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BOUNDARY VALUE PROBLEMS FOR
FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH NONLINEAR BOUNDARY CONDITIONS

P.CH. TsaAMATOS

ABSTRACT. This paper is concerned with the existence of solutions for some class
of functional integrodifferential equations via Leray-Schauder Alternative. These
equations arised in the study of second order boundary value problems for functional
differential equations with nonlinear boundary conditions.

1. INTRODUCTION

Let R™ be the n-dimensional Euclidean space and | - | be any convenient norm
in R”. For a fixed r > 0, we define C). to be the Banach space of all continuous
functions ¢:[—7r,0] = R" endowed with the sup-norm

9 lli-r.0 = sup{lg(s)|: —r < s <O}

For any continuous function 2 defined on the interval [—r,T],7 > 0 and any
t € [0,T], we denote by x; the element of C, defined by

(@) =zt +0),—r<0<0.

This paper is concerned with the following initial value problem (IVP)

T

(E) 2'(t) = L(t, ;) —1—/0 Ut s)F (s, xs,2'(s))ds, t€]0,T],

(IC) Lo = ¢a
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where L: [0, T|xCy, — R*, F: [0, T]|xCyx R* = R", ¢:[—r,0] > R™ are continuous
functions, £:[0,7] x [0,7] — R", is a bounded function and r € [0,7] is a given
point.

Integrodifferential equations of the form of (E) arised in the study of boundary
value problems (BVP) for functional differential equations with nonlinear bound-
ary conditions. For example we consider the next BVP with nonlinear boundary
conditions

(e) " (t) = f(t,xe, 2’ (¢), te€[0,7T],

(BCI) l‘0:¢, $(T) :gl(xT)a
where f:[0,7] x C, x R® — R", ¢1:C, — R" are continuous functions, ¢ €

C([-r,0], R™) is a given function and also, 7 € [0,7] is a given point. Tt is clear
that the BVP (e) — (BC,) is equivalent to the following IVP

(1) 210 = Fonter) = 760+ [ GG s, te0.1]

(IC) Lo = ¢a

where

1(@t=T)s if 0<s<t<T
Gl(t,s):—
ts=T) if 0<t<s<T,

is the well known Green’s function for the corresponding homogeneous BVP to
(¢) — (BCy).

Also, we consider the following BVP with nonlinear boundary conditions

(e) " (t) = f(t,xe, 2’ (¢), te€[0,7T],

(BC,) vo =0, 2(T) = ga(w-),

where f, ¢ and 7 are as in the previous BVP (e) — (BC1) and ¢2:C, — R" is a
continuous function. It is also clear that the BVP (e¢) — (BC) is equivalent to the
following IVP

(2) () = ga(zr) —1—/0 (%Gz(t,s))f(s,xs,x/(s))ds, te[0,T],

(IC) Lo = ¢a
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s if 0<s<t<T
Gz(t,s):
tif 0<t<s<T,

where

is the Green’s function for the corresponding homogeneous BVP to (e) — (BC5).

Obviously, equations (1) and (2) are special forms of the equation (E).

The aim in this paper is to prove existence results for the IVP (E)-(IC) and, con-
sequently, to specify these results to the BVP (e¢) — (BC}),i = 1,2 and some other
related BVP conserning functional differential equations with nonlinear boundary
conditions.

BVP for functional differential equations constitute an interesting area in the
theory of functional differential equations. Some recent results on this subject
are developed in the papers of Ntouyas, Sficas and Tsamatos [9,10] and Tsamatos
and Ntouyas [13]. For a more detail treatment we refer also to the recent books of
Erbe, Kong and Zhang [2] and Henderson [8] and the references therein. Boundary
conditions considered in these BVPs are usually linear. Results concerning BVPs
with nonlinear boundary conditions, but only for ordinary differential equations,
were appeared early in the litterature. Among others we refer to [1,3,4,5,6,12].

For the proof of our main existence result in the following, we use the well known
topological transversality method by a similar manner to that in [9]. Generally,
to be able to apply this method we need the existence of a-priori bounds on the
solutions of a certain family of TVPs related to the given IVP (E)-(IC). These a-
priori bounds are obtained imposing growth restrictions on the functions involved
in the equation (E) in the line of [7] and [11]. Also, here we extend the method
developed in [9] to a more general problem including many problems considered
in several papers.

2. PRELIMINARIES

If I is an interval of the real line R, by C(I, R") and C(I, R") we denote
the space of all continuous and continuously differentiable, respectively, on I R"-
valued functions. Moreover, by

||z||r = sup{|=(t)[:t € I}
and

L2l = max{{[x][r, [l2/||:}

we define the norms ||- ||y and |-|r in C(I, R™) and C*(I, R™), respectively. These
spaces endowed with the respective norms are obviously Banach spaces. Also, we
denote by L(I, R) the space of real functions whose absolute value is integrable
on I, endowed with the usual norm

||x||1=/1|x<s>|ds.
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Definition. By a solution of the IVP (E)-(IC) we mean a function
v € C([-r,T],R") NCY([0,T], R") which satisfies the equation (E) and ro =
l‘|[—7“, 0] = ¢

We state here a lemma which is essential in the sequel.

Lemma 2.1. Let Qy,Q4:[0,00) — [0,00) be nondecreasing functions and A, B,
di, ds, ¢1, co, e nonnegative constants such that

Q Q
(3) Ady timsup 2E) 4 g, tim sup 228 <

=00 x =00 x

Then the set
S={r e R0<2<AQ (dix + c1) + BQa(dox + c2) + ¢}

1s bounded.

Proof. If the set S is unbounded, there exists a sequence (z,), with z, # 0,
lim,, _, o 2, = 00 and

Qi (dizy + ¢1) Qa(doz, + ¢2) e

1< A + B + —
T, T, T,
. AQ1(d1l‘u +e)diz, + ¢ B Qz(dzl‘u +¢o) doxy, + co i €
B diz, + ¢ Ty dozy, + co Ty Ty
Thus a, Q
1 < Ady limsup ————= (2,) + Bds lim sup ——= 2(2v)
T, —00 Ty T, —00 Ty
which contradicts to (3). |

3. MAIN RESULTS

Theorem 3.1. Let F:[0,T] xC.x R* — R", L:[0,T] xC, = R", ¢:[0,T] = R"
be continuous functions and (:[0,T] x [0,T] = R™ be a bounded function with
2 [0,7] = R, E fo (t,s)ds a continuous function. Suppose also that:

(Hy) For every bounded subset S of C, there exists a constant ©g > 0 such
that
|L(t1, U) — L(tz, U)| S ®5|t1 — t2|

for all t1,t2€[0,T] and u € S.
and

(Hs) There exists a constant M > 0 such

||$||[—T,T] <M and ||l‘/||[07T] <M
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for every solution of the IVP (E,)—(IC), A € (0,1), where E) stands for the
equation

((Eyx)) '(t) = AL(t, ;) + /\/0 L, 8)F (s, xs,2'(s))ds, t€[0,T].

Then for every ¢ € C, the IVP (E)-(IC) has at least one solution.
Proof. Consider first the case ¢(0) = 0. Then the set

C ={xecC'([0,7], R"): z(0) = 0}

is a convex subset of the normed linear space C1([0,7], R") and also 0 € C.
Now, we define an operator R: C'— C*([0,T], R*) by

t t T
Rx(t):/o L(s,xT)ds—l—/O/O Us,n)F(n,zy, ' (n))dnds, t€[0,T],

{x(n—i—é) if n+6>0
,(0) =
o(n+0) if n+o<O0.

Obviously, R(C) C C.
Our purpose is to prove that R has a fixed point & € C. Then it is clear that

the function
{ z(t),t €10,T]

¢(t)at € [—7“, O]a

z(t) =

is a solution of the IVP (E)-(IC).
Following the same arguments as in [9], it suffices to prove that the operator R
is completely continuous and the set

E(F)={t€S:x=ARx forsome 0<A<1}

is bounded.

We observe first that R is obviously continuous.

Let now a bounded sequence (#,) in C'. As in [9], we can prove that there exists
a compact set D in C, such that ¢, € D for every v and every ¢ € [0,T]. Thus,
if by is a bound of (z,), the set

X =1[0,T] x D x B(0,b7)

(B(0,b1) is the closed ball in R™ with center 0 and radious ;) is compact in
[0,7] x C, x R™. Then it is obvious that

||[Ray|ljor) < TK1 + T? K2 K3,



262 P. CH. TSAMATOS

where K1 = max{|L(t,u)|: (t,u) € [0, T]x D}, Ko = max{|F(t,u,v)|: (t,u,v) € X}
and K3 = max{|€(¢,s)]: (t,s) € [0,T] x [0, T]}.
Also,
||(R$V)/||[0,T] S [\71 + T[\rszg

Moreover, the sequence (Rw,) is equicontinuous. Indeed, for every t1, t2 in
[0,T] we have

(4)  [Reu(th) — Ray(la)] =

/t t (Rx,)'(s)ds

< (Ky 4+ TKoKs)|ty — ts].

Moreover, taking into accound assumption (H;) we have
(5) (R} (1) = (Rey) ()] < Oplts =t + Ka|l(ty) = {(12)].

Hence, by (4) and (5) and, moreover, since the function ?is uniformly continuous
on [0, 7], we have that the sequence (Rz,) is equicontinuous.
Now we observe that by assumption (Hsy) the set

E(F)={t€S:x=ARx forsome 0<A<1}

is bounded. Therefore the operator R has a fixed point in C'.
For the proof in the general case, when ¢(0) # 0, we observe that the transfor-
mation

reduces the IVP (E)-(IC) into the following

o~ T o~
v (t) =L, yr) —I—/O L, 8)F(s,ys, 9 (s))ds, te]0,T],

y0:¢a

where, L(t u) = L(t u+ ¢(0 )) (t u,v) = F(t,u+ ¢(0),v) anquS: ¢ — ¢(0).
For the function q/) we have (/)( ) = 0. Hence, since the functions L,F satisfy the
assumptions (Hy), (Hz), the proof of the theorem is complete. d

The applicability of the previous theorem depends upon the existence of an a-
priori bound for the solutions of the IVP (E)-(IC). Conditions on L and F' which
imply the desired a-priori bounds are given by the following theorem.

Theorem 3.2. Let F:[0,T]xC.x R* - R", L:[0,T] xC, = R", ¢:[0,T] = R"
be continuous functions and (:[0,T] x [0,T] = R™ be a bounded function with
2 [0, 7] = R, E fo (t,s)ds a continuous function. Suppose also that (H;)
holds and:
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(Hs) There exists a nondecreasing function £1:[0,00) — [0,00) and two real
valued functions p, q bounded on [0, T] and such that

Lt w)| < pO) Qi ([Jufl-r,01) + (1)

for every (t,u) € [0,T] x C,

and

(Hy) There exists a nondecreasing function §22:[0,00) — [0,00) and two func-
tions m,n in L([0,T], R) such that

[F(t, u, 0)] < m(t)Q (max{|[ulli—r,0), [v]}) + n(?)

for every (t,u,v) €[0,T]x C, x R".
Then the IVP (E)-(IC) has at least one solution provided that

Q Q
pllro 7 imsup—gj)—l—Kg, m||y max{1,T limsupﬂ<1,
6 o771 u
r—00 x =00 xr

where Kz = max{|{(t,s)]: (t,s) € [0,T] x [0,T]}.

Proof. Let  be a solution of the IVP (Ey) — (IC),A € (0,1). Then for every
t € [0,T] we have
zelli=r01 < @ ll=r01 + l2]lf0,7-

Also, 2(t) = ¢(0) + fot z'(s)ds, t € [0,T]. Hence

(7) l]lf0,71 < 16(0)| + T'l]2"[{0,77-
Therefore
(8) e li—r0) < l16ll=r0) + Tll2 0,7, t €[0,7].

Moreover, for every ¢ € [0,T] we have
2" ()] < [P (lzrli-r,00) + |2 (t)]

T
+ Kg/ (m(s)Qz(max{||x5||[_T70], |'(s)|}) + n(s)) ds.
0
By (8) and, since Q7,2 are nodecreasing, last inequality reduces to

l' ()] < 1Pl m12 (@ =00 + T2 [o,77) + a0, 1)
+ Ksl|m[|1Q2 (max{||¢l=r.0) + Tl12'|ljo,27, [ lljo,21}) + lInl]1, ¢ € [0, T7].

Finally, since €25 is nondecreasing we obtain

2" lpo, 7y < M1plliom1 @1 (161 l=r 00 + T2 lto,r1) + [Nallpo,y
+ Ksllm|[1Qa (1161 l—r0p + max{L, T} ||,y I[) + lIn ]




264 P. CH. TSAMATOS

Hence, by assumption (6) and Lemma 2.1., there exists a constant M; such that
|2’ lo, 7y < M.

Then by (7) we have
I,y < |@(0)| + T'My

and since xg = ¢,
[2]li=ry < [l[| + TMy = M

Thus we proved that for every solution # of the IVP (Ey) — (IC), A € (0,1), the
assumption (Hz) of Theorem 3.1. is satisfied fof M = max{M;, M3}, a constant
indepentent of A. So, the IVP (E)-(IC) has at least one solution. O

The next corollary illustrates the existence result of the above Theorem 3.2.
and concerns some special forms of functions €; and €.

Corollary 3.3. Let L:[0,T] xC, — R", F:[0,T] xC.x R* — R", ¢:[0,7] — R"
be continuous functions and £:[0,7] x [0,T] = R" be a bounded function with
2 [0,T] — R, z(t) = fOT £(t,s)ds a continuous function. Suppose also that (H;)
holds and:

(Hg) There exists a constant d, 0 < d < 1 and two real valued functions
p,q bounded on [0,T] and such that

1L, )] < p) (ell-r0)! + a(t)

for every (t,u) € [0,T] x C,
and
(Hy) There exists a constant r, 0 < r < 1 and two functions m,n in

LY([0,T], R) such that

t

<

;)| < m(t) (max{]||ull—r.0p, [0]})" + n(?)

for every (t,u,v) €[0,Y] x C, x R™.
Then the IVP (E)-(IC) has at least one solution provided that

(dD)|pllo, T + a(r) K3

0, k€[0,1)
alk) = {

Proof. We set Qy(z) = 2% and Q5(z) = z". Then we have
4 (x) Qs(x)

lim sup =a(d) and limsup ——= = a(r).
r—00 x =00 X

bl

[ (
[

)

where

Q

m||1 max{1, T} < 1,

Hence assumption (6) of Theorem 3.2. is reduced to assumption (9) above and
the proof is complete. a
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4. APPLICATIONS

Consider now the BVP (e)—(BC;), ¢ = 1, 2. Since these problems are equivalent
to the IVP (1)-(IC) and (2)-(IC), respectively, we have the next existence result
which is an immediate consequence of Theorem 3.1.

Theorem 4.1. Let f:[0,7] x C, x R* — R" and ¢;:C, — R", i = 1,2 be
continuous functions. Suppose also that (H,) holds, with f in place of F, and:

(Hy) There exists a nondecreasing function §}:[0,00) — [0,00), ¢ = 1,2 such
that
lg:(2)] < Q(ll=l), i=1,2
for every z € C,. Then for every ¢ € C, the BVP (¢) — (BC;),i = 1,2, has at
least one solution provided that
Qi(x) Qy(2)

A; max{1l, T} limsup == + ||m||s max{1, T} limsup —= < 1,
r—00 X T—00 &

Li=1
A=1"
1,i=2.

Proof. The BVP (¢)—(BC;),i = 1,2 are equivalent to the IVP (§)—(IC),i = 1,2,
respectively. For these TVP the assumption (H;) is, obviously satisfied. Thus the
proof is similar to that of Theorem 3.1. and 3.2. with some obvious modifica-
tions. d

where

Now we consider the following BVP
(e) " (t) = f(t,xe, 2’ (¢), te€[0,7T],
(BC) zo=¢, ax(T)+ pe'(T) = g(x,),

where f, ¢ and 7 are as in the previous BVP (e) — (BC;),i = 1,2, g: C, — R" is
a continuous function and «,3 are real constants such that

ol + 5 #0.
It is clear that the BVP (e) — (BC) is equivalent to the following IVP

o)) as(0) | [T

(10) 2'(t) = “T+ 7 aT+sd i (EG(t,s))f(s,xs,x'(s))ds, te0,7],
(IC) o = ¢a
where i 1 {(at—aT—ﬁ)S of 0<s<t<T
,8) =
AT+ tlas—aT —p) if 0<t<s<T,

is the Green’s function for the corresponding homogeneous BVP to (e) — (BC).
The BVP (e)-(BC) is more general than BVP (e) — (BC;),i = 1,2. Hence the
next theorem generalizes the result of the previous Theorem 4.1. A closely related

BVP is studied in [10,13].
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Theorem 4.2. Let f:[0,7] x C;, x R* — R" and ¢g:C, — R" be continuous
functions. Suppose also that (Hy) holds, with f in place of F, and:

(Hy) There exists a nondecreasing function :[0,00) = [0,00) such that

l9(=)] < Ql[=]1)

for every z € Cy. Then for every ¢ € C, The BVP (e) — (BC) has at least one
solution provided that

Q(2)

+ |||y max{1, T} limsup ——= < 1.
r—00 x

Q(z)

max{1l, T} limsup —=
r—00 x

1
ol + 3

Proof. Since the BVP (e) — (BC') is equivalent to the IVP (10) — (IC'), the proof

1s immediate. O
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