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THE VALUATED RING OF THE ARITHMETICAL FUNCTIONS
AS A POWER SERIES RING

EMIL D. SCHWAB AND GHEORGHE SILBERBERG

Abstract. The paper examines the ring A of arithmetical functions, iden-
tifying it to the domain of formal power series over C in a countable set of

indeterminates. It is proven that A is a complete ultrametric space and all
its continuous endomorphisms are described. It is also proven that A is a

quasi-noetherian ring.

In [2], E. D. Cashwell and C. J. Everett have proved that the set of all arithmeti-
cal functions A constitutes a unique factorization domain under ordinary addition
and Dirichlet product defined by:

(f ∗ g)(n) =
∑
d|n

f(d)g(
n

d
).

This domain is isomorphic to the domain A ′ of formal power series over C in a
countable set of indeterminates. The authors of [2] have proved that the theorem
on unique factorization into primes, up to ordering and units, holds in A′ and
hence must hold in A.

Let the primes of N∗ be listed in any definite order p1, p2, . . . , ps, . . . and let

A′ = {F =
∞∑
k=0

ak+1X
α1(k+1)
1 X

α2(k+1)
2 . . .Xαs(k+1)

s . . . ,(1)

where ak+1 ∈ C and p
α1(k+1)
1 . . . pαs(k+1)

s . . . = k + 1} .
We emphasize that the only restriction of these series is that only a finite number
of Xi actually appear (i. e. have αi(k + 1) > 0) in any term. Then ϕ : A → A′

defined by:

ϕ(f) =
∞∑
k=0

f(k + 1)Xα1(k+1)
1 X

α2(k+1)
2 . . .Xαs(k+1)

s . . . (∀)f ∈ A(2)

is a ring isomorphism ([2]).
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We choose α ∈ (0, 1) and we define a discrete nonarchimedian valuation of
rank 1, v′ : A′ → R ∪ {∞}, such that

v′(F ) =
{
−logα(min{k + 1|ak+1 6= 0}) if F ∈ A′ \ {0}

∞ if F = 0 .(3)

Then, putting

|F |′ = αv
′(F ) =

{ 1
min{k+1|ak+1 6=0} if F ∈ A′ \ {0}

0 if F = 0
(4)

we get a nonarchimedian norm on A′, and if we put

d′(F,G) = |F − G|′ (∀)F,G ∈ A′(5)

the pair (A′, d′) becomes an ultrametric space.
We may now define a nonarchimedian valuation v : A→ R ∪ {∞} as follows:

v(f) = v′(ϕ(f)) (∀)f ∈ A .(6)

Consequently, we obtain a nonarchimedian norm on A

|f | = αv(f) (∀)f ∈ A(7)

and also a distance

d(f, g) = αv(f−g) (∀)f, g ∈ A .(8)

With respect to the distance d, A becomes an ultrametric space. Moreover, ϕ is
an isometry between (A, d) and (A′, d′). The topology notions relative to A will
always refer to the canonically defined ones, by the ultrametric d.

Theorem 1. A is a complete ultrametric space. Moreover, there exists in A
a countable set {πk}k∈N∗ such that the C-algebra generated by these elements
C[π1, π2, . . . , πn, . . . ] is dense in A, and the set

{πα1(k+1)
1 π

α2(k+1)
2 . . .παs(k+1)

s . . . , k ∈N, k+1 = p
α1(k+1)
1 p

α2(k+1)
2 . . . pαs(k+1)

s . . .}
represents a Schauder base in the C-algebra A, that is, every f ∈ A may be written
as a convergent series

f =
∞∑
k=0

f(k + 1)πα1(k+1)
1 π

α2(k+1)
2 . . .παs(k+1)

s ,(9)

where k + 1 = p
α1(k+1)
1 p

α2(k+1)
2 . . . pαs(k+1)

s .

Proof. Because ϕ is an isometry and it is also an isomorphism of C-algebras, it
is sufficient to prove the statements for the C-algebra A′. We will prove first that
A′ is a complete ultrametric space. Let

{Gn =
∞∑
k=0

ak+1,nX
α1(k+1)
1 X

α2(k+1)
2 . . .Xαs(k+1)

s }n∈N

be a Cauchy sequence. Then for every ε > 0 there exists n0(ε) ∈ N such that
|Gm − Gn|′ < ε for every m,n ≥ n0(ε). Thus (∀)k ∈ N (∃)n0(k) ∈ N such that
al+1,m = al+1,n (∀)l ∈ {0, 1, . . . , k}, (∀)m,n ≥ n0(k). We may assume that for
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every k ∈ N, n0(k) is the smallest natural number with the before-mentioned
property. Then

n0(0) ≤ n0(1) ≤ n0(2) ≤ . . . .

We consider

G =
∞∑
k=0

ak+1,n0(k)X
α1(k+1)
1 X

α2(k+1)
2 . . .Xαs(k+1)

s ,(10)

and it is obvious that Gn converges to G. So, A′ is a complete ultrametric space
and the same is also true for A.

Now, for every F ∈ A′ we may write

F =
∞∑
k=0

ak+1X
α1(k+1)
1 X

α2(k+1)
2 . . .Xαs(k+1)

s

= lim
n→∞

n∑
k=0

ak+1X
α1(k+1)
1 X

α2(k+1)
2 . . .Xαs(k+1)

s .

Denoting by πi = ϕ−1(Xi) (∀)i ∈N∗, we observe that πi(n) = δpi,n (∀)i, n ∈N∗,
that the set {π1, π2, . . . , πi, . . .} is contained in the maximal ideal of the local ring
A, and that |πi| = 1

pi
(∀)i ∈ N∗. From these remarks, it follows that the general

term of the series (9) converges to zero and therefore this series is a convergent
one.

Keeping in mind that ϕ is an isometry of C-algebras, Theorem 1 is completely
proved.

It is well known that A is not a noetherian ring. We will prove that A is,
however, a quasi-noetherian ring. We need some definitions.

Definition 1. A valuated ring A is called B-ring if
i) |x| ≤ 1, (∀)x ∈ A ;
ii) (∀)x ∈ A with |x| = 1, it results that x is a unit in A.

Definition 2. A B-ring A is called quasi-noetherian if every ideal I ⊂ A is quasi-
finite, that is (∃)ak ∈ A (k ∈ N∗) with limk→∞ ak = 0 such that every a ∈ I can
be written as a sum of a convergent series

a =
∞∑
k=1

ckak , ck ∈ A .(11)

Theorem 2. A is a quasi-noetherian ring.

Proof. It is obvious that A is a B-ring. It is known ([1], p. 56) that a B-ring A is
quasi-noetherian if supf∈M |f | < 1 and M , the maximal ideal of A, is quasi-finite.

If f ∈M , then |f | ≤ 1
2 < 1. From Theorem 1 we deduce that M is quasi-finite.

Hence A is a quasi-noetherian ring.

As a last result, we will describe the shape of the continuous C-endomorphisms
of A.
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Theorem 3. Every continuous endomorphism θ of the C-algebra A is defined by:

θ(πi) = γi, i ∈N∗, where(12)

lim
k+1=p

α1(k+1)
1 p

α2(k+1)
2 ...p

αs(k+1)
s →∞

γ
α1(k+1)
1 γ

α2(k+1)
2 . . . γαs(k+1)

s = 0 .

Proof. In order to define a continuous endomorphism θ of the C-algebra A, it is
sufficient to define θ on the set {πk}k∈N∗ .

The statement of Theorem 3 results now from Theorem 1.
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