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ON ITERATION GROUPS OF CERTAIN
FUNCTIONS
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In honour of the 60th birthday anniversary of Prof. M. Réb

Abstract. This paper contains a characterization of iteration groups formed, up to conjugacy,
by certain functions of the form

ta b
Arctan—a—-gi—i—, lad — be| =1,
ctanx + d

under the condition that graphs of different elements of such a group do not intersect each other.
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I. INTRODUCTION

For description of global transformations of linear differential equations, it is
important to characterize all groups of those transformations that keep a given
equation unchanged, see [5] and [6]. This characterization requires the following
result concerning iteration groups of certain functions.

II. NOTATION, DEFINITIONS AND SOME BASIC FACTS
In accordance with O. Boruvka [2], the fundamental groups &, is defined as
the group of all functions f: R — R given by the formula

atant + b

J) = Arctan v a

a,b,c,deR, |ad — bc| = 1, where Arctan denotes this branch of arctan x + kn
that makes function f continuous on R. Then the elements of the fundamental
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group #, are real analytic bijections of R onto R, they are increasing exactly when
ad — bc = 1. The group operation “0” is the composition of functions; for brevity
the symbol o is sometimes omitted.

~ Consider the following groups, whose elements are some functions of the
fundamental group #,, restricted to an open interval I < R.

9’2: f: (03 w) i (O, w)a

atant
f(t) = Arctan Pantt ija’ ae(0, ), beR.
F 5 for each positive integer m
f: (0, mn) - (0, mn),
7(#) = Arctan — 2120

btant + 1ja ’ aG(Q, ), beR.

F 4 for each positive integer m
f: (0, mn — n/2) - (0, mn — n/2),
f(?) = Arctan (atan ), a € (0, ).

Let the topology on &, be the relative topology on
{(@b,c,d)eR*; |ad — bc| = 1},

where R* is considered with the usual topology.

Let 4, and ¢, be two groups whose elements are (some) bijections of intervals
I, and I, onto themselves, respectively. We say that the groups ¢; and ¥, are
C*-conjugate (with respect to ¢) for some positive integer k if there is a C*-diffeo-
morphism ¢ of interval I; onto interval I,, i.e. ¢(I;) = I,, ¢ € C¥(1,), do(x)/dx #
#0onl,,

such that
9, =¢00% 007 :={pofo07!; fe¥,}.

If 4, is a topological group the topology on %, is induced by the conjugacy.

Let « be an element of a group. For any integer k define the element af*! as
follows:

a0 is the unit element of the group,

alkl = gl¥= 115 4 for positive k,

alkl = (@~ 1)[-* for negative k,
a~! being the inverse to . Element a!*! is called the k th iterate of a.

A group is said to be partially (linearly) ordered if the set of its elements is
partially (linearly) ordered and, for each its elements a, f and y, the relation a« < 8
implies both a0y £ foy and yoa < yo B. '

- A partially ordered group is called archimedean if the following implication
holds: :

186



ON ITERATION GROUPS OF CERTAIN FUNCTIONS

if « < B is satisfied for some elements « and B and for all integers n, then «
is the unit element of the group. C :

The following theorem is due to O. Hélder [3]): There exists an order preserving
isomorphism of any linearly ordered archimedean group into a subgroup of the
additive group of real numbers R.

For proof see also for example A. I. Kokorin and V. M. Kopytov [4].

A group is said to be a cyclic group if there exists an element « of it such that
all elements are iterates of a. Element o of this property is called a generator of the
cyclic group. If, in addition,

d["'] + a[n]

for generator o and different integers m and n, then the group is an infinite cyclic
group.

Now, consider an open interval I = R. Let n = 1 be an integer and ¢ denote
a group of some C"-diffeomorphisms of 7 into I. Moreover, suppose that graphs
of different elements of ¢ do not intersect each other (on I).

III. THEOREM

If 4 is C"-conjugate to a closed subgroup of increasing elements of the group %,
or F,, or Fapy OF Fam,s

then either 9 is trivial,

or ¥ is an infinite cyclic group with a generator h,e C(I), dh(x)/dx > 0 and
h(x) # xonl,

or 9 is C"-conjugate to the group of all translations {h.; c € R},

h.:R > R, h(x) =x + c.

Proof
Since different elements of the group ¢ do not intersect each other on I, ¢ can
be linearly ordered in the following manner:
for hy, h, € 9 we write h; < h,,
if either h,(x,) < hy(x,) for some (then any) number x, € I, or hy = h,.
Moreover, ¢ is archimedean, because for h # id, there holds A(x) # x on I an
the sequences

{hm(xo)}i'i 1 and {hm(xo)}l:ﬁ 1

converge to both ends of interval I for any x, € I. Due to the Holder Theoreni

there exists an order preserving isomorphism of ¥ onto a subgroup & of the
additive group R.
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If @ is trivial then ¥ = {id,;} and ¥ = {0}.

Let 9 be not trivial and 4 = {ie; ie Z, 0 # e € R} be an infinite cyclic group
generated by a nonzero number e. Denote by h, this element of group ¥ that
corresponds to the number e. Evidently A, € C*(I), dh(x)/dx > 0 and h(x) # x
on I. Moreover,

9 ={Wl;ieZ},

h, being a generator of the infinite cyclic group 4.
From now, let ¢ be not trivial, neither it be an infinite cyclic group.

1. Consider first the case when ¢ is C"-conjugate to a closed subgroup of the
fundamental group &, with respect to a C"-diffeomorphism ¢ of R onto I. Let
he ¥, h # id;. Then

all tanx + alz

-1
ho(t) = Arctan
¢ (P( ) azy tan x + as,

eF,

and a,,a,, — ay,a,; = 1 because dh(x)/dx > 0 on I

Case la. Let
-1{ 811 Q12 _(bO
¢ (a“ an)C B (0 1/b)’

b € R, for a non-singular 2 by 2 matrix C = <z“ i“) . Without loss of generality,
21 22
let det C = 1. Denote by § one of the continuous functions, element of the

group &4, given by the formula

¥(t) = Arctan % .
It can be verified that r

V1o " 'hey(f) = Arctan (b? tan /) e &, .
Since h(x) # x on I, we have

¥ o~ they(0) = kn
for some integer k # 0. ‘

Case 1b. Let
-1fay 8\~ _(£1 1
¢ (an azz)c _( 0 il)’

det C = 1 and y € F; be defined as in case 1a. Then
Vv o 'hey(f) = Arctan (tan ¢t + 1) e &,,
V' hoy(n/2) = f2 + kn
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for some k € Z \{0}, otherwize h intersects id;.

Case 1c. Let
c-1(%11 812\ _( cosom sin wn
a a,;)  \—sinon coswn/’
weR\Z,det C = 1 and ¥ be defined as above. Then
Vlo thoy(t) =t + one F,.

Now, let & and g be two different elements of the group ¢ that do not belong
to the same infinite cyclic group. Denote

h1;=(p'1h(pef1 and g11=¢~18¢€ﬁ1'
Suppose first that

Y1 'h () = Arctan (b2 tan £),  case la for h,
and
Y5 'g¥,(H) = Arctan (b%tan¢),  case la for g,

hold for suitable elements , and ¥, of the fundamental group #,. Due to the

initial values of ¥ 'h,¥, and ¥ 'g,¥, at 0, and with respect to the fact that the
relation

V(t + nwn) = Y() + n=,
holds for every increasing element § of &, there exist integers n, and n, such
that either A" and gi"! coincide and then h and g belong to the some infinite
cyclic group, or A" and g!™! intersect each other, the same being true for hlm!

and g!"2), However both cases were excluded from our considerations.
The same argument shows that neither the situation when

Uilh () = Arctan (tant + 1), caselb  for A,
and

V5 'g1¥,(f) = Arctan (tan ¢ + 1), case 1b for g,
nor the case when

VihY,(t) = Arctan (b*tanf), casela  forh,
and

V2lg.Wa(f) = Arctan (tanz + 1), caselb  forg,

can occur. _
If one of the functions, say A, is of the form described in case I, i.c.

Uik () =t + on, oeR\Z,
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t

hen g cannot be of the form in case la
V7lgW,(H) = Arctan (b*tans)  for k # 1,
or of the form of the case 1b

V; 'g.¥,(f) = Arctan (tan ¢ + 1),

because then there again exist integers n, and n, such that A" and gl"l-intersect
each other.
Hence in this case 1 when the group 4 is C"-conjugate to a closed subgroup of the
whole fundamental group %, it remains to consider only the situation when
Yith () = t + oyn, o, €eR\Z
and either

V5 g,0,(f) = Arctan (tan f),
or

¥r'gWa(®) =t + wn,  w,eR\Z
In the first of these cases
Vilgw,() =t + kyn ~ for some k, e Z \{0}
due to the initial value of this function at 0. Since
Yilew () = b)) 7  Yag ¥y \(Wayy) ()

and y,¥, is again an increasing element of the fundamental group &, i.e.
Vo (t + kn) = Y,9,(H) + kn, we have

18V () = W) Wy () + kn) = t + kn,  keZ.

Hence w, is an irrational number, otherwise h; and g; belong to the same infinite
cyclic group and the same is true for the functions # and g, that was already exclud-
ed. However, when , is irrational, then the union of graphs of functions A}
and gi"¥ for all n, and n, from Z is a dense set in R%. Now we have

h=y,0Gd + o) o~y ! and g = y,0(d + kn) o~ YT,

where Y@ is a C"-diffeomorphism of R onto I. Since the group ¥ is closed, we
conclude that it is C"-conjugate to the group of all translations

tet+ec, for all ceR.
Now, let - :

\Ilfilhlwl(t) =t + wm, o, eR\Z, case Ic for h,
and o : ‘
Yi'g () =t + wyn, @, €R\Z, case Icforg.
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Then S - R
CHP) = g, (TN + nyogm), ,
g0 = Y(¥5 (1) + nyw,m)

and the condition AP"1(#) # g"(f) on R implies
Y3(t + nyom) # VA G) + "2‘1’2‘7r

for Y3: = Y5 'Y, € F, otherwise A" coincides with gi"! that shows that 4, and g,
belong to the same infinite cyclic group, the case already excluded from our con-
siderations. Since

Y3t + 7)) = Ys(0) + =,

we have
Y3 =1 + p(o),
where p is a n-periodic function: p(t + ) = p(f) € C*(R). Hence
t + nom + p(t + nom) #t+ p(f) + nyo,m,
or
p(t + nyoym) — p(f) # (nw, — nyw,),

forall re R and all ny, n, € Z, n? + n3 # 0.
If nyw, — nyw; = 0 for some n; and n, then either

p(t + njom) > p(f) on R,
or :
p(t + nyom) < p(d) on R,

Neither of these cases is possible for any continuous periodic function p.
Hence n,w, — nyw, # 0 for all integers n, and n,, n? + n} # 0, that means
that o, and w, are rationally independent. Then for each number ¢, € R the set

{870 h{")(to); ny, my € Z}

is dense in R, because for different couples -(n,,n,) and (n},n}) the values,
g"lo hMY(10) and g2 o AM)(¢,) are different, there are infinite number of coumples
(ny, ny) satisfying | n,0; + n,w, | < e for any given ¢ > 0 and, moreover, ¥,
and ¥, are C"-diffeomorphisms of R onto R for any ne N satlsfymg

Vi) =t +p,(0, - ¥i(0) =t + Pz(t),

with n-periodic functions p, and p,. ‘

Since ¢ is a C"-diffcomorphism of R onto I, and the group ¥ is archimedean
and closed, the union of graphs of all its elements is the whole square 12 In such
a situation we may apply Theorem 1 of G. Blanton and J. A. Baker:{1]- which
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states: “Each group whose elements are C"-diffeomorphisms of an interval 7
onto I and such that to each point (x,, yo) € I x I there exists just one element h
of the group satisfying h(x,) = y,, is formed by functions

27 + o),

where y is a C"-diffeomorphism of R onto I and c ranges through the real numbers”.
In our case we may write

G = yohoo x4,
where h.: R = Z, h,(t) =t+cceR.

2. Now, suppose that

@~ 'ho(t) = Arctan — tan t

yptant + 1/a’ teRy,

aeR,, beR, is an element of the two-parametric group &, of increasing func-

tions. Since lim ¢~ 'he(r) = 0, we have
-0,

@ 'ho(n) = =,

hence ¢ ~'he = idg, that is excluded from our considerations.

3m. If

@~ 1he(t) = Arctan —2 tan ¢

—— -1 .
btant+1ja’ ¢ ho; (0, mn) — (0, mn),

aeR,,beR, then lim ¢ 'he(t)=0 and lim ¢ 'ho(t) ==,
t=0,4 t— R~
because # as well as ¢~ 'he are increasing functions. Hence m = 1, otherwise
h = id; that contradicts to our assumptions. However, if @ # 1 and b # O then
the equation
a“nan___gjggl___==t
btant + 1fa
ie. .
atant = (btant + 1/a) tan ¢

is satisfied for #, € (0, =) where
a? -1
ab

This case is excluded from our considerations. Even the case b = 0 impossible
since then. '

tan tl =
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¢~ tho(f) = arctan (a® tan 1)
intersects id o, x) at /2.
If a = 1 then

tant
btant + 1

1+ btant
tant

¢ " ‘ho(t) = arctan

= arccot

= arccot (cot ¢ + b), t€(0, n),

hence h is conjugate to x ~ x + b, x € R for a fixed b € R by means of the function
@o arccot : R = I.

Now, let h and g be two different elements of the stationary group ¢ that do not
belong to the same infinite cyclic group. Then

YY) + x + b, and  YTlgg(x) =x + b,

on R where Y = ¢ o arccot € C*(R), and b, /b, is irrational. Since the union of the
graphs of functions ’

X X + nyby + nyb, forallny,,n,eZ

is dense in R?, and the group ¥ is closed, it is C*-conjugate to the group of all
translations:

{x »x + ¢, ceR}.

4m, Finally, if
@ 'he() = Arctan (atans), a>0,
@~ 'he: (0, mn — n/2) » (0, mn — 7(2),
then limo 'he(®)=0 and lim ¢~ 'he(t) = n/2,

104 t-x/2 -
and hence m = 1. In this case A is conjugate to the function x + x + Ina, xe R
by means of the C"-diffeomorphism ¢ o arctano exp: R — 1.

Now, analogously to case 3m, if & and g are two different elements of # that
do not belong to the same infinite cyclic group, they are C"-conjugate to x + b,
and x + b,, respectively, with respect to the some C"-diffeomorphism, the quotient
b,/b, being irrational. Hence the group ¢ is C"-conjugate to the group

{x »x + c;ceR},

that finishes the proof of the theorem.
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IV. REMARK

The present paper gives technical details of the proof of Theorem 6.3.5 in the
monograph [6], where main steps of the proof were outlined.

REFERENCES

[1] G. Blanton and J. A. Baker, Iteration groups generated by C" functions. Arch. Math
(Brno) 19 (1982), 121 -127. '

[2] O. Bortuvka, Lineare Differentialtransformationen 2. Ordnung. VEB Berlin 1967. Linear
Differential Transformations of the Second Order. The English Univ. Press, London 1971.

[3] O. Holder, Die Axiome der Quantitit and die Lehre vom Mass. Ber. Verk. Sichs. Ges. Wiss.
Leipzig, Math. Phys, Cl. 53 (1901), 1—64.

[4] A. 1. Kokorin and V. M. Kopytov, Linejno oporyadochennye gruppy, Nauka, Moskva
1972.

[5]1 F. Neuman, Stationary groups of linear differential equations, Czechoslovak Math. J. 34
(109) (1984), 645—663. (C. R. Acad. Sci. Paris Ser. I Math. 229 (1984), 319—322).

(6] F. Neuman, Ordinary Linear Differential Equations, Academia, Prague & North Oxford
Academic Publishers Ltd., Oxford 1989. «

FrantiSek Neuman

Mathematical Institute of

the Czechoslovak Academy of Sciences
branch Brno

Mendlovo ndm. 1

603 00 Brno

Czechoslovakia



		webmaster@dml.cz
	2012-05-09T20:30:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




