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In honour of the 60th birthday anniversary of Prof . M. Rdb 

Abstract We prove that a generalized version of a semi-Fredholm principle for the existence of 
periodic solutions for forced systems with homogeneous nonlinearities recently obtained by 
Lazer and McKenna can be proved by a simple homotopy argument, which answers a ques­
tion raised by those authors. 
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1. I N T R O D U C T I O N 

In a recent paper, Lazer and McKenna [1] have proved the existence of T-periodic 
solutions for systems of the form 

(1) u\t) + V'{u{t)) = p{t)9 

when V e C1(R", R) is positively homogeneous of degree two, positive semidefinite 
and p e C^R, R") is T-periodic. They use Leray — Schauder degree theory together 
with two perturbations arguments through systems of the form 

<2) u"{t) + su'{t) + V\u{t)) = p{t)9 

with e > 0 and V positive definite and 

<3) u"{t) + du{t) + V'{u{t)) = p{t\ 

with d > 0 and V positive semidefinite. They remark that it does not seem possible 
to prove the theorem more directly by connecting (1) rather (2) to a linear equation 
by a homotopy. 
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We show in this paper that it is indeed possible and, without further complica­
tion, we can deal with a more general system which may also depend non-
linearly of u'. 

II. A S E M I - F R E D H O L M PRINCIPLE FOR P E R I O D I C 
SOLUTIONS OF FORCED SYSTEMS WITH H O M O G E N E O U S 

NONLINEARITIES 

Recall that a function W : R" -• R is said to be positive (resp. negative) semi-
definite if W(x) ^ 0 (resp. W(x) ^ 0) for all x e R\ and is said to be positively 
homogeneous of degree k = 0 if W(tx) = tkW(x) for all / = 0 and x e R\ We 
shall call W semidefinite if it is either positive or negative semidefinite. Recall also 
that if W eC1(Rn,R) and positive homogeneous of degree k = 1, then Euler's 
identity implies that 

(x9 W'(x)) = kW(x) 

for all x e R\ Of course, W' denotes the gradient of W and (x, y) the inner product 
of x and y in R\ 

We may now state and prove in a direct way a semi-Fredholm principle in the 
sense of Lazer — McKenna for a larger class of systems. 

Theorem 1. If U and V are in C^R", R), positive homogeneous of degree two> 
semidefinite and such that the system 

(4) u"(t) + U'(u'(t)) + V'(u(t)) = 0, 

has no T-periodic solution other than 0, then for each peLx(09 T; R") the problem 

r5x W(t) + U'(u'(t)) + V'(u(t)) = p(t)9 
w u(0) - u(T) = u'(0) - u'(T) = 0 

has at least one solution. 
Proof. Let a = ±1 and b = ±1 be such that aU and bV are positive semi-

definite. Observe that the linear system 

(6) u"(t) + au'(t) + bu(t) = 0, 

has no T-periodic solution other than 0, because if u is any T-periodic solution 
of (6), then, taking the inner product of (6) with w'(0» integrating over [0, T] and 
using the periodicity, we get 

aT!\u'(t)\2dt = 0. 
0 
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so that u is constant, and this constant must be zero as shown by integrating (6) 
over [0, T], Consequently, it follows from one version of the Leray —Schauder's 
continuation theorem (see e.g. [2], Theorem IV.5) that (5) will have at least one 
solution if we can find r > 0 such that for each X e [0, 1] and each possible solu­
tion u of the problem 

n, u\t) + (1 - X) (au'(t) + MO) + X[U'(u'(t)) + V'(u(t))] = Xp(t), 
U) u(0) - u(T) = u'(0) - u'(T) = 0, 

one has || u\\x < r, where 

j| u Hi = max | u(t) | + max | u'(t) \. 
fe[0,T] fe[0,n 

If it is not the case, we can find sequences (Xk) in [0, 1] and (uk) in C*([0, T], Rtt) 
such that || uk \\t > k and uk is a solution of (7) with X = Xk (k e N*). Letting 
wk = uk/\\ uk | |i, so that || wk Hi = 1, for all k e N, and using the positive homo-
genity of degree one of U' and V, we get 

w"k(t) + (1 - Xk)(aw'k(t) + bwk(t)) + Xk[U'(wk(t)) + V\uk(t))] = 
(8) = A * ( P ( 0 / I I K * I I I ) -

wk(0) - wk(T) = ^(0) - w&T) = 0, 

for all iteN*5 which immediately implies that the sequence (|| wk \\Li) is bounded 
independently of k. Hence, the sequences (wk) and (wk) are equibounded and 
equiuniformly continuous on [0, T]9 and Ascoli —Arzela's theorem implies the 
existence of subsequences (Xjk) of (Xk), (wJk) of (wk) and of weCH[0, T]t R") 
verifying 

(9) w(0) - w(T) = w'(0) - w'(T) = 0 

and such that wjk -• w and wjk -• vV uniformly on [0, T] and XJk -• A* for some 
A* e [0,1]. Therefore, if we take the integrated form, from 0 to /, of the differential 
system in (8) for k = jk and let k -» oo, we see that 

w'(t) - w'(0) + J {(1 - A*)(aw'(s) + bw(s)) + >l*[l/'(w'(~0) + ^'(w(s))]} ds » 0 
o 

for all t e [0, T], and hence w' is absolutely continuous on [0, T] and satisfies the 
differential equation 

(10) w"(t) + (1 - X*)(aw'(t) + M0) + **[tfV(0) + '̂(^(0)1 - 0. 

If A* = 1, it follows from the assumption on (4) that w = 0, a contradiction with 
II w ||t — 1. If 0 g A* < l, then, taking the inner product of (10) with w'(t)9 

integrating over [0, T] and using the conditions (9), we get 
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T T 

(1 - A*) a J I w'(012 d* + A* J (1/V(0, w ' (0) d* = 0, 
0 0 

r T 

(1 - A*) J | w'(012 d* + 2aA* J U(w'(0) df = 0, 
0 0 

which implies, by the positive semidefiniteness of all that 

J | W ' ( 0 | 2 d . = 0, 
0 

and hence that w is constant on [0, T], say w(t) = tv for all t e [0, F]. But then (10) 
implies, after an inner product with w9 

(1 - A*) b\ w | 2 + A*(V'(n0, W) = 0, 
i.e. 

(1 - A*)|W|2 +2X*aV(w) = 0, 

so that w = 0, as aV is positive semidefinite, and hence w = 0, a contradiction 
with || w Id = 1. Hence, the proof is complete. 
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