Archivum Mathematicum

Antonija Duvnjak; Eduard Marusié-Paloka
Derivation of the Reynolds equation for lubrication of a rotating shaft

Archivum Mathematicum, Vol. 36 (2000), No. 4, 239--253

Persistent URL: http://dml.cz/dmlcz/107738

Terms of use:

© Masaryk University, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/107738
http://project.dml.cz

ARCHIVUM MATHEMATICUM (BRNO)
Tomus 36 (2000), 239 — 253

DERIVATION OF THE REYNOLDS EQUATION FOR
LUBRICATION OF A ROTATING SHAFT

ANTONIJA DUVNJAK AND EDUARD MARWIC-PALOKA

ABSTRACT. In this paper, using the asymptotic expansion, we prove that
the Reynolds lubrication equation is an approximation of the full Navier—
Stokes equations in thin gap between two coaxial cylinders in relative motion.
Boundary layer correctors are computed. The error estimate in terms of
domain thickness for the asymptotic expansion is given. The corrector for
classical Reynolds approximation is computed.

1. INTRODUCTION

We study the lubrication process of a slipper bearings. A circular shaft of radius
R and length [ rotates on lubricated support with angular velocity w. Between
the shaft and the support there is a thin domain, of thickness ¢ < [, completely
filled with a viscous incompressible fluid (lubricant) injected by some prescribed
velocity. Our goal is to find the effective equations governing the flow of that thin
liquid film.
We start from the Navier-Stokes system describing the microscopic flow of a viscous
fluid in thin domain between two coaxial cylinders in relative motion. Unlike in
[7], where the technique of two scale asymptotic expansion has been used only in a
formal way, we derive rigorously the basic equations for hydrodynamic lubrication
with a viscous incompressible fluid. Performing a precise asymptotic analysis of
this singularly perturbed problem we study the behaviour of the flow as ¢ — 0.
At the limit, we find the classical Reynolds equations governing the 2-dimensional
macroscopic flow, as an approximation of the Navier-Stokes system in thin 3-
dimensional domain. Using the boundary layer correctors we prove, not only the
convergence of the Navier-Stokes velocity and pressure towards their 2-dimensional
approximations, but we also find the order of accuracy for Reynolds model.

The study of lubrication problems goes back to the celebrated work of Reynolds
[13] published in 1886. He studied the thin film flow in a rather heuristic manner
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and did not give any relation between his model and the Navier—Stokes equations.
The formal relation between Navier—Stokes equations in a thin domain and the
Reynolds equations, using asymptotic expansions, was given in Elrod [7], Capriz
[5] and Wannier [14].

The rigorous mathematical justification of the Reynolds equation for a flow be-
tween two plain (and not curved as in our case) surfaces was given in Bayada and
Chambat [2] and Cimatti [6]. However, those authors prove only the weak conver-
gence of the linearized, Stokes, flow to the Reynolds flow. Such weak convergence
on rescaled domain, frequently used for justification of lower-dimensional approx-
imations, justifies the Reynolds model but in a rather weak way. It does not give
the order of accuracy for Reynolds approximation. A precise study of asymptotic
behaviour of the viscous flow in a thin domain was given by Nazarov[12], but in
an infinite ! thin layer between with two fixed, plain surfaces’. The contribu-
tion of the present paper is that we study the problem with a curved geometry
(corresponding to the real-life situation) and we estimate the difference between
the solution of the Navier-Stokes system in thin domain and the solution of the
Reynolds system in terms of the domain thickness. Furthermore, we give the de-
tailed study of the boundary layer appearing at the ends of cylinders where the
lubricant is being injected. Finally we give the corrector for the Reynolds model
giving the higher order of accuracy.

To finish the introduction we mention some references related to our problem.
An interesting study of weak inertial effects can be found in [1]. A nonlinear model
describing the strong inertial effects for a fast flow through a rough thin domain
was justified in Bourgeat and Marusi¢-Paloka [3], [4].

Flow through a thin curved domain was treated in Marusié¢-Paloka [11], with
a special reference to the effects of flexion and torsion of the domain, but only in
the case of tubular domain, leading to the 1-dimensional model.

2. THE PROBLEM

To describe the geometry of the film we use the cylindrical coordinates (r, ¢, z).
We denote by = : R® — R3 the change of variable Z(x1, z2, x3) = (7, @, z) where
(21,22, x3) are the cartesian and (r, ¢, z) are the cylindrical coordinates of a point
2. We suppose that the film thickness is eh, where h = h(p) and ¢ is a small
parameter. The film is an open set

C.={=Hrp,2) €R*; 0 €]0,27],2€]0,1[,R< r < R+¢ch(p)},

where the function h :]0, 27r[— R is of class C?, 2n-periodic and 0 < 31 < h(y) <
B2, ¢ €]0,2x[. The flow in domain C. is governed by the Navier-Stokes system

1to avoid the boundary layer effects on the edge of domain
2that are not in relative motion, as in our case
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—pAuf + (uV)ut + Vp* =0 inC.,

divu® =0 in Ce,
(1) ut=0 for r = R+ ¢h(yp),
u® = we, forr=R,
u® = go(* E ) for =0,
u® = gi(* L) for z =1,

where p® and u® are the pressure and the velocity. In order to have a well posed
problem we suppose that the functions g, € C?(S1), a = 0,1, S1 = {(p,¢);p €
10, h(p)], ¢ €]0, 27[} are 2m-periodic in ¢ and satisfy the hypothesis

(H1): ga(h(#), ) =0, 9a(0,¢) = wé, , cv:O,l,

H2): [T [ pe. - golp, p)dpdp = [27 [ pe. - gulp, )dpdep

(H3): [T [ 2 g0p, @)dpde = [;7 Jy' & - qulp, 0)dpde.
The classical result shows that for each € > 0 :

Theorem 1. Under the assumptions (H1),(H2) and (H3) the problem (1) has a
solution (u®,p%) € HY(C.)® x L?(C.)/R.

For the proof see e.g. Galdi [8].

3. ASYMPTOTIC EXPANSION

Due to the geometry of the domain it is natural to work in the cylindrical
coordinate system. In the cylindrical coordinates the Navier—Stokes equations
read (see e.g. [10]):

2
us 2 ous ou’ ’Uzsa € ous (Us) B
_ e_Zr _ 2 Oy edu, , ¢ du, edu, 179 op° _
‘u(AT r2 T26<p)+1"6r T6<p+u26z r +6r_07
us ) . uc ’U,Eaf uc UEUE 1, e
_ e ¥ 4 Ou; e 0Uy T Ouy e Uy, e - op°
,LL(AU@ r2 r2 Gap)+ T Or + Gap+uz Oz + r 7,6@—07
€
e cous | Uy ous eou | 9p° _
—,LLAUZ—F’LLT or T&p Uz 5z Oz _07
0 0
A + +—7‘u 0
() - (rug) =0,
> > > 10 o 192 9?2
where v = upé, +uG €, + use: and Av = 50 (rgn) + 258 + 5%

3.1. Interior expansion. Far from the ends of our cylinder C; i.e. for z = 0,1 we
can neglect the local effects of the boundary conditions ¢ (1, ¢, 2) = ga(p, ) , @ =
0,7 and try to find an ansatz that fits the system and the boundary condition on
r =R, R+ch. Asin [3], [4], we seek an expansion in the form

(2) u® ~ul(p, o, z) +eut(pp,2) + ..
1 1
(3) pE ~ E—on(p,%Z) + gpl(p,%Z) +...
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where p = ﬂ Substituting these expansions into the Navier—Stokes equations
and collectlng equal powers of ¢ lead to the > term in the form

,U ap = =0,
62 0 1 6
uz 0 fr—
—H 0p? W =0.
From the incompressibility equation we get
aug
op 07
au
(4) . T R = —|— ud=0.
First we conclude that u? =0, p* =p (cp, z) Then we compute v, and uj as
1 p
5 v o= h 1-5),
) W= (o= %+l = %)
() W= - h)pf’—I’“
z 2“ 0z

Equation (4) leads to

R 2 0 1 0 0 h
2 (=Pl + 5p o= p)p5) = frpme .

Integrating with respect to p over |0, h(p)[ and using a simple formula

o [ h(e) oF ,
| P = [ 8 e = Flkie). o) (o)

0 0
we get the Reynolds equation

20 10

(7) RR32L, +§8—(h a—@) = 60/ pw in Q =)0, 27 x ]0,1] .
One boundary condition for p° is 2m—periodicity with respect to (. Second bound-
ary condition should be of the form
(8) %% — No(p) forz=0, 2 =N(p) forz=1.

The functions A,, @ = 0,[ are to be determmed in the following section.

3.2. Boundary layer. On our interior expansion we did not impose any bound-
ary condition at the ends z = 0,[. Therefore we, in general, have

u(p,,0) # golp, ¢)
u(p, 0, 1) # gip, ) -

We need to correct our expansion in the boundary layer near z = 0 and z = [.
Near z = 0 we seek an expansion in the form

us ~u(p, 0, 2) + B(p, 0, €) +e[ut (p, 0, 2) + Bl (p, 0. )] +
F e 500(6,2) I (6,2) + (0,0, s, 2) D6y 0,6) +
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where p = % and { = £ is the new dilated variable used to describe the fast
changes of the solution in the boundary layer. Near z = [ we seek the expansion
in the form

u® ~u’(p,,2) + H(p, 0, 7) +e[ut(p, 0, 2) + H (p, 0, 7)] + - ..
1 1
¢~ E—on(%Z) + g[pl(%Z) +1%(p, 0, 7)] + P(p, 0, 2) + B (p, 0, 7) + . ..

with 7 = 221, For the left boundary layer we get

0
—,LLAprS + %ip = 0,
0
(9) DB+ 8% = 0,
—ILLAprg = 0,
in the infinite strip G(¢) =]0, h(p)[x]0, +o0[, where
02 02
Npe = =— + =
3 op? + o¢z
In addition we have
oBY | 8BS
(10) =+ 5 = 0.

The boundary conditions for BY are

Bo(p’QDaO) +u0(pa<pa0) = go(pa QO)’
(11) B°(0,¢,8) = B°(h,9,§) = 0,
lime o0 B%p0,6) = 0.

The wvariable ¢ is only a parameter. By integrating (10) over G(y) we get the
compatibility condition

h(e) 0 h(e) h(e) q
0= / B (p,,0)dp = / € - gol(p, p)dp — /\0(<P)/ ——(p = h)pdp
0 0 0 2u
leading to

124 /h(tp) B
—— €, - ,©0)dp.
(e J, go(p, p)dp

The following result is well known and may be found for example in [8].

(12) Ao() =

Lemma 1. For every ¢ €]0,2x[ system (9), (10), (11) admits a unique solutions
(B, 0., 0% 0,0)) € HY(G(9))? x L*(G())/R.

Using solutions dependence on boundary condition ¢ € H'(S;) and the ge-
ometry of the domain we get that (B°,b8°) € H'(G)3 x L?(G)/R where G =
{(py0,8); 0 €]0,27[, (p,€) € G(¢)}. An analogous calculation gives the problem
for (HY, h0):

0

—,UAPTHS_'_%LP = 07
0

(13) —pd,HO+ 22 = 0,
oHY | 9H?

ap or 0,
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in O(p) =10, h(p)[x] — 00, 0] where 7 = =L,

€

HO(p,0,0) +u%(p,0,1) = aip, ),
11HL,-_, o (,0,% ) = Oa
(14) A HY = 0
THRprd, = )
H°(0,9,7) = H'(h,p,7) = 0,
which leads to
124 h(¢)
15 Ai(p) = — / ez gilp,p)dp.
(15) €)=~ | (6. %)

For functions (B, "), (HY, h?) we have the Saint—Venant’s principle:
Theorem 2. There exist C >0 and o > 0 such that

1B 122 ({(p.) e ():e>1y) < Ce™,

0 ({(p.0) G (e >ty < Ce
|HO|H2({(p,‘r)€(9(ap);7'<—t}) < Ce o,
|h0|H1({(P7T)€O(Lp);‘r<—t}) < Ce

For exponential decay of solutions of the Stokes equations see for example [8]
and [4] and of the Laplace equation see for example [9].

Remark 1. In fact, it is easy to verify that
(16) B (p,,€)

+00 h(y)
_ _km_ 2 / . kmt . km
13 ® 0
= e R sin —— t, o) —u,(t,©,0))dt | sin

h()

km
13

= e e Ag(p) sin ——
Z HP)sing oy

leading to the asymptotic behav10ur

™ Z
BY ~ =),
) 855]7( 61 5‘)

We get the analogous results for Hg with the exponent (w) T instead of ) §

and the coefficients By (y) analogous as Ay(¢) but with g instead of ¢§.

3.3. Solvability of the Reynolds equation. We can now write our Reynolds
equation (governing the effective flow) in the form

RAR3 621720 T Ra@ (hB (9p ) _ 6h/,uw - Q’
0

(17) %LZ - _h}f(f;) fO @e €z ’ gO(ﬂa @)dp for z = O’
0

%LZ - _h}f(f:;) fO €z g pa )dp for z = l,

p? is 27-periodic in ¢.
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This is a Neumann’s problem for linear elliptic equation and it has a unique (up
to a constant) solution p° € H3(Q) N C?(Q) iff

2 ph(p) . 2m rh(p) .
/ / €z - go(p, p)dpdp = / / . - gi(p, p)dpdyp
0 0 0 0

which is exactly the hypothesis (H3).
The regularity of p° (due to the fact that i’ € C*(]0, 2n(), g; € C*(S1)) implies
that u® € H2(C) N C*(C).

3.4. Divergence Corrector. We notice that (4) is not exactly satisfied. We only

have that
h(p) ul
/ (52 +R
0

To fix that we add the divergence corrector in the form e¥(p, p, z)¢. with

= 6% z)dt .
W0, = [ (G + REE)0p.2)
Now for the approximation
v* =u’((r — R)/e,¢,2) —e¥((r — R)/e, ¢, 2)é +
(18) + H((r = R)/e,0,(z = 1)/e) + B((r — R) /e, ¢, 2/e)

we get

)dp—()

0
div ot = B+ H + 2 4 2% 4 cg

where |®|;=c.) < C. By a simple change of variables we obtain

(19) |BY + HO + e +—£|Lr(c)<052/r, 1<r<oo.

4. CONVERGENCE
Our main result can be formulated as follows:

Theorem 3. Let (uf,p®) be the solution of the Navier-Stokes system (1). Let p°
be the Reynolds pressure, i.e. the solution of the problem (17) and let u’ be the
Reynolds velocity given by (5), (6). Then

1
[u® — ud|2(c.) < CVe,

VIC
1
Ve

where ud(r,, z) = u®((r = R) /e, ,2) and |Cc| = e4 [77(2h(p) + eh(p)?)de.

12" — °|12(c.yym < CE

Remark 2. The estimate in thin domain C. in the norm | |z2(c.) is worthless
because the domain is shrinking. Convergence in such norm does not justify the
lower-dimensional model since |¢|pz2c.y — 0 for any bounded ¢ € C(R?). The
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appropriate norm is ||¢|| = |C-|7'/2|¢|r2(c.). We notice that ||1]| = 1 /> 0 and that
the convergence ||¢|| — 0 implies the convergence of the mean values

1 R+Eh
—/ ¢pdr —0 in L*(Q) .
€JR

To prove Theorem 3 we need some technical results.
Lemma 2. (Poincare’s inequality) There exist a constant C' > 0 such that
(20) 19lL2(c.) < CelV| L.
for any ¢ € H'(C.) such that ¢ =0 for r = R+ eh.
Proof. Let ¢ € H'(C.) such that ¢ = 0 for r = R+ eh(p). Using the cylindrical

coordinates we have
R+eh(p) 96
(b(ra(paz) :/ E(t7<p7z) dt.
s

An easy application of the Schwartz inequality gives

R+eh(p) Rteh(e) gy
¢’ (r, . 2) < 99)2(¢, o, )t dt @
R or | ¢

Integration over C. leads to

27 pl pR+eh(p)
/(;52 / // (7, @, 2)rdrdzdy
C. o Jo Jr
27 pl pR+eh(p)
s)/ // (52)%(t, ¢, 2)t dt dzdyp
o Jo Jr

R+ef32 R+652
I(E):/ / —dr< 62 (R+eﬂ2) : O

Lemma 3. There exists ¢ € H'(C.) such that
divg=F € L2(C.)

IN

where

¢ =kré, for r=R, k= const.

¢=0 for r=R+¢h

o= for z=0, n(r @)—U(T—R,@)

¢:65 fOI' Z:l, 5’/‘@_6 ,gp
I

where 0,6 € HY2(S1), St = {(p.9);0 < p < h(g),¢ 6]0,277[}- n,0 = K for
r=R, 1,6 =0 for r= R+ ¢ch,

R+-ch 2m R+-ch 27 l R+-ch 2T
/ / ng . TIE a / / ng . 55 - / / / TF
R 0 R 0 0 JR 0

1 1
|l (c.) < O{E|F|L2(CE) + 75(|’7|H1/2(51) + 18l grr2(sy) + KDY

and
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If, in addition, n,5 € W3/**(S;) we have the estimate

8| e,y < C{IF|Lacc.) + €/ (nlwsraacsy) + [8lwsraais,y + 16D} -

Proof. Let ¢ = ¢! + ¢? where ¢' is a solution of the problem

div ¢t = F in C.,
' = ke, for r=R,
ot =0 for r=R+¢h,
¢t = (- €,)és+ (n°-€.)e, for 2=0,
O = (- 2,)8, + (6°-&.)& for z=1,
and ¢? is a solution of the problem
div ¢? =0 in Cg,
2 =0 for r=R, R+ ¢h,
¢* = (n° -é)é for z=0,
¢? = (6°-¢€.)e. for z=1.

We first deal with ¢'. We define U¢ as a solution of the problem

L )

op T o, + 9 =/ InC,
ve = (0, k,0) for p=0,
e =0 for p=nh,

where

ve = (0777@; (R+ 6,0)772) for z = 0’
U¢ = (0,04, (R+¢ep)d.) for z=1,
We is 2r—periodic in ¢,

fe(p,o,2) = (R+ep)F(E " (R+¢ep, ¢, 2)),

Na(p, ) = 15 (E

E TN R+¢p,9,0), a=¢,z,

504(,0, QD) = 52(3_1(R+8p7<)07l))7 a=e,z,

—
—

The standard a priori

[V [wiacy < C(lfelae) + Inlwi-1/aais,) + [6lwi-1/a.0(s,) + [,

(z1,m2,23) = (1,9, 2) .

estimate (see e.g.[8]) implies

247

where L4(C) and W14(C) are the usually defined spaces on C = {(p, p,2) € R%;p €
10,27, z €]0,1[,0 < p < h(p)} with respect to the Lebesque measure dpdpdz. By
direct integration we obtain

Defining

&
¢! (21, w0, 3) = ;‘I’i(

C
|felLaey < m|F|LQ(CE) :

1

r

r—R

L r—R L
,gp,z)er + \P;(Ta @az)etp =+

\Iji(Ta 2 Z)gz )
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we get estimates
1 1
¢ 1 (c.) < O(E|F|L2(cs) + $(|77|H1/2(51) + 181 g2 (syy + 16D))

6 | ac.) < Ce/ U8 pagey < C(IF | sy +e* (nlworrais,) +10lwsraais,) +1K1)) -

For ¢? we proceed in a different way. We define the boundary layer—type functions
x% and x® as the solutions of the problems

652;% + 25 =0 inGly), %+ 28— 0 in O(p)

x“ =0 for p=0,h(p), xt=0 for p=0,h(p),
x“=m,0)  for =0, 2 = (6,,0) for 7 =0,

x" =0 as § — +o0, x®—0 as T — —00.

Those functions can be chosen such that they exponentially decay as & — 4o0
and 7 — —oo (see for example [8]). A simple change of variables gives for xL =

(=R 0, 2)
2 2
|X5L|Lq(cs) < Ces |XL|L‘?(w) < Ces |77|W1—1/qv<1(51) )
2 _ 2 _
IVxE| L) < Cea M VXE | Law) < Cet 7 nlwi-raas,)

with w = {(p,¢,&);¢ €]0,27[, (p,&) € G(p)}. We have similar estimates for
function x2 = x®(=£, ¢, =L). Now ¢? = xL + xF + ¥ where ¥ is defined by the

€

problem

divd=0 inC.,

¥=0 forr=R,R+¢h,

¥ =xk forz=1,

9 =xE for z=0,
and having a H!(C.) norm smaller than any power of ¢ (due to the Saint—Venant’s
principle). Now

0|1 cy < Clnlmresy + 10lmzsy)) »

|6%|Lac.y < CY2(Inlwsraacs,) + 18lwsraas,)) -

For the solution of the problem (1) we prove the following estimates:

Proposition 1. Let (u®,p®) be the solution of the problem (1). Then there exist
N,C > 0, independent on €, such that

|uf|L2(c.) < Nv/e,

N
(21) IVus|rzc.) < N

o
|p€|L3(c5) < SR
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Proof. Let ¢. be the solution of the problem

div ¢ =0 in Ce,
Pe = wey for r =R,
¢ =0 for r=R+¢h,

g =go(=L,p) =1 g5 for 2=0,
be = q(=L,0) =1 gf  for z=1.

Then from Lemma 3 we get estimates

1 C
|pe| 1 (c.) < 075(|90|H1/2(55) + gl gz, +w) < 7 |pe|age.y < OV,
Multiplying the equation (1) by u® — ¢. we get after integration over C.
ulVuslZac,) — / (u=V)peu® +/ (uV) g0 = / VurV..
Ce Ce Ce

It is easy to verify that the imbedding constant H'(C.) < L*(C.) can be chosen
independently on €. Then

| @900l < e 90 1ate el oo < OV,
Ce

| / (WEV)9ede] < [ulmaen | Vel ool bel Lace,y < e V4O Vu e, -
Ce
Consequently we get

1 1
plVut|ia e,y < 0(51/4|VU5|%2(CE) + mwuﬂm(cs) + 7E|VU€|L2(CE))
what leads to

V| pae.) <

Sl

To estimate the pressure, supposing that fc p® = 0, we define z. as the solution
of the problem

div ze =p° in C.,
ze =0 on OC..
Lemma 3 gives
C £
|zelm1(c.) < ;|p lL2(c.) -

Using z. as the test function in (1) we obtain

|p5|i2(c5) = p [ VuVz— [ uV)uz
Ce Ce

HIVUE| Lo Vel L2en) + Cel V| e, [V 2l L2c.)

IN

IN

C £
m|p lL2(c.) - |
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We define d° as a solution of the problem

divd® =diva. in C.,
dE = ’]15 on 8C5 5

where @, = u® — v°. Due to Lemma 3 d° can be chosen such that

1 . 1
|d°| ey < O(g|d1V v%|L2(c.) + 75(|’7|H1/2(51) + 10| 1/2(s,)))

|d°|Lac.) < C(Idiv v°|Lace,) + e/ (Inlwsrracs,) + 8lws/aas,)))

where n(r,¢) = eW(=L,¢,0)6, + HO(Z=E, ¢, —1L), 6(r, ) = eU(=£ ¢, 1)E, +

€ €

BY(==£ 4, 1). Using (19) we conclude that

€ 3

|d¥|rey < C , |d|pae.y < Cve .
We denote by

) { RE = uf — (of + )

EE:pE—E%pO—%(bO—FhO)#-%—iI-

the difference between our approximation and the original solution, where ¥ is
defined by (18). For (R, E¢) we have the following estimates:

Proposition 2. Let (R, E°) be defined by (22). Then there exists C > 0 inde-
pendent from € such that

1
(23) —==|R®|2(c.) < OVe
VIC|
1
(24) e2E°| L2(c.)r < CVE

Vic

Proof. (R°, E¢) satisfy the system

—UARE + (v + d°)V)RE + (REV)uf + VE* = B. inC.,
(25) div RE =0 in C.,
RE=0 on dC.,

where, due to the regularity of uy,

|Belr-1(c.) < C.

The explicit expression for 4 is long and complicated but straightforward. Since
it will not be used in the sequel it can be omitted. Multiplying the equation (25)
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by R® and integrating over C. we obtain
WIVER (e, = / BeR* —/ (REV)u"R*
c. c.

- /BERE—/ (REV)UERE—F/ (REV)REdE
Ce Ce Ce

< C(VER 2.y + V| L= (e | R T2y
+Hd | aeo) [R [ Lae) VRS | L2 (c.))

IN

CVR 2(cy + 2R Bae,) + VEIVRTRn(c,)
< CO(IVE®|2c.) +elVR T2 ey + VEIVR | 2c,) -

Thus |VR?|12(c.) < C. Using the Poincare’s inequality we get

B |22 (c.) < Ce

what leads to (23). To estimate E° we define ¢ as the solution of the problem

div ¢ = E° in Ce,
¢=0on 9C.,

Lemma 3 gives that ¢ can be chosen such that
|9l m(c.) < g|E5|L2(CE)-
Using ¢ as the test function in (25) we obtain
|E®[L2(c.) < g
and (24) easily follows. O
The above proposition proves Theorem 3.

The following estimates are direct consequences of the Proposition 2:

Corollary 1.

Rteh(e) 3 0 1 4.0
é/R usdr+@(%€z+§%€w)— “’2—}’5@ < Cye,
L3(Q)
c R+eh(p)
/ pedr — p° <Cye.
h(v) Jr L2(9)/R

Remark 3. If gy = g; = 0 and h =const., then the only remaining term is “’Thé@

i.e. there is only a uniform rotation of the fluid due to the rotation of the shaft
with angular velocity w.
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Remark 4. Calculating in a similar way the second term u! in expansion (2) for
uf, we get the Reynolds equation for the second term p' in expansion (3) for p.

2.1 4 52,0 0
Rhgap 1.9 hsap) Q“T“’hh’—h—a—p LD (RA22) inQ,

+R6<p( Op

2 022 2R? 0¢p O
((pv ) th TZ((p) for z=0,1
L is 2r—periodic in ¢,
where
8: h(e) . B
/ / )dpd§ = —/ pe: - go(p; p)dp — gko( ©)
0

- 1 o)
+2 Z = [P* Ase1(0)],
P (2k + 1)272 0y

0, h(e) = B4
/ / (H )dpd§ = —/O pez~gz(p,<p)dp—g>\z()

- 1 4}
+2) s oo W Baka (9]
pard (2k + 1)2m2 Oy

Coeflicients Ay are defined by

(¢) T
Ax(p) = / sin% (6 (1, ) — w2, (t ) dt

i.e. those are the Fourier’s coefficient for B} (see (1)). Analogously

h(e) T
Bi(p) = / in % (6F (£, 0) — u(t,0)) dt

are the coefficients in the Fourier’s expansion for H).
This problem has a unique (up to a constant) solution p' € H?(Q2) N C*(Q) iff

21 ph(p) 2m rh(p)
/ / pe= - go(p, ©)dpdyp = / / pez - gi(p, )dpdp
0 0 0 0

which is exactly the hypothesis (H2). The error estimate of order &/ can be
proved analogously as in Theorem 3.
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