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INDUCED ISOMORPHISMS OF CERTAIN TERNARY
SEMIGROUPS

ANTONI CHRONOWSKI AND MIROSLAV NOVOTNY

ABSTRACT. If X1, Y; are relational structures of the same type, then the
set of all ordered pairs (p, g) constitutes a ternary semigroup with a naturally
defined operation where p denotes a homomorphism of X; into Y; and g is a
homomorphismof Y; into X;. If f; is an isomorphism of X; onto a relational
structure X» and f> an isomorphism of Y; onto a relational structure Yo,
then the ordered pair (f1, f2) of isomorphisms defines an isomorphism of
the ternary semigroup defined on the basis of X; and Y; onto the ternary
semigroup defined on the basis of X5 and Y3; this isomorphism is said to
be induced. We prove that there exist isomorphisms of ternary semigroups
defined by pairs of relational structures that are not induced and formulate
a criterion recognizing induced isomorphisms.

1. INTRODUCTION

Ternary semigroups provide natural examples of ternary algebras. In the present
paper, we study ternary semigroups constructed on the basis of two relational
structures of the same type. The carrier of the ternary semigroup is formed of
all ordered pairs of homomorphisms where the first member of the pair is a ho-
momorphism of the first structure into the second and the second member is a
homomorphism of the second structure into the first. The ternary operation on
the set of these pairs of homomorphisms is defined in a natural way using the
composition of homomorphisms.

If Xy, X5 are isomorphic relational structures and Y, Y, are isomorphic as
well where we suppose that all structures are of the same type, then the ternary
semigroup of homomorphisms formed on the basis of X; and Y is isomomorphic

1991 Mathematics Subject Classification. 20N15.

Key words and phrases. ternary semigroup, mono-n-ary relational structure, homomorphism,
isomorphism, induced isomorphism.

Received January 13, 1995



206 ANTONI CHRONOWSKI AND MIROSLAV NOVOTNY

to the ternary semigroup of homomorphisms formed on the basis of X5 and Ys.
Our main problem consists in characterizing such isomorphisms that are called
induced. This problem seems to be natural because there exist some relational
structures X;, X3, Y1, Ys of the same type such that the ternary semigroup of
homomorphisms formed on the basis of X; and Y7 is isomorphic to the ternary
semigroup of homomorphisms formed on the basis of X» and Y5 while the corre-
sponding isomorphism is not induced in the above mentioned sense.
We now present the details of our considerations.

2. DECOMPOSABLE MAPPINGS

Let Xy, X9, Y7, Y5 be sets, f a mapping of the set X7 x Y7 into the set Xo x V5.
Suppose that there exists a mapping f; of X; into X, and a mapping f> of Y7 into
Y2 such that f(z1,y1) = (fi(®1), f2(y1)) holds for any (z1,y1) € X1 xY7. Then the
mapping f is said to be decomposable; the mappings f1, f2 are called components
of f. We write f = f1 x fa. The reader must be warned that the symbol x does
not mean a Cartesian product in this formula; we identify ((#1,41), (#2, y2)) with
((z1,2), (y1,y2)) where ((x1,91), (x2,y2)) € f, (z1,22) € f1, (y1,42) € f2 and,
hence, ((z1,z2), (y1,¥2)) € f1 X fa.

This is a slight generalization of the definition appearing in [6].

We see that the decomposability of f depends on the fixed decompositions of
X1 xY7 and X5 x Y5 into factors Xy, Y7 and X5, Y5, respectively. If these factors
are given, the components fi, f2 of f are defined in a unique way.

2.1. Lemma. Let Xy, X5, Yy, Yy be sets, f a mapping of the set X; x Yy into
the set X2 X Yz. Iffl X f2 = f = f{ X fé, then f1 = f{, f2 = fé

Proof. If (z,y) € X1 xY; is arbitrary, then (fi(z), f2(v)) = f(z,y) = (f1(z), f4(v))
which implies f1(2) = f(z), f2(¥) = f4(v). O

The following result enables to recognize decomposable mappings.

2.2. Theorem. Let X;, X2, Y1, Y be sets, f a mapping of the set X1 x Y7 into
Xy x Ys. Then the following assertions are equivalent.

(i) The mapping f is decomposable.

(ii) For any x, € X1, 2} € X1, 11 € Y1, y; € Y1 there exist elements
xo € Xo, ¥y € Xo, y2 € Yo, ¥y € Y3 such that f(z1,y1) = (22,2),
flz,y) = (x2,95), f(@h,0) = (25, 92).

Proof. If (i) holds and #; € Xy, 2 € X1, 1n € Y1, y| € Y7 are arbitrary,
we put @s = fi(21), ¥4 = fi(#1), y2 = f2(n1), ¥4 = fa(¥h). Then f(z1,p1) =
(fi(x1), f2(01)) = (w2,32), (e, 1) = (Al@1), fo(0h)) = (22,05), f2),m) =
(fi(z}), f2(y1)) = (w4, y2). Thus, (ii) holds.

Let (ii) hold. Suppose that 1 € X1, y1 € Y1 are fixed elements. For any 2} €
X, there exists exactly one #f, € Xa such that f(x),y1) = (24, y2) where ys € V5.
Thus, there exists a mapping f1 of X into X3 such that f(«},41) = (f1(2}), y2)
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for some y, € Y5. Similarly, there exists a mapping f» of Y7 into Y5 such that
flz1, yh) = (22, f2(yy)) for some 22 € Xa.

By (ii) for 2} € X1, #1 € X1, ¢} € Y1, y1 € Y} there exist elements uf, €
Xa, us € Xo, vh € Yo, va € Yy such that f(xf,y)) = (ub,vh), flef, ) =
(uh,va), flz1,yy) = (uz2,vh). We have obtained v}, = fi(#)), va = ya, uz =
za, vh = fa(yy). Tt follows that f(z],v1) = (fi(#)), f2(¥])). Thus, (i) holds. O

2.3. Remark. Let X, X5, Y1, Y5 be sets. It is easy to see that a bijection f of
X1 x Y7 onto X5 x Y3 is decomposable if and only if there exists a bijection f; of
X, onto Xy and a bijection f; of Y7 onto Y3 such that f = f1 x fo. |

3. TERNARY SEMIGROUPS

The fundamental notions of the theory of universal algebras can be easily found,
e.g., in [3], Chapter 1.

If X is aset and n > 1 an integer, we write X" for X x ---x X where X appears
n times.

A ternary semigroup (cf. [4], [7], [1], [2]) is an algebraic structure (A, f) such
that A is a nonempty set and f : A3 — A is a ternary operation satisfying the
associative law:

J(f(®1, w0, 23), x4, 25) = f(xr, fxo, 23, 24), 25) = f(21, 29, f(2x3, 24, 25))

for any z{,...,z5 in A.

Let M C A be aclosed subset of (A, f), i.e., asubset such that for any 1, #2, 23
in M the condition f(z1,zs2,23) € M holds. Then f N (M3 x M) is a ternary
operation on the set M it is said to be the restriction of f to M.

3.1.Example. Let A be a nonempty set. For any (z1,22,23) € A® put
f(z1,22,23) = 1. Then (A, f) is a ternary semigroup; an operation f defined in
this way is said to be trivial.

If X, Y are nonempty sets, define o((x1,41), (22, y2), (23,ys)) = (21, y1) for any
(z1,y1), (22,y2), (x3,y3) in X x Y. Then (X xY,0) is a ternary semigroup with
a trivial operation. O

3.2.Lemma. Let (A, f), (A, f') be ternary semigroups with trivial operations.
Then the following assertions hold.

(i) Any mapping of A into A’ is a homomorphism of (A, f) into (A’, f').

(ii) Any bijection of A onto A’ is an isomorphism of (A, f) onto (A, f'). O

Let (A, f) be a ternary semigroup. An element zg € A is said to be a left zero
of (A, f) (cf. [1]) if f(xo, 1, 22) = @ for any elements 1, x5 in A.

3.3.Lemma. Let (A, f) be a ternary semigroup. Then the following assertions
are equivalent.

(i) The operation f is trivial.
(i1) Any element in A is a left zero of (A, f).
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This is an immediate consequence of the definitions. O

3.4. Lemma. Let (A, f) be a ternary semigroup, (M, f') its ternary subsemigroup,
and xy € M an element. If zy is a left zero of (A, f), then it is a left zero of (M, f').

This follows directly from the definition of a left zero. O

Let X, Y be nonempty sets. We denote by T(X,Y) the set of all map-
pings of X into Y. Furthermore, we put T[X,Y] = T(X,Y) x T(Y, X). For
any (p1,q1), (p2,q2), (p3,g3) in T[X,Y] we set O((p1,q1), (P2, 92), (3, 43)) =
(progaops,qropaoqs). Then (T[X,Y],0) is a ternary semigroup. The ternary
semigroup (T[X, Y], O) is called the ternary semigroup of mappings of sets X and
Y. If XNY =0, then (T[X,Y],0) is called the disjoint ternary semigroup of
mappings of sets X and Y.

It is easy to check that the ternary semigroups (T[X,Y],0) and (T[Y, X],0)
are isomorphic.

A slightly modified argument applied in the proof of Theorem 3 in [4] yields
the following theorem.

3.5. Theorem. Every ternary semigroup (A, f) is embeddable into a disjoint
ternary semigroup (T[X,Y],0) of mappings of sets X and Y. O

We denote by C(X,Y) the set of all constant mappings of X into Y and put
CIX,Y]=C(X,Y) x C(Y,X). Then C[X,Y] C T[X,Y] and O((p1,¢1), (P2, q2),
(p3,q3)) € C[X,Y] for any (p1,q1), (p2,¢2), and (ps3,¢s3) in C[X,Y]. Hence, the
set C[X, Y] is closed in the ternary semigroup (7[X, Y], 0). Thus, if we denote by
0" the restriction of O to C[X,Y], we obtain a ternary semigroup (C[X,Y],O").

In the same way as Lemma 4.1 in [1], we prove

3.6.Lemma. Let X| Y be nonempty sets, (p,q) € T[X,Y] an arbitrary element.
Then (p,q) € C[X,Y] holds if and only if (p, q) is a left zero of (T[X,Y],0). O
3.7. Lemma. Let X, Y be nonempty sets. Then the following assertions hold.

(i) Any (p,q) € C[X,Y] is a left zero of (C[X,Y],0").
(i1) The operation O" of (C[X,Y],0") is trivial.

Proof. (i) follows from 3.6 and 3.4, (ii) is a consequence of (i) and 3.3. O

Let X, Y be nonempty sets. A constant mapping p of X into ¥ with the value
y € Y will be denoted by p,. A constant mapping ¢ of ¥ into X with the value
x € X will be denoted by ¢,.

3.8.Lemma. Let X, Y be nonempty sets. For any » € X put bi(x) = ¢y, for
any y € Y define by(y) = py. Put b = by x by. Then b is an isomorphism of the
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ternary semigroup (Y x X, 0) onto (C[X,Y],0").

Proof. Clearly, b is a bijection of ¥ x X onto C[X,Y]. Since o, O” are trivial
operations by 3.1 and 3.7, b is an isomorphism of (Y x X, 0) onto (C[X,Y],0")
by 3.2. O

3.9.Lemma. Let X, Y be nonempty sets, zp in X, and u, v, ' in T(X,Y).
Then u o ¢y, ou’ = u" holds if and only if u" = py(e,)-

Proof. If z € X is arbitrary, then (uo gz, o v')(x) = u(gs, (v (2))) = u(zo) and,
hence, wo ¢y, ot = py(ey). Thus u” = uoqy, ou’ holds if and only if u” = py(r,).0

3.10.Corollary. Let X, Y be nonempty sets. Let (S, f) be a ternary subsemi-
group of (T[X,Y],0) such that C[X,Y] C S. Then (u,v) € S is a left zero of
(S, f) if and only if (u,v) € C[X,Y].

Proof. If (u,v) € C[X,Y], then by 3.6 (u,v) is a left zero of (T[X,Y],0). Since
C[X,Y] C S, it follows from 3.4 that (u,v) is a left zero of (S, f).

Conversely, suppose that (u,v) is a left zero of (S, f). Let g € X and yg € YV
be fixed elements and (u',v') € S. We have O((u,v), (py,, 4o,), (¢, 0")) = (u,v).
This implies that u o ¢, o u’ = u and v o py, o v’ = v. By 3.9 we obtain u = py(s,)
and, similarly, v = ¢y (y,). Hence (u,v) € C[X,Y]. O

3.11. Corollary. Let X, Y be nonempty sets, zg € X, yo € Y, u € T(X,Y)
arbitrary elements. Then u(xo) = yo holds if and only if © 0 gy, © Py, = Py,-

Proof. By 3.9 the last equality is equivalent to py, = py(z,) Which means yo =
u(zg). O

3.12. Corollary. Let X, Y be nonempty sets, zg, xf in X, yo, yy in Y, and
(w,v) € T[X,Y]. Then u(xzg) = wyo, v(yy) = =z hold if and only if
O((u,v), (py{]’qm))’ (Pyo,%g)) = (pyanxg)'

Proof. By definition of O the last equality is equivalent to u o ¢z, © py, = Py,, v O
Py, © ¢/, = ¢y which means u(zo) = yo, v(yy) = xy by 3.11. O

4. MONO-n-ARY RELATIONAL STRUCTURES

If X is a nonempty set, n a positive integer, and » C X", then the ordered pair
X = (X, r) is said to be a mono-n-ary relational structure. The structure is said
to be reflexive if for any « € X the condition (x,...,z) € r holds where x appears
n times.

Let X = (X,r), Y = (Y, s) be mono-n-ary relational structures.

By a cardinal product of X and Y, which will be denoted by X x Y, we mean
the set X x Y with the n-ary relation r x s where for any (x1,y1), ..., (2, yn) in
X xY the condition ((#1,y1),...,(#n,yn)) € rxsholdsifand only if (z1,...,2,) €
7, (y1,...,yn) € 5. The symbol x in the formula r x s does not mean a Carte-
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sian product; we identify ((z1,¥1),..., (Zn, yn)) with ((x1,...,20), (Y1, .-, Yn))-
Clearly, X x Y = (X x Y, r x s) is a mono-n-ary relational structure. Cf [3] p.164.

Let A be a mapping of X into Y. The mapping A is said to be a structure
homomorphism (abbreviated s-homomorphism) if for any (x1,...,#,) € 7 the
condition (h(z1),...,k(x,)) € s holds. A bijection b of X onto Y is said to be an
s-isomorphism of X onto Y if it is an s-homomorphism of X onto Y and if 6~ is
an s-homomorphism of Y onto X.

It is easy to notice that a mapping b of X into Y is an s-isomorphism of X onto
Y if and only if the following conditions are satisfied.

(i) b is a bijection of X onto Y.
(i) (21,...,2,) € 7 holds if and only if (b(z1),...,b(x,)) € s for any
(T1,...,2n) € X"

Clearly, s-isomorphisms are particular cases of strong homomorphisms in the
sense of [5].

4.1. Lemma. Let X1 = (Xl,rl), X2 = (Xz,?“z), Y1 = (Yl,Sl), Y2 = (YQ,SQ)
be reflexive mono-n-ary structures and f; : X1 — X, fo : Y1 — Y5 be bijections.
The bijection fi X fs is an s-isomorphism of X1 x Y1 onto X5 x Y4 if and only if
f1 1s an s-isomorphism of Xy onto Xy and f, is an s-isomorphism of Y| onto Y.

Proof. Let f1, f2 be s-isomorphisms. Suppose that z;,..., 2, are in X; and
Y1,--.,Ys 10 Y7. Then any two consecutive conditions in the following sequence
are equivalent.

(@) ((x1,91),-- -, (20, 4n)) € 11 X 513
(b) (z1,...,2n) €71, (Y1,---,Yn) € 515
(c) (filxr), .., filzn)) €ra, (fo(tn),---, folyn)) € 595
(d) ((fi(z1), fo(w1)), -+ (Fi(®n), folyn))) € 72 X s2;
(&) (fr x fo)(xi,91),- -, (f1 X fo)(®n,yn)) € 72 X s2.
The equivalence of (a) and (e) implies that f1 x f2 is an s-isomorphism of
X1 X Y1 onto X2 X Yz.
Let fi x fo be an s-isomorphism of X; x Y; onto X5 x Y. Suppose that

X1,...,%y arein X1. Let y € Y7 be arbitrary. Then any two consecutive conditions
in the following sequence are equivalent.

() (#1,...,20) Ery;

(g) (z1,...,20) €71, (y,...,y) € 51;

(h) ((=1, ),. (#n,y)) €71 X 815

(k) Y)) € 72 X Sa;

W) (P (@), o 0)s- s (Fin), Sow)) € o x s
(m) (fi(z1), ..., filzn)) €72, (f2(y), ..., fa(y)) € s2;
(m) (fi(z1),..., fi(en)) € 2.
The equivalence of (f) and (n) implies that f; is an s-isomorphism of X; onto
X5. Similarly, we prove that fs 1s an s-isomorphism of Y; onto Ys. O

(
(
E(fl X fz)(l‘l, ),~ (fl X fz)(l‘
(

4.2.Lemma. Let X = (X,r), Y = (¥,s) be reflexive mono-n-ary relational
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structures. Then any constant mapping of X intoY is an s-homomorphism of X
mntoY.

Proof. If p, is a constant mapping of X into Y, then for any (z1,...,2,) € 7, we
obtain (py(x1),...,py(2n)) = (y,...,y) € s. O

Let X = (X,7), Y = (Y, s) be reflexive mono-n-ary relational structures. We
denote by H(X,Y) the set of all s-homomorphisms of X into Y. Furthermore,
we put H[X,Y] = H(X,Y) x H(Y,X). By 4.2, we have C[X,Y] C H[X,Y] C
T[X,Y]. Since the superposition of s-homomorphisms is an s-homomorphism, the
restriction O’ of the ternary operation O to H[X, Y] defines a ternary semigroup
(H[X,Y],0) on HX,Y].

As a consequence of 3.10 we obtain

4.3.Lemma. Let X = (X,r), Y = (V,s) be reflexive mono-n-ary relational
structures, (p,q) € H[X,Y] an arbitrary element. Then (p,q) is a left zero of
(H[X,Y],0) if and only if (p,q) € C[X,Y]. O

4.4. Lemma. Let X1 = (Xl,rl), X2 = (Xz,?“z), Y1 = (Yl,Sl), Y2 = (YQ,SQ) be
reflexive mono-n-ary relational structures. If F' is an isomorphism of the ternary
semigroup (H[X1,Y1],0}) onto (H[X2,Y3],0%) , then the restriction G of F
to C[X1,Y1] is an isomorphism of the ternary semigroup (C[X1,Y1],0f) onto
(C[X2, Ya], OF).

Proof. Clearly, F' assigns a left zero of (H[Xa2,Y3],0%) to a left zero of
(H[X1,Y1],01) and F~1 assigns a left zero of (H[X1,Y1],0) to any left zero
of (H[X2,Y3],0). By 4.3 the restriction G of F to C[Xy,Y]] is a bijection of
C[X1,Y1] onto C[Xa, Y3]. By 3.7 the operations Of, Of are trivial. Thus, G is an
isomorphism of (C[X1, Y1], OY) onto (C[X3, Y2], OY) by 3.2. O

5. INDUCED ISOMORPHISMS

5.1. Lemma. Let X1 = (Xl,rl), X2 = (Xz,?“z), Y1 = (Yl,Sl), Y2 = (YQ,SQ)
be reflexive mono-n-ary relational structures, f; an s-isomorphism of X onto
X, and fa an s-isomorphism of Y1 onto Y. For any (p,q) € H[X1,Y:] put
F(p,q) = (f20po fit, fiogo f7'). Then F is an isomorphism of the ternary
semigroup (H[X1,Y1],0}) onto (H[Xa2,Ys],0%).

Proof. Since a composite of s-homomorphisms is an s-homomorphism, we ob-
tain foopo fit € H(Xs,Ys), fiogo fi' € H(Y2, Xs) and, hence, F(p,q) €
H(X2,Y3) x H(Y2,X3) = H[X2,Y3]. Thus, F is a mapping of H[X1,Y] into
H[Xa,Ys).

Furthermore, if (p1,q1), (p2,492), (ps,¢3) are in H[X;, Y], then we
obtain O4(F(p1,q1), F(p2,92), F(ps,q3)) = O4((fo o pr o fi' froqio f5'),
(faopzofit fiogzo fy '), (faopso fi, fieqso fs')) = (faopiogzopse fi,
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fioqiopsogso fi') = F(Oi((p1,q1), (p2, ¢2), (ps, 43))) and, hence, F is a homo-
morphism of (H[X1,Y1],0}) into (H[X3,Y2],0%).

If (p,q) € H[X1,Y1], (¢/,¢") € H[X1,Y1] are such that F(p,q) = F(p',¢), i.e.
faopofit=faopofit froqofit =fioq ofyt, wehave p=p/, ¢=¢.
Thus (p,q) = (¢, ¢'). Consequently F' is injective.

If (u,v) € H[Xs, Y], put p= f5 touo fi, ¢= f{ *ovo fo. Similarly as above,
we state that (p,q) € H[X1,Y:] and it follows that F'(p,q) = (u,v). Hence F is
surjective.

Thus F is an isomorphism of the ternary semigroup (H[X;,Y;],0}) onto
(H[X3,Y2], 0). O

Let Xi, X5, Y1, Y, be reflexive mono-n-ary relational structures, f; an s-
isomorphism of X; onto X, and f5 an s-isomorphism of Yy onto Y,. For any
(p,q) € H[X1,Y1] put F(p,q) = (faopo fit, frogofi'). By 5.1, this mapping F
is an isomorphism of the ternary semigroup (H[X1,Y1], O}) onto (H[Xa2, Y3], O).
It will be called the isomorphism induced by the pair (f1, f2) of s-isomorphisms.

There exist examples of reflexive mono-n-ary relational structures X;, X,
Y1, Y2 and of isomorphisms of (H[X1,Y1],0}) onto (H[Xz, Y2],04) that are
not induced by any pair of s-isomorphisms (cf. [1]). Thus, we have the following

5.2. Problem. If Xy, X,, Y, Y, are reflexive mono-n-ary relational structures
and F an isomorphism of (H[X1,Y1],0}) onto (H[Xs, Y], 0}), formulate neces-
sary and sufficient conditions for I’ to be induced by a pair of s-isomorphisms.

Let X1 = (Xl,rl), X2 = (Xz,?“z), Y1 = (Yl,Sl), Y2 = (YQ,SQ) be reflex-
ive mono-n-ary relational structures; F' an isomorphism of the ternary semigroup
(H[X1,Y41],0)) onto (H[X2,Y3],0%). By 4.4, the restriction G of F' to the
set C[X1,Y1] is an isomorphism of the ternary semigroup (C[X1,Y1], Of) onto
(C[X2,Y5],04). Similarly as in 3.8 we denote by py, the constant mapping of
X; into Y7 with the value y1, by ¢5, the constant mapping of Y7 into X3 with
the value z,, by uy, the constant mapping of X into Y> with the value y-,
and by vy, the constant mapping of Ys into X2 with the value z5. Further-
more, put b11(21) = ¢o,, b12(y1) = py, for any (z1,31) € X1 x Y1 and define
by = b3 x by1. By 3.8, by is an isomorphism of the ternary semigroup (Y1 x X1, 01)
onto (C[X1,Y1],07). Similarly, we put byi(22) = ve,, baa(y2) = uy, for any
(z2,y2) € X2 x Y and define by = baa x bay. Then by is an isomorphism of the
ternary semigroup (Ya x X3, 02) onto (C[Xa, Y2], 04). It follows that f = b5 'oGob;
is an isomorphism of the ternary semigroup (Y1 x X1, 01) onto (Y2 x X2, 02). This
mapping f will be said to be the trace of F.

5.3. Main Theorem. Let X, Xs, Yy, Ys be reflexive mono-n-ary relational
structures, F' an isomorphism of the ternary semigroup (H[Xi,Y1],0}) onto
(H[X2,Y3],0,). Then the following assertions are equivalent.

(1) There exist s-isomorphisms f1 : X; — X5 and fo : Y, — Y5 such that F
is induced by the pair (f1, f2).
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(i1) The trace f of I is a decomposable s-isomorphism of the cardinal product
Y, x X; onto the cardinal product Yo x Xs.

Proof. We put X; = (X;, ), Y; = (V3, ;) for i = 1, 2. Furthermore, we denote
- similarly as above - by G the restriction of F' to C[X1,Y1], by by = b1y x b1y
the isomorphism of (Y1 x X1, 01) onto (C[X1,Y1],0Y), and by ba = baz x ba; the
isomorphismof (Y3 x X3, 02) onto (C[X2, Y3], OF) defined in 3.8. Let f = bz_loGobl
be the trace of F'. We know that f is an isomorphism of the ternary semigroup
(Y1 X Xl,Ol) onto (Y2 X XQ,OQ).

Let (i) hold. Then F(p,q) = (foopo fi',fi oqo f7') for any element
(p,q) € H[X1,Y4]. Particularly, if (z1,y1) € X1 x Y1 is arbitrary, we obtain
Fpy,, qo,)(22,92) = (f20opy, o [T F1 0 goy 0 fo ) (@2, 92) = (fo(n), fi(21))
for any (x2,y2) € X» x Yy which implies that F(py,,¢s,) = (qu(yl),vfl(xl)).
Since b1(y1,x1) = (b12(y1), b11(%1)) = (Pys 421), b2(y2, 22) = (ba2(y2), bai1(22)) =
(uyza vxz)a we obtain (Gobl)(yla xl) = G(pyu(h?l) = F(pyu qxl) = (uf2(y1)’ vfl(xl))
= ba(f2(y1), fi(x1)) which means that (bz_l oGoby)(yr, 1) = (f2 x fi)(yr, z1).
Thus, the trace f = bz_l o G o by of F is decomposable and its components
f1: Xy = Xs; fa: Y1 — Y5 are s-isomorphisms. It follows that f = fo x fi is
an s-isomorphism of Y; x X; onto Y2 x X3 by 4.1. Thus (ii) holds.

Suppose that (ii) holds. Then f is an s-isomorphism of Y; x X; onto Y3 x X5
and is decomposable, 1.e., f = f3 x f; where f; is a mapping of X; into X» and
f2 18 a mapping of Y7 into Ys. By 2.3, f1 is a bijection of X; onto X5 and f; 1s a
bijection of Y7 onto Ys. By 4.1, f; is an s-isomorphism of X; onto X, and f5 1s an s-
isomorphism of Y1 onto Y2. We must prove that F(p, q) = (f2 opofl_l, floqofz_l)
holds for any (p,¢) € H[X1,Y1].

Let (p,q) € H[X1, Y] be arbitrary. Put (u,v) = F(p,q), let 22 € Xa, v5 € Y
be arbitrarily chosen elements. We define

(1) we=ules), ey =v(wh), 1= fi (), 21 = fi ' (22), @) = fi ' (),
i = f3 ().
Put
(2) W =px), 2] =q(h)
By 3.12 we obtain O1((p,q), (py!s qx.), (Pys @e)) = (Pyysqer). Since F is an
isomorphism of (H[X1,Y: ], 01) onto (H[X32, Y], %), we obtain

(3) G(bl (yl 3 xl)) G(py'l'a qw”) = F(py’l’a (Jx’l’) ==
O5(F(p,9), F(py;, 401), F(pyy, 407)) = O5((w,v), Glpys 4oy ), G Dy, 4ay))-

"

By 4.4 there exist 24, 4’ in X2 and ¢, ¢4’ in Y3 such that
(1) Gpys, az,) = (uyy, var), Gpyy, qor) = (uys, vomr).
We obtain
(5)  ba(h, 2%) = (uyy, vey) = Glpy;, 4a,) = G(b1(yy, 21)),
(6) oy, 25') = (uyyr, verr) = Glpyy, auy) = Glba(yy, 27))
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which implies that
(7) (W, 25) = (b3 0 Gobi)(¥h, x1) = (f2 x fu)(Wh, w1) = (fo(4h), fr(21)),
®) (v 2) = (b3 o Gobi)(yl, 2f) = (fo x fu)(y, &) = (f2(y), Fu(2)).

These conditions imply
9) W =F04), 28 = filz), v’ = F00), @ = A().
Taking (1) into account, we have
(10)  yy =, 25 =22,
By (3), (4), we obtain

(1) (g o) = O{{1,0), (g vag), (g, )
By 3.12 we have
(12)  u(xy) =g, v(yy) =Y
and (10) implies
(13)  u(z) =u", v(yy) =y’
By (13), (9), (2), (1), we obtain

(14)  u(r) =" = folyl) = F2(p(x1) = fo(p(fi (22)),

(
(15)  w(yy) = &5 = fi(z}) = fila(v1)) = fi(a(f3" (42)))-
Thus, u(z2) = (faopo fi 1) (wa), v(yh) = (fiogo f7 1) (yh) for an arbltrary element

(xz,yz)EszYz Hence F(p,q) = (u,v) = (fa0po fit, fioqo f;1) for any
(p,q) € H[X1,Y,]. Thus (i) holds. 0

6. EXAMPLES

6.1.Example. Put X1 = {l‘ll,l‘lz}, X2 = {l‘zl,l‘zz}, Y1 = {yl}, Y2 = {yz},
= {(9011,9011), (9011,9012), (9012,9012)}, 2 = {(1‘21,9021), (9022,9022)}, 51 = {(3/1,3/1)},
s = {(y2,92)}, X1 = (Xi,7m1), Xo = (Xo,72), Y1 = (Y1,81), Yo = (Va,s0).
Suppose that the elements 11, ®13, %21, X392, y1, y2 are mutually different.
Then X;, Xs, Y1, Y: are reflexive mono-2-ary relational structures. Clearly,
H(X1, Y1) =A{py, }, H(Y1,X1) = {dony, Gera}, H(X2, Vo) = {uy. }, H(Y2,Xo) =
{vle ) vx22}~ Hence H[Xla Yl] = {(pyl ) qu)a (pyl ) qx12)}’ H[X2a Y2] =
{(uyza vxm)’ (uyw vx22)}~ Thus C[Xlayl] = H[XlaYl]a C[XZaYZ] = H[XZaYQ]'
Put F(pyu%u) = (uyzavle)’ F(pyuqu) = (uyzavxzz)' By 3.2 and 37a Fis
an isomorphism of (H[X1,Y1],0}) onto (H[X2,Y3], 0)). Tts trace f is defined by
flyr, 211) = (Y2, €21), f(y1,212) = (Y2, 222). Clearly, f is a decomposable bijection
of Y1 x X onto Y2 x Xz. We have f = fo x fi where fa(y1) = ya, fi(x11) =
221, fi(x12) = ®22. Since (11, 212) € r1, (¥21,%22) & ra, the bijection f is no
s-1somorphism of X; onto X,. Thus, f is no s-isomorphism of Y; x X; onto
Y. x Xy by 4.1. By 5.3, F is not induced by any pair of s-isomorphisms. O

6.2. Example. Put X; = {1‘11, 96‘12}, Xo = {1‘21, l‘zz}, Y = {yn, 3/12}, Y, = {yZla
yzz}, " = {(9011,9011),(9012,9012)}, 2 = {(9021,9021),(9022,9022)}, S1 = {(yn,yn),
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(Y12, 02) ), 52 = {(y21,921), (Y22, 922)}, Xa = (X1,7m1), Xo = (Xo,72), Y =
(Y1,s1), Yo = (Y2, s2). Suppose that the elements z11, #12, ®21, %22, Y11, Y12, Y21,
y2o are mutually different. Clearly H[X;,Y ] = T[X1,Y1] and H[X.,Ys] =
T[X2,Ys]. Put hy(x11) = y21, hi(®12) = y22, ha(y11) = 21, ha(y12) = 292, h =
hy x hy. For any (p,q) € H[X4, Y] put F'(p,q) = (haopohi hiogohst).

Since hy is an s-isomorphism of X; onto Yo and hy is an s-isomorphism of
Y, onto Xy, F’ is an isomorphism of the ternary semigroup (H[Xy,Y1],0}) onto
(H[Y2,X3],05) by 5.3 where we have O5((vi,u1),(va,us2), (vs,uz)) =
(v1 0 ug 0 w3, uy o vg o ug) for any (v1,u1), (ve,us2), (vs,us) in H[Y2,Xs]. For
any (v,u) € H[Y2,Xs3] put F"(v,u) = (u,v). If (vi,u1), (v2,u2), (vs,ug) are
arbitrary elements in H[Y3,X2], we have F"(O%((v1,u1), (va, ua), (vs,us))) =
F"(v1ougovs, ugovgous) = (ujovgous, vyouzovs) = Oh((uy, v1), (uz, v2), (us, v3))
= O4(F"(v1,u1), F'"(ve, ua2), F"(vs, ug)) which impliesthat F is a homomorphism
of (H[Y3,X2],0%) into (H[X3,Y2],0%). Since F” is a bijection, it is an iso-
morphism. It follows that F” o F’ is an isomorphism of the ternary semigroup
(H[X1,Y1],0,) onto (H[Xa,Y2],0%) assigning the ordered pair (hy o g o hy*,
hoopoht) € H[X2,Ys] to any (p,q) € H[Xy,Y1]. Put F=F"oF'.

The restriction G of F to the set C[X;,Y;] has the following proper-
ties: G(pyuaqxu) = F(pyuaqxu) = F//(F/(pyuaqxu)) = F//(h2 © Py © hl_l’hl ©
qw110h2_1) = F//(vfm’uyzl) = (uy21 ’ vxm) and’ Simﬂaﬂy’ G(py12’ qu) = (uyzlavfzz)a
G(pyuaqxw) = (uyzzavle)’ G(pymaqxw) = (uyzzavfzz)' Thusa the trace f of
F defined by f = b5' o G o by satisfies the following conditions: f(yi1,x11) =
(Y21, %21), flyr2,211) = (Y21, T22), F(y11, 12) = (Y22, ®21), F(y12, T12) = (Yo2, ®22).
This mapping f is no decomposable mapping of Y; x X onto Y3 x X5. Indeed, if
J = fox fi,then f(y11,211) = (y21, €21) implies that fo(y11) = y21, fi(z11) = 221
which entails that f(yi1,212) = (f2(y11), fi(®12)) = (y21, fi(z12)). But we have
F(y11, 212) = (Yaz, ©21) which implies that ya1 = yag; this is a contradiction. Thus,
the trace of F' is not decomposable and, therefore, F' is not induced. O
6.3. Example. Let X;, X5, Y7, Y5 be nonempty sets, suppose that f; is a
bijection of X1 onto X, fo a bijection of Y7 onto Y. Put r1 = Xy x Xy,ry =
X2 X Xz, s = Y1 X Yl, S9 = Y2 X Yz, X1 = (Xl,rl), X2 = (Xz,?“z), Y1 =
(Yl,Sl), Y2 = (YQ,SQ). Then, clearly, H[Xl,Yl] = T[Xl,Yl], H[XQ,YQ] =
T[X2,Y5], f1 is an s-isomorphism of X; onto X5, and f, is an s-isomorphism of
Y, onto Ya. Put F(p,q) = (faopo fi*, fiogo f1) for any (p,q) € H[X1,Y1].
Then F is an isomorphism of H[X;,Y;] onto H[X2,Y5] that is induced by the
pair (f1, f2) of s-isomorphisms. O
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