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ARCHIVUM MATHEMATICUM (BRNO)Tomus 28 (1992), 77 { 81ON FRAME CONGRUENCESGENERATED BY FRAME TOLERANCESJosef NiederleDedicated to Professor M. Novotn�y on the occasion of his seventieth birthdayAbstract. Nuclei of frame congruences generated by frame tolerances and by lat-tice congruences are constructed.A frame is a complete lattice (L;�) in which x^Wfxiji 2 Ig = Wfx^xiji 2 Igholds for any nonempty index set I and arbitrary elements x; xi 2 L (i 2 I).Johnstone's book [1] is our general reference about frames. A tolerance of the frame(L;�) is a re
exive and symmetric relation on L compatible with operations ^and _ induced by the order �. A transitive tolerance is said to be a congruence. Aframe tolerance is a tolerance T such that [Wfxiji 2 Ig;Wfyiji 2 Ig] 2 T whenever[xi; yi] 2 T (i 2 I). A frame congruence is a transitive frame tolerance. A mappingf : (L;�) ! (L;�) is called extensive if x � f(x) for each x 2 L, idempotent iff(f(x)) = f(x) for each x 2 L, and a meet-endomorphism if f(x ^ y) = f(x) ^f(y) for each x; y 2 L. An element x 2 L is a �xpoint of f if f(x) = x. Recallthat a tolerance (congruence) of (L;�) is a frame tolerance (frame congruence)if and only if each of its polars possesses a top element. Further, there is a one-to-one correspondence between frame tolerances of (L;�) and extensive meet-endomorphisms of (L;�) such that the extensive meet-endomorphism associatedwith a tolerance T , which will be referred to as the nucleus of T , assigns to eachelement x 2 L the top element of the polar T (x) := fy 2 Lj[x; y] 2 Tg of theelement x in the frame tolerance T . A frame tolerance is a frame congruence if andonly if its nucleus is idempotent. We know that frame tolerances of a frame forma frame with respect to set inclusion, the same applies to frame congruences. Theoperator FC assigning to any relation R the least frame congruence that includesR is a frame homomorphism (that is a join-complete lattice homomorphism) ofthe frame of all frame tolerances onto the frame of all frame congruences. See [2],[3] and [4] for these and further results. The aim of this paper is to provide a1991 Mathematics Subject Classi�cation : 06D99, 08A30.Key words and phrases: frame, frame congruence, frame tolerance.Received December 4, 1991. 77



78 JOSEF NIEDERLEmore detailed analysis how FC works. The axiom of choice is a prerequisite of ourconsiderations.We know that the transitive closure of a tolerance is a congruence, see [5].Therefore the transitive closure of a frame tolerance is a (lattice) congruence, butit may not be a frame congruence.Example 1. Let � be an arbitrary in�nite ordinal, consider L := � + 1 withthe usual order. Since it is a complete chain (with the greatest element �), it isa frame. De�ne P := f[�; � + 1]j� < �g, and T := P [ �P [�L, where �P is thereverse relation to P and �L is the identity relation on L. It is obvious that Tis a tolerance of (L;�). As T (�) = f� � 1; �; � + 1g for 0 < � < �, � beinga successor ordinal, T (�) = f�; � + 1g for 0 < � < �, � being a limit ordinal,T (0) = f0; 1g, T (�) = f�� 1; �g, � being a successor ordinal, and T (�) = f�g, �being a limit ordinal, the polar of each element of L contains a greatest element,and we may conclude that T is a frame tolerance. Now, the polar of the element0 in the smallest frame congruence FC(T ) that includes T contains with eachelement � 6= � its successor, and simultaneously it has a greatest element. It isclear that this greatest element is exactly �, and FC(T ) is the universal relationon L. In contrast, the polar of the element 0 in the smallest congruence �(T ) thatincludes T consists of only (at most) �nite ordinal numbers.This example was not chosen by chance. In a similar manner we can "construct"frame congruences generated by frame tolerances in the general case. This factfollows from the well-known �xpoint theorems. We will utilize the construction ofleast �xpoints as "limits" of monotone trans�nite sequences.Lemma 1. Let (L;�) be a frame, x 2 L and f : L ! L an extensive mapping.Then there exists precisely one order-preserving mapping fx from the class of allordinals to L such that fx(0) = x, fx(�) = f(fx(� �1)) if � is a successor ordinal,and fx(�) = Wffx(
)j
 < �g if � is a limit ordinal.Proof. Follows immediately from the trans�nite recursion theorem.Lemma 2. Let (L;�) be a frame, x 2 L, and f : L ! L an extensive mapping.Then there exists an ordinal �x such that fx(
) = fx(�x) whenever �x � 
.Moreover, if f is order-preserving, fx(�x) is the least �xpoint of the mapping f inthe principal dual ideal hx).Proof. Straightforward and therefore omitted.De�nition. The ordinal �x just de�ned is said to be the closure ordinal of f inx. Next we will investigate some properties of the mapping f� de�ned by f�(x) :=fx(�), where f is an extensive meet-endomorphism of the frame (L;�).Lemma 3. Let (L;�) be a frame, let f : L ! L be an extensive meet-endomor-phism and � be an ordinal. Then the mapping f� is an extensive meet-endomor-phism of the frame (L;�) and each �xpoint of f is also a �xpoint of f� .



ON FRAME CONGRUENCES GENERATED BY FRAME TOLERANCES 79Proof. We �rst show by trans�nite induction on � that f� is a meet-endomor-phism for all ordinals �. For � = 0 we have f0(x)^f0(y) = fx(0)^fy(0) = x^y =fx^y(0) = f0(x^y). Suppose the assertion is valid for all 
 < �. If � is a successorordinal, we have f�(x) ^ f�(y) = fx(�) ^ fy(�) = ffx(� � 1) ^ ffy(� � 1) =f(fx(��1)^fy(��1)) = f(f��1(x)^f��1(y)) = ff��1(x^y) = ffx^y(��1) =fx^y(�) = f�(x^ y), using the de�nition of f� , the de�nition of f�(�), the meet-compatibility of f , the de�nition of f��1, the induction hypothesis, the de�nitionof f��1, the de�nition of f�(�) and the de�nition of f� . If � is a limit ordinal,we obtain f� (x) ^ f�(y) = fx(�) ^ fy(�) = Wffx(
)j
 < �g ^Wffy(
)j
 < �g =Wffx(
1) ^ fy(
2)j
1; 
2 < �g = Wffx(max(
1; 
2)) ^ fy(max(
1; 
2))j
1; 
2 <�g = Wffx(
)^ fy(
)j
 < �g = Wff
 (x)^ f
(y)j
 < �g = Wff
 (x^ y)j
 < �g =Wffx^y(
)j
 < �g = fx^y(�) = f�(x^y), using the de�nition of f� , the de�nitionof f�(�), the in�nite distributivity, the monotonicity of fx and fy, the de�nitionof f
 , the induction hypothesis, the de�nition of f
 , the de�nition of fx^y andthe de�nition of f� . This completes the induction argument. Extensivity of f� isobvious because f�(x) = fx(�) � fx(0) = x. Now let z be a �xpoint of f . Weshow by trans�nite induction that z is a �xpoint of f� for all �. For � = 0 clearlyf0(z) = fz(0) = z. Suppose f
 (z) = z for all ordinals 
 < �. If � is a successorordinal, f� (z) = fz(�) = ffz(��1) = ff��1(z) = f(z) = z. If � is a limit ordinal,f�(z) = fz(�) = Wffz(
)j
 < �g = Wff
(z)j
 < �g = Wfzj
 < �g = z.Notation. The set of all �xpoints of f will be denoted by �x(f).Proposition 1. Let (L;�) be a frame, f : L ! L an extensive meet-endomor-phism of (L;�). De�ne g(x) := min(�x(f) \ hx)). Then g is the least idempotentextensive meet-endomorphism of (L;�) such that f � g.Proof. We �rst show that g is indeed an idempotent extensive meet-endomor-phism of the frame (L;�). The closure ordinal of f in x will be denoted by �x.There exists an ordinal � such that �x � � for each x 2 L because �x-s form aset of ordinals. So we have f�(x) = fx(�) = fx(�x) = min(�x(f) \ hx)). Henceg(x) = f�(x). By the preceding lemma, g is an extensive meet-endomorphism. Asg(x) is a �xpoint of f for each x 2 L, it is also a �xpoint of f� = g. Consequentlyg is idempotent. Clearly f(x) � g(x). If h is also an idempotent extensive meet-endomorphism of (L;�) such that f � h, then x � h(x) � f(h(x)) � h(h(x)) =h(x), hence h(x) is a �xpoint of f in hx). Therefore g(x) � h(x).Consider the set Ext(L;�) of all extensive meet-endomorphisms of the frame(L;�). For f; g 2 Ext(L;�) de�ne Lf (g) := fg. We know that Ext(L;�) is aframe with respect to the pointwise order (cf. [1]) and it is easy to see that Lf isan extensive meet-endomorphism of Ext(L;�). Hence there exists a least �xpointof Lf in hf) according to lemma 2. We can thus rewrite the statement of thepreceding proposition as follows.Corollary. Let f be the nucleus of a frame tolerance T of (L;�). Then the least�xpoint of Lf in hf) is identical with the nucleus of FC(T ).Note that �xpoints of Lf in hf) are not idempotent in general.



80 JOSEF NIEDERLEExample 2. Consider the following situation:Both f and g are nuclei, f � g, fg = g, gg 6= g.Conversely, idempotents are obviously �xpoints of Lf .In view of Proposition 1, we can construct FC(T ) as follows. First, take thetransitive closure of T , which is equal to �(T ). Second, �nd congruence blocks of�(T ) with top elements. Third, to each x 2 L assign the least top element ~x ofa block such that x � ~x. Fourth, take the quotient congruence of �. It is FC(T ).More precisely, FC(T ) = f[x; y]j~x = ~y; ~x = Vft 2 hx)j[s; t] 2 �(T ) =) s �tg; ~y = Vft 2 hy)j[s; t] 2 �(T ) =) s � tg;�(T ) = f[s; t]j9n 2 N 9s0; : : : ; sn 2L; s = s0; t = sn; [si�1; si] 2 T (i = 1; : : : ; n)gg.Not every congruence of a frame is a transitive closure of a frame tolerance.Example 3. Take L := !1 + 1. It is a frame. Let C := f[!1; !1]g [ f[�; �]j� <!1; � < !1g. It is a congruence of (L;�) with precisely two blocks !1 and f!1g,which is not a frame congruence because !1 fails to have a top element. SupposeT is a frame tolerance on (L;�) such that C = �(T ), let f be its nucleus. Thenfor any � < !1 there exists n < ! such that � < fn(0), hence !1 possesses aco�nal subset of type !, which is a contradiction. (We of course accept the axiomof choice.)Nevertheless, we are still able to show that the preceding construction worksalso in this more general case.De�nition. Let (L;�) be a frame, C a congruence of (L;�). We say that anelement x 2 L is C-good if it is a top element of a block of C.The set of all C-good elements forms a closure system in (L;�).Lemma 4. Let (L;�) be a frame,C a congruence on (L;�). Then the top elementin (L;�) is C-good, and if xi (i 2 I) are C-good, Vfxiji 2 Ig is C-good as well.Proof. The top element > in L is obviously a top element in the block �>�C .Suppose that xi (i 2 I) are C-good, that is xi is a top element in �xi�C for everyindex i 2 I. But then xi _ x 2 �xi�C whenever x 2 �Vfxiji 2 Ig�C . This yieldsthat Vfxiji 2 Ig is a top element in � Vfxiji 2 Ig�C .Notation. The least C-good element of (L;�) in hx) will be denoted by �C(x).Lemma 5. Let (L;�) be a frame, C a congruence of (L;�), x; y 2 L, x � y, xbeing C-good. Then z � �C(y), y ^ z = x implies z = x.Proof. For each a 2 L put A(a) := fb 2 Lja < b; [a; b] 2 Cg if a is not C-good, and A(a) := fag otherwise. Let f be a choice function associated with A. It



ON FRAME CONGRUENCES GENERATED BY FRAME TOLERANCES 81is obviously extensive, and its �xpoints are precisely C-good elements. We knowthat there exists a trans�nite sequence fy�g and an element ~y such that y0 = y,y� = f(y��1) if � is a successor ordinal, y� = Wfy
 j
 < �g if � is a limit ordinal,and y� = ~y for every ordinal � greater than the closure ordinal �y of f in y.We �rst show by trans�nite induction that z ^ y� = x for any ordinal �. Sincey0 = y, z ^ y0 = z ^ y = x. Now, suppose � is the least ordinal with z ^ y� > x.If � is a successor ordinal, we have y��1 < y� , and [y��1; y�] 2 C. Thereforex < z ^ y� and [x; z ^ y� ] 2 C, which is a contradiction. If � is a limit ordinal, wehave y� = Wfy
 j
 < �g, hence z ^ y� = z ^Wfy
 j
 < �g = Wfz ^ y
 j
 < �g =Wfxj
 < �g = x, which is again a contradiction. This completes the inductionargument. It is easy to see that y� � �C(y) for all ordinals �, thus ~y � �C(y). Theelement ~y is, however, a �xpoint of f , and therefore C-good. We may concludethat ~y = �C(y). It follows that x = z ^ ~y = z ^ �C(y) = z.Proposition 2. Let (L;�) be a frame, C a congruence of (L;�). Then �C is anextensive meet-endomorphism of (L;�).Proof. Extensivity is obvious. To show that �C is a meet-endomorphism, weshall use the preceding lemma twice. Clearly �C(a ^ b) � �C(a) ^ �C(b). Denotea0 = �C(a ^ b) _ a, b0 = �C(a ^ b) _ b. Then �C(a0) = �C(a), �C(b0) = �C(b)and a0 ^ b0 = �C(a ^ b). First, �C(a ^ b) � b0, �C(b) ^ a0 � �C(b) = �C(b0) and(�C(b)^a0)^b0 = �C(b)^�C(a^b) = �C(a^b). By the lemma, �C(b)^a0 = �C(a^b).Second, �C(a ^ b) � a0, �C(a) ^ �C(b) � �C(a) = �C(a0), �C(a) ^ �C(b) ^ a0 =a0 ^ �C(b) = �C(a ^ b). By the lemma, �C(a) ^ �C(b) = �C(a ^ b).Theorem. Let (L;�) be a frame, C a congruence of (L;�). Then �C is thenucleus of FC(C).Proof. Immediate and therefore omitted.References[1] Johnstone P.T., Stone Spaces, Cambridge University Press, Cambridge, 1982.[2] Niederle J., Tolerances of frames, Arch. Math. (Brno) Tom. 27a (1991), 79-84.[3] Niederle J., Frame tolerances are directly decomposable, Czechoslovak Math. J. 40 (1990),422-423.[4] Niederle J., Notes on lattices of frame tolerances, CzechoslovakMath. J. 40 (1990), 468-471.[5] Zelinka B., Tolerances in algebraic structures II, Czechoslovak Math. J. 25 (1975), 175-178.Josef NiederleDepartment of algebra and geometryFaculty of Science, Masaryk UniversityJan�a�ckovo n�am, 2a662 95 Brno, Czechoslovakia
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