α)(t+1)α−1 − α(α+1)(α+2)
(t+1)α+3 ) > 0, t ≥ 1

1−α − 1 has the
solution of the form y = 1 + 1

(t+1)α →t→∞ 1.

Another impulse is that the similar problems are studied for the third order
differential equation with the middle term

y′′′ + q(t)y′ + r(t)f(y) = 0 ,

see e.g. [5], [2].
The set of all nonoscillatory solutions of Eq. (1) we will denote N . The structure

of N was studied e.g. by Bartušek and Sobalová, see [1]. For our purpose N can
be devided in the following way:
N = N0 ∪N+ ∪N−, where

N0 ={y ∈ N : y(t) 6= 0 for t ≥ Ty ∈ R+, y
′ is an oscillatory function} ,

N+={y ∈ N : y(t)y′(t) > 0 for t ≥ Ty ∈ R+} ,

N−={y ∈ N : y(t)y′(t) < 0 for t ≥ Ty ∈ R+} .
Following lemmas deal with solutions of N + and N− with regard to signs or
oscillatory character of y(i) for i = 2, 3, see [1].

Lemma 1. Let y ∈ N+. Then for large t one of the following statements holds:
(i) either y(t)y′′(t) > 0 or y′′ is an oscillatory function;
(ii) or y(t)y′′(t) < 0 and either y(t)y′′′(t) > 0 or y′′′ is an oscillatory function.

Lemma 2. Let y ∈ N−. Then for large t
(i) either y′′ is an oscillatory function
(ii) either y(t)y′′(t) > 0, y′′′ is an oscillatory function

(iii) or y(t)y′′(t) > 0, y(t)y′′′(t) < 0.
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Our study will be differentiated to two situations q ≤ 0, q ≥ 0 in view of
different results in these cases, see [1].

Investigation of asymptotic properties of N will use reducing of order of Eq. (1)
obtaining by the double integration of Eq. (1).

Let y be a solution of Eq. (1) and τ ∈ R+. Then

y′′′(t) + q(t)y′(t) = K −
∫ t

τ

r(s)f(y(s)) ds , t ≥ τ ,(3)

y′′(t) = y′′(τ )−
∫ t

τ

q(s)y′(s) ds +K(t − τ )−
∫ t

τ

∫ s

τ

r(ξ)f(y(ξ)) dξ ds ,(4)

where K = y′′′(τ ) + q(τ )y′(τ ).

2. Case q ≥ 0

In view of following lemma we will concentrate attention only to N 0 and N−.

Lemma 3. [1]. Let q ≥ 0 be valid. Then every nonoscillatory solution of Eq. (1)
belongs to N0 ∪N−.

Examples of solutions of N 0 are given by Kiguradze [3] for q ≡ 1. It is necessary
to say that these examples do not satisfy the first condition of (2). The question
of the existence of an equation satisfying condition (2), for which N0 6= ∅, is open
to this time.

The following proposition shows that y ∈ N0 can not have one-side oscillatory
y′ such that y(t)y′(t) ≥ 0 for large t.

Proposition 2. Let y ∈ N 0. Then there exists the sequence {tk}∞k=1 such that
lim
k→∞

tk =∞ and y(tk)y′(tk) < 0, k = 1, 2, . . ..

Proof. Let on the contrary y(t) > 0, y′(t) ≥ 0, t ≥ T ≥ Ty. Then y is positive
and nondecreasing on [T,∞). We will note M1 = min

T≤t<∞
f(y(t)). According to

(2), M1 > 0. Further, using (3),

y′′′(t) ≤ y′′′(t) + q(t)y′(t) = K −
∫ t

T

r(s)f(y(s)) ds

≤ K −M1

∫ t

T

r(s) ds→t→∞ −∞ ,

which contradicts to the oscillation of y′′′.

Theorem 1. Let q ≥ 0, q′ ≤ 0 for t ≥ T ∈ R+ and y ∈ N0 be valid. Then
lim inf
t→∞

|y(t)| = 0.

Proof. Let y ∈ N0 and y(t) > 0 for t ≥ Ty for certainty. We use Eq. (4), where τ ≥
T̄ = max{T, Ty}. Using integration per partes and putting k = y′′(τ ) + q(τ )y(τ )
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it follows from (4), that

y′′(t) =k − q(t)y(t) +
∫ t

τ

q′(s)y(s) ds +K(t − τ )

−
∫ t

τ

∫ s

τ

r(ξ)f(y(ξ)) dξ ds ≤ k + K(t− τ ) , t ≥ τ .(5)

Only two cases are possible.
a) There exists τ ≥ T̄ such that y′(τ ) = 0 and y′′′(τ ) < 0.
b) For arbitrary zero τ of y′ such that τ ≥ T̄ , y′′′(τ ) ≥ 0 is valid.
Let (a) be valid. Then K < 0 and it follows from (5), that lim

t→∞
y′′(t) = −∞.

It contradicts to the fact that y′′ is oscillatory function.
Then (b) is valid. Let τ1 ≤ τ be arbitrary zero of y′. But it follows from (3) that
τ∫
τ1

r(s)f(y(s)) ds ≤ K. As y′ is oscillatory and r(t) and f(y(t)) are positive we

receive ∫ ∞
τ

r(s)f(y(s)) ds ≤ K .(6)

On the contrary suppose that lim inf
t→∞

y(t) = C > 0. Then according to the second

inequality of (2) we have inf
t∈[τ,∞)

f(y(t)) > 0 but this together with (6) contradicts

to
∞∫
0

r(s) ds =∞.

Remark 1. It follows from (6), that we obtain the following integral estimation
for y ∈ N0 ∫ ∞

0

r(s)|f(y(s)| ds <∞ .

According to the definition of N−, |y(t)| is decreasing function for t ≥ Ty but
not always to zero as we can see in Example 1. The following theorem gives a
sufficient condition on functions q and r under which y ∈ N− tends to zero.

Notation. q̄(t) = max
0≤s≤t

q(s).

Theorem 2. Let q ≥ 0 and

lim
t→∞

∫ t
0

∫ s
0
r(ξ) dξ ds
q̄(t)

=∞(7)

be valid. Then lim
t→∞

y(t) = 0 for y ∈ N−.

Proof. Let y ∈ N− and y(t) > 0 for t ≥ Ty for simplicity. Thus y is decreasing
for t ≥ Ty. Let τ ≥ Ty be such that K ≤ 0, where K is given by (4). It is
possible due to Lemma 2. On the contrary we will suppose lim

t→∞
y(t) = C > 0.
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Put c1 =
∫ τ

0

∫ s
τ
r(ξ) dξ ds, c2 =

τ∫
0

r(ξ) dξ, q̄τ(t) = max
τ≤s≤t

q(s). As, with respect to

(2) ∫ t
0

∫ s
0 r(ξ) dξds
q̄(t)

≤
c1 + c2(t− τ ) +

∫ t
τ

∫ s
τ r(ξ) dξds

q̄τ (t)
≤

2
∫ t
τ

∫ s
τ r(ξ) dξ ds
q̄τ(t)

for large t, (7) yields

lim
t→∞

∫ t
τ

∫ s
τ
r(ξ) dξ ds
q̄τ (t)

=∞ .(8)

We can restrict to (4). Using Lemma 2 there exists the sequence {tk}∞k=1, tk ≥ τ
such that lim

k→∞
y′′(tk) ≥ 0. Hence (4) yields

− y′′(τ )− q̄τ (tk)y(τ ) ≤ y′′(tk) − y′′(τ ) + q̄τ(tk)[y(tk)− y(τ )]

≤y′′(tk) − y′′(τ ) +
∫ tk

τ

q(s)y′(s) ds ≤ −M2

∫ tk

τ

∫ s

τ

r(ξ) dξ ds ,

where M2 = min
C≤s≤y(τ)

f(s) > 0 from (2) and f(x)x > 0. Further we divide this

inequality by q̄τ(tk) and use (8) and Lemma 2. We obtain a contradiction

M ≤ − y
′′(τ )
q̄τ(tk)

− y(τ ) ≤
−M2

∫ tk
τ

∫ s
τ r(ξ) dξ ds

q̄τ(tk)
→k→∞ −∞ ,

where M = −y′′(τ)
q(τ) − y(τ ) for y′′(τ ) > 0 and M = −y(τ ) for y′′(τ ) ≤ 0.

Remark 2. In Example 1 condition (7) is not satisfied, lim
t→∞

t
0

s
0 r(ξ) dξ ds

q̄(t) = 0.

Consequence 1. Let q ≥ 0 and q′ ≤ 0. Then every nonoscillatory solution of
Eq. (1) is of the type N0 and lim inf

t→∞
|y(t)| = 0.

Proof. As according to [1] Th. 3 the set N− = ∅, the conclusion follows from
Th. 1.

Remark 3. Conseq. 1 extends, in some sence, the results in Prop. 1.

3. Case q ≤ 0.

For q ≤ 0 we receive N0 = ∅ without any further assumptions on Eq. (1),
putting certain conditions on functions q and r we can eliminate also some sub-
classes of N− and N+, see [1]. Now we will study asymtotic behaviour of N−

and N+. Solutions y ∈ N− are decreasing in their absolute values and there are
two possibilities of their behaviour, either lim

t→∞
|y(t)| = C > 0 or lim

t→∞
y(t) = 0.

Following theorem eliminates the case lim
t→∞

|y(t)| = C.

Theorem 3. Let q ≤ 0 be valid. Then lim
t→∞

y(t) = 0 for y ∈ N−.
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Proof. Let y ∈ N− and y(t) > 0 for t ≥ Ty for simplicity. On the contrary we
will suppose lim

t→∞
y(t) = C > 0. Using the structure of N− there exists τ ≥ Ty

such that y is decreasing, y′(t) < 0 on [τ,∞). Further there exists the sequence
{tk}∞k=1 such that tk ≥ τ , lim

k→∞
tk = ∞ and either y′′′(tk) ≥ 0 (Lemma 2 (i)-(ii))

or y′′′(tk)→ 0 as k →∞ (Lemma 2 (iii)). Hence (2) and (3) yield

y′′′(tk) ≤ y′′′(tk) + q(tk)y′(tk) ≤ K −M2

∫ tk

τ

r(s) ds→k→∞ −∞ ,

where M2 is given in the proof of Th. 2. The contradiction proves the conclusion.

For y ∈ N+ we receive again two situations. As |y(t)| is increasing then either
lim
t→∞

|y(t)| = C > 0 or lim
t→∞

|y(t)| =∞.

Next example is an illustration of increasing, bounded solution y ∈ N+.

Example 2. The equation y(4)+(q(t)y′)′+ 1
t+1y = 0, with q(t) = (t+1)α+1

α (− ln(t+
1) − 1

α
((t + 1)−α − 1) − α(α+1)(α+2)

(t+1)α+3 ) < 0, t ∈ (0,∞), α > 0 is small enough has
the solution y = 1− 1

(t+1)α ∈ N+.

Now we are interested in a condition on functions q and r under which
lim
t→∞

|y(t)| =∞.

Theorem 4. Let q ≤ 0,

lim inf
t→∞

∫ t
0 r(s) ds
|q(t)| > 0(9)

and y ∈ N+ be valid. Then lim
t→∞

|y(t)| =∞.

Proof. Let y ∈ N+. Without loss of generality we can suppose y(t) > 0, t ≥ Ty .
According to the structure of nonoscillatory solutions given by Lemma 1 (i), it is
evident that lim

t→∞
y(t) =∞ immediately. Contrarily we assume lim

t→∞
y(t) = C <∞

for nonoscillatory solutions given by Lemma 1 (ii). In view of this lemma there
exists τ ≥ Ty such that y′′(t) < 0 for t ≥ τ , hence

lim
t→∞

y′(t) = 0 ,(10)

in opposite case y could change its sign. Further there exists the sequence {tk}∞k=1,
tk ≥ τ such that lim

k→∞
tk =∞ and y′′′(tk) ≥ 0. Then using (3)

q(tk)y′(tk) ≤ K −
∫ tk
τ r(s)f(y(s)) ds

≤ K −M3

∫ tk
τ r(s) ds ≤ −M3

2

∫ tk
τ r(s) ds

for large k, where M3 = min
y(τ)≤s≤C

f(s) > 0. Hence for k→∞

y′(tk) ≥ M3

2

∫ tk
τ
r(s) ds
|q(tk)|

≥ M3

4
lim inf
k→∞

∫ tk
0
r(s) ds
|q(tk)| > 0 .
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From (10) and assumptions we have the contradiction.

Remark 4. In Example 2 we received lim inf
k→∞

t
0 r(s) ds

|q(t)| = 0.

Consequence 2. Let q ≤ 0 and (9) be valid. Then for all nonoscillatory solutions
either lim

t→∞
y(t) = 0 or lim

t→∞
|y(t)| =∞.
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