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ARCHIVUM MATHEMATICUM (BRNO)Tomus 34 (1998), 257 { 266BOUNDARY VALUE PROBLEMS FORFUNCTIONAL DIFFERENTIAL EQUATIONSWITH NONLINEAR BOUNDARY CONDITIONSP.CH.TsamatosAbstract. This paper is concerned with the existence of solutions for some classof functional integrodi�erential equations via Leray-Schauder Alternative. Theseequationsarised in the study of second order boundaryvalue problems for functionaldi�erential equations with nonlinear boundary conditions.1. IntroductionLet Rn be the n-dimensional Euclidean space and j � j be any convenient normin Rn. For a �xed r � 0, we de�ne Cr to be the Banach space of all continuousfunctions �: [�r; 0]! Rn endowed with the sup-normjj�jj[�r;0] = supfj�(s)j:�r � s � 0g:For any continuous function x de�ned on the interval [�r; T ]; T > 0 and anyt 2 [0; T ], we denote by xt the element of Cr de�ned byxt(�) = x(t+ �);�r � � � 0:This paper is concerned with the following initial value problem (IVP)(E) x0(t) = L(t; x� ) + Z T0 `(t; s)F (s; xs; x0(s))ds; t 2 [0; T ];(IC) x0 = �;1991 Mathematics Subject Classi�cation : 34K10.Key words and phrases: Leray-Schauder Alternative, a priori bounds, functional integrodif-ferential equations, second order boundary value problem, nonlinear boundary conditions.Received October 21, 1996.



258 P. CH. TSAMATOSwhere L: [0; T ]�Cr ! Rn, F : [0; T ]�Cr�Rn ! Rn, �: [�r; 0]! Rn are continuousfunctions, `: [0; T ]� [0; T ]! Rn, is a bounded function and � 2 [0; T ] is a givenpoint.Integrodi�erential equations of the form of (E) arised in the study of boundaryvalue problems (BVP) for functional di�erential equations with nonlinear bound-ary conditions. For example we consider the next BVP with nonlinear boundaryconditions(e) x00(t) = f(t; xt; x0(t)); t 2 [0; T ];(BC1) x0 = �; x(T ) = g1(x� );where f : [0; T ] � Cr � Rn ! Rn, g1:Cr ! Rn are continuous functions, � 2C([�r; 0]; Rn) is a given function and also, � 2 [0; T ] is a given point. It is clearthat the BVP (e) � (BC1) is equivalent to the following IVP(1) x0(t) = 1T g1(x� ) � 1T �(0) + Z T0 ( @@tG1(t; s))f(s; xs; x0(s))ds; t 2 [0; T ];(IC) x0 = �;where G1(t; s) = 1T ( (t� T )s if 0 � s � t � Tt(s � T ) if 0 � t � s � T;is the well known Green's function for the corresponding homogeneous BVP to(e) � (BC1).Also, we consider the following BVP with nonlinear boundary conditions(e) x00(t) = f(t; xt; x0(t)); t 2 [0; T ];(BC2) x0 = �; x0(T ) = g2(x� );where f , � and � are as in the previous BVP (e) � (BC1) and g2:Cr ! Rn is acontinuous function. It is also clear that the BVP (e)� (BC2) is equivalent to thefollowing IVP(2) x0(t) = g2(x� ) + Z T0 ( @@tG2(t; s))f(s; xs; x0(s))ds; t 2 [0; T ];(IC) x0 = �;



B.V.P. FOR FUNCTIONAL DIFFERENTIAL EQUATIONS 259where G2(t; s) = ( s if 0 � s � t � Tt if 0 � t � s � T;is the Green's function for the corresponding homogeneous BVP to (e)�(BC2):Obviously, equations (1) and (2) are special forms of the equation (E).The aim in this paper is to prove existence results for the IVP (E)-(IC) and, con-sequently, to specify these results to the BVP (e)� (BCi); i = 1; 2 and some otherrelated BVP conserning functional di�erential equations with nonlinear boundaryconditions.BVP for functional di�erential equations constitute an interesting area in thetheory of functional di�erential equations. Some recent results on this subjectare developed in the papers of Ntouyas, S�cas and Tsamatos [9,10] and Tsamatosand Ntouyas [13]. For a more detail treatment we refer also to the recent books ofErbe, Kong and Zhang [2] and Henderson [8] and the references therein. Boundaryconditions considered in these BVPs are usually linear. Results concerning BVPswith nonlinear boundary conditions, but only for ordinary di�erential equations,were appeared early in the litterature. Among others we refer to [1,3,4,5,6,12].For the proof of our main existence result in the following, we use the well knowntopological transversality method by a similar manner to that in [9]. Generally,to be able to apply this method we need the existence of a-priori bounds on thesolutions of a certain family of IVPs related to the given IVP (E)-(IC). These a-priori bounds are obtained imposing growth restrictions on the functions involvedin the equation (E) in the line of [7] and [11]. Also, here we extend the methoddeveloped in [9] to a more general problem including many problems consideredin several papers. 2. PreliminariesIf I is an interval of the real line R, by C(I;Rn) and C1(I;Rn) we denotethe space of all continuous and continuously di�erentiable, respectively, on I Rn-valued functions. Moreover, byjjxjjI = supfjx(t)j: t 2 Igand x I = maxfjjxjjI; jjx0jjIgwe de�ne the norms jj � jjI and � I in C(I;Rn) and C1(I;Rn), respectively. Thesespaces endowed with the respective norms are obviously Banach spaces. Also, wedenote by L1(I;R) the space of real functions whose absolute value is integrableon I, endowed with the usual normjjxjj1 = ZI jx(s)jds:



260 P. CH. TSAMATOSDe�nition. By a solution of the IVP (E)-(IC) we mean a functionx 2 C([�r; T ]; Rn) \C1([0; T ]; Rn) which satis�es the equation (E) and x0 =xj[�r; 0] = �:We state here a lemma which is essential in the sequel.Lemma 2.1. Let 
1;
2: [0;1) ! [0;1) be nondecreasing functions and A;B;d1; d2; c1; c2; e nonnegative constants such that(3) Ad1 lim supx!1 
1(x)x + Bd2 lim supx!1 
2(x)x < 1:Then the setS = fx 2 R: 0 < x � A
1(d1x+ c1) + B
2(d2x+ c2) + egis bounded.Proof. If the set S is unbounded, there exists a sequence (x�), with x� 6= 0,lim�!1 x� =1 and1 � A
1(d1x� + c1)x� + B
2(d2x� + c2)x� + ex�= A
1(d1x� + c1)d1x� + c1 d1x� + c1x� + B
2(d2x� + c2)d2x� + c2 d2x� + c2x� + ex� :Thus 1 � Ad1 lim supx�!1 
1(x�)x� +Bd2 lim supx�!1 
2(x�)x�which contradicts to (3). �3. Main ResultsTheorem 3.1. Let F : [0; T ]�Cr�Rn ! Rn, L: [0; T ]�Cr ! Rn, �: [0; T ]! Rnbe continuous functions and `: [0; T ]� [0; T ] ! Rn be a bounded function withb̀: [0; T ]! R, b̀(t) = R T0 `(t; s)ds a continuous function. Suppose also that:(H1) For every bounded subset S of Cr there exists a constant �S � 0 suchthat jL(t1; u)� L(t2; u)j � �S jt1 � t2jfor all t1; t2 2 [0; T ] and u 2 S:and(H2) There exists a constant M � 0 suchjjxjj[�r;T ] � M and jjx0jj[0;T ] � M



B.V.P. FOR FUNCTIONAL DIFFERENTIAL EQUATIONS 261for every solution of the IVP (E�)�(IC), � 2 (0; 1), where E� stands for theequation((E�)) x0(t) = �L(t; x� ) + � Z T0 `(t; s)F (s; xs; x0(s))ds; t 2 [0; T ]:Then for every � 2 Cr the IVP (E)-(IC) has at least one solution.Proof. Consider �rst the case �(0) = 0. Then the setC = fx 2 C1([0; T ]; Rn):x(0) = 0gis a convex subset of the normed linear space C1([0; T ]; Rn) and also 0 2 C:Now, we de�ne an operator R:C ! C1([0; T ]; Rn) byRx(t) = Z t0 L(s; x� )ds+ Z t0 Z T0 `(s; �)F (�; x�; x0(�))d�ds; t 2 [0; T ];where x�(�) = ( x(� + �) if � + � � 0�(� + �) if � + � < 0:Obviously, R(C) � C:Our purpose is to prove that R has a �xed point x 2 C. Then it is clear thatthe function z(t) = ( x(t); t 2 [0; T ]�(t); t 2 [�r; 0];is a solution of the IVP (E)-(IC).Following the same arguments as in [9], it su�ces to prove that the operator Ris completely continuous and the setE(F ) = fx 2 S : x = �Rx for some 0 < � < 1gis bounded.We observe �rst that R is obviously continuous.Let now a bounded sequence (x�) in C. As in [9], we can prove that there existsa compact set D in Cr such that x�t 2 D for every � and every t 2 [0; T ]. Thus,if b1 is a bound of (x�), the setX = [0; T ]�D � �B(0; b1)( �B(0; b1) is the closed ball in Rn with center 0 and radious b1) is compact in[0; T ]�Cr � Rn. Then it is obvious thatjjRx�jj[0;T ] � TK1 + T 2K2K3;



262 P. CH. TSAMATOSwhere K1 = maxfjL(t; u)j: (t; u) 2 [0; T ]�Dg,K2 = maxfjF (t; u; v)j: (t; u; v) 2 Xgand K3 = maxfj`(t; s)j: (t; s) 2 [0; T ]� [0; T ]g:Also, jj(Rx�)0jj[0;T ] � K1 + TK2K3:Moreover, the sequence (Rx�) is equicontinuous. Indeed, for every t1, t2 in[0; T ] we have(4) jRx�(t1) �Rx�(t2)j = ����Z t2t1 (Rx�)0(s)ds���� � (K1 + TK2K3)jt1 � t2j:Moreover, taking into accound assumption (H1) we have(5) j(Rx�)0(t1)� (Rx�)0(t2)j � �Djt1 � t2j+K2jb̀(t1)� b̀(t2)j:Hence, by (4) and (5) and, moreover, since the function b̀ is uniformly continuouson [0; T ], we have that the sequence (Rx�) is equicontinuous.Now we observe that by assumption (H2) the setE(F ) = fx 2 S : x = �Rx for some 0 < � < 1gis bounded. Therefore the operator R has a �xed point in C.For the proof in the general case, when �(0) 6= 0, we observe that the transfor-mation y = x� �(0);reduces the IVP (E)-(IC) into the followingy0(t) = bL(t; y� ) + Z T0 `(t; s) bF (s; ys; y0(s))ds; t 2 [0; T ];y0 = b�;where, bL(t; u) = L(t; u + �(0)), bF (t; u; v) = F (t; u + �(0); v) and b� = � � �(0).For the function b� we have b�(0) = 0. Hence, since the functions bL, bF satisfy theassumptions (H1), (H2), the proof of the theorem is complete. �The applicability of the previous theorem depends upon the existence of an a-priori bound for the solutions of the IVP (E)-(IC). Conditions on L and F whichimply the desired a-priori bounds are given by the following theorem.Theorem 3.2. Let F : [0; T ]�Cr�Rn ! Rn, L: [0; T ]�Cr ! Rn, �: [0; T ]! Rnbe continuous functions and `: [0; T ]� [0; T ] ! Rn be a bounded function withb̀: [0; T ] ! R, b̀(t) = R T0 `(t; s)ds a continuous function. Suppose also that (H1)holds and:



B.V.P. FOR FUNCTIONAL DIFFERENTIAL EQUATIONS 263(H3) There exists a nondecreasing function 
1: [0;1) ! [0;1) and two realvalued functions p; q bounded on [0; T ] and such thatjL(t; u)j � p(t)
1(jjujj[�r;0]) + q(t)for every (t; u) 2 [0; T ]�Crand(H4) There exists a nondecreasing function 
2: [0;1)! [0;1) and two func-tions m;n in L1([0; T ]; R) such thatjF (t; u; v)j � m(t)
2(maxfjjujj[�r;0]; jvjg) + n(t)for every (t; u; v) 2 [0; T ]�Cr �Rn:Then the IVP (E)-(IC) has at least one solution provided that(6) jjpjj[0;T ]T lim supx!1 
1(x)x +K3jjmjj1maxf1; Tg limsupx!1 
2(x)x < 1;where K3 = maxfj`(t; s)j: (t; s) 2 [0; T ]� [0; T ]g:Proof. Let x be a solution of the IVP (E�) � (IC); � 2 (0; 1): Then for everyt 2 [0; T ] we have jjxtjj[�r;0] � jj�jj[�r;0] + jjxjj[0;T ]:Also, x(t) = �(0) + R t0 x0(s)ds, t 2 [0; T ]. Hence(7) jjxjj[0;T ] � j�(0)j+ T jjx0jj[0;T ]:Therefore(8) jjxtjj[�r;0] � jj�jj[�r;0] + T jjx0jj[0;T ]; t 2 [0; T ]:Moreover, for every t 2 [0; T ] we havejx0(t)j � jp(t)j
1(jjx� jj[�r;0]) + jq(t)j+K3 Z T0 �m(s)
2(maxfjjxsjj[�r;0]; jx0(s)jg) + n(s)� ds:By (8) and, since 
1;
2 are nodecreasing, last inequality reduces tojx0(t)j � jjpjj[0;T ]
1(jj�jj[�r;0] + T jjx0jj[0;T ]) + jjqjj[0;T ]+K3jjmjj1
2 �maxfjj�jj[�r;0] + T jjx0jj[0;T ]; jjx0jj[0;T ]g�+ jjnjj1; t 2 [0; T ]:Finally, since 
2 is nondecreasing we obtainjjx0jj[0;T ] � jjpjj[0;T ]
1(jj�jj[�r;0] + T jjx0jj[0;T ]) + jjqjj[0;T ]+K3jjmjj1
2(jj�jj[�r;0] +maxf1; Tgjjx0jj[0;T ]jj) + jjnjj1:



264 P. CH. TSAMATOSHence, by assumption (6) and Lemma 2.1., there exists a constant M1 such thatjjx0jj[0;T ] � M1:Then by (7) we have jjxjj[0;T ] � j�(0)j+ TM1and since x0 = �, jjxjj[�r;T ] � jj�jj+ TM1 = M2Thus we proved that for every solution x of the IVP (E�) � (IC); � 2 (0; 1); theassumption (H2) of Theorem 3.1. is satis�ed fof M = maxfM1;M2g, a constantindepentent of �. So, the IVP (E)-(IC) has at least one solution. �The next corollary illustrates the existence result of the above Theorem 3.2.and concerns some special forms of functions 
1 and 
2.Corollary 3.3. Let L: [0; T ]�Cr ! Rn, F : [0; T ]�Cr�Rn ! Rn, �: [0; T ]! Rnbe continuous functions and `: [0; T ]� [0; T ] ! Rn be a bounded function withb̀: [0; T ] ! R, b̀(t) = R T0 `(t; s)ds a continuous function. Suppose also that (H1)holds and:(bH3) There exists a constant d, 0 � d � 1 and two real valued functionsp; q bounded on [0; T ] and such thatjL(t; u)j � p(t)(jjujj[�r;0])d + q(t)for every (t; u) 2 [0; T ]�Crand(bH4) There exists a constant r, 0 � r � 1 and two functions m;n inL1([0; T ]; R) such thatjF (t; u; v)j � m(t)(maxfjjujj[�r;0]; jvjg)r + n(t)for every (t; u; v) 2 [0; Y ]� Cr �Rn:Then the IVP (E)-(IC) has at least one solution provided that(9) �(d)jjpjj[0;T ]T + �(r)K3jjmjj1maxf1; Tg < 1;where �(k) = ( 0; k 2 [0; 1)1; k = 1;Proof. We set 
1(z) = zd and 
2(z) = zr : Then we havelim supx!1 
1(x)x = �(d) and lim supx!1 
2(x)x = �(r):Hence assumption (6) of Theorem 3.2. is reduced to assumption (9) above andthe proof is complete. �



B.V.P. FOR FUNCTIONAL DIFFERENTIAL EQUATIONS 2654. ApplicationsConsider now the BVP (e)�(BCi); i = 1; 2: Since these problems are equivalentto the IVP (1)-(IC) and (2)-(IC), respectively, we have the next existence resultwhich is an immediate consequence of Theorem 3.1.Theorem 4.1. Let f : [0; T ] � Cr � Rn ! Rn and gi:Cr ! Rn, i = 1; 2 becontinuous functions. Suppose also that (H4) holds, with f in place of F , and:(H03) There exists a nondecreasing function 
0i: [0;1)! [0;1), i = 1; 2 suchthat jgi(z)j � 
0i(jjzjj); i = 1; 2for every z 2 Cr: Then for every � 2 Cr the BVP (e) � (BCi); i = 1; 2; has atleast one solution provided thatAimaxf1; Tg limsupx!1 
0i(x)x + jjmjj1maxf1; Tg limsupx!1 
2(x)x < 1;where Ai = ( 1T ; i = 11; i = 2:Proof. The BVP (e)�(BCi); i = 1; 2 are equivalent to the IVP (i)�(IC); i = 1; 2,respectively. For these IVP the assumption (H1) is, obviously satis�ed. Thus theproof is similar to that of Theorem 3.1. and 3.2. with some obvious modi�ca-tions. �Now we consider the following BVP(e) x00(t) = f(t; xt; x0(t)); t 2 [0; T ];(BC) x0 = �; �x(T ) + �x0(T ) = g(x� );where f , � and � are as in the previous BVP (e) � (BCi); i = 1; 2, g:Cr ! Rn isa continuous function and �,� are real constants such that�T + � 6= 0:It is clear that the BVP (e) � (BC) is equivalent to the following IVP(10) x0(t) = g(x� )�T + � � ��(0)�T + � + Z T0 ( @@tG(t; s))f(s; xs; x0(s))ds; t 2 [0; T ];(IC) x0 = �;where G(t; s) = 1�T + �( (�t� �T � �)s if 0 � s � t � Tt(�s � �T � �) if 0 � t � s � T;is the Green's function for the corresponding homogeneous BVP to (e) � (BC):The BVP (e)-(BC) is more general than BVP (e) � (BCi); i = 1; 2. Hence thenext theorem generalizes the result of the previous Theorem 4.1. A closely relatedBVP is studied in [10,13].



266 P. CH. TSAMATOSTheorem 4.2. Let f : [0; T ] � Cr � Rn ! Rn and g:Cr ! Rn be continuousfunctions. Suppose also that (H4) holds, with f in place of F , and:(H03) There exists a nondecreasing function 
: [0;1)! [0;1) such thatjg(z)j � 
(jjzjj)for every z 2 Cr: Then for every � 2 Cr The BVP (e) � (BC) has at least onesolution provided that1�T + � maxf1; Tg limsupx!1 
(x)x + jjmjj1maxf1; Tg limsupx!1 
2(x)x < 1:Proof. Since the BVP (e)� (BC) is equivalent to the IVP (10)� (IC), the proofis immediate. �References[1] Baxley, J.V., Existence theorems for nonlinear second order boundary value problems,, J.Di�erential Equations 85 (1990), 125{150.[2] Erbe, L.H., Qingai Kong and Zhang, B.G., Oscillation Theory for Functional Di�erentialEquations, Pure and Applied Mathematics, 1994.[3] Fabry , Ch., Habets, P., Upper and lower solutions for second order boundary value problemswith nonlinear boundary conditions, Nonlinear Analysis T.M.A. 10 (1986), 985{1007.[4] Gaines, R., A priori bounds for solutions to nonlinear two-point boundary value problems,Applicable Analysis 3 (1973), 157{167.[5] Gaines, R., Mawhin, J., Ordinary di�erential equations with nonlinear boundary conditions,J. Di�erential Equations 26 (1977), 200{222.[6] Garner, J. B., Shivaji, R., Di�usion problems with a mixed nonlinear boundary conditions,Nonlinear Analysis T.M.A. 148 (1990), 422{430.[7] Guenther, J. R. B., Lee, J.W., Some existence results for nonlinear integral equations viatopological transversality, J. Integral Equations and Appl. 5 (1993), 195{209.[8] Henderson, J., Boundary Value Problems for Functional Di�erential Equations,, World Sci-enti�c, 1982.[9] Ntouyas, S.K., S�cas, Y., Tsamatos, P.Ch., An existence principle for boundary value prob-lems for second order functional di�erential equations, Nonlinear Analysis T.M.A. 20 (1993),195{209.[10] , Boundary value problems for functional di�erential equations, J.Math.Anal.Appl.199 (1996), 213{230.[11] Oregan, D.,Weak and strong topologies and integral equations in Banach spaces, Ann. Polon.Math. LXL3 (1995), 245{260.[12] Rach�unkov�a, I., Boundary value problems with nonlinear boundary conditions, acta Math.Inform. Universitatis Ostraviensis 2 (1994), 71{77.[13] Tsamatos, P. Ch., Ntouyas, S.K., Some results on boundary value problems for functionaldi�erential equations, Internat. J. Math. and Math. Sci. 19 (1995), 335{342.Department of MathematicsUniversity of Ioannina451 10 Ioannina, GREECEE-mail: ptsamato@cc.uoi.gr
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