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HAMILTONIAN LINES IN THE SQUARE
OF GRAPHS. II.

STANISLAV RIHA
(Received May 21, 1986)

Abstract. A necessary and sufficient condition for the existence of a Hamiltonian circuit in the
square of a graph whose every block is a complete graph is given.
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Very well known Neuman’s theorem says that the square of a tree with at least
three vertices is Hamiltonian if and only if the given tree is caterpillar (i.e. such
a tree which is either a path or after removing all end vertices we obtain a path).
Its equivalent condition is that the given tree mustn’t include the graph in the
fig. 1a as its subgraph. Notice that both conditions consist in desciibing of the
block-structure either of the permissible trees or the prohibited tree and we are
not interested in the inner structure of particular blocks. On the other hand it is
clear that the existence or non-existence of a Hamiltonian circuit in the square
of any graph depends on the inner structure of the particular blocks (if G is a block
the answer is known). We can constiuct easily the examples of the pairs of graphs
whose block-structures are the same (i.e. their block-cut-vertex trees are isomorfic)
and one has a Hamiltonian square and the other not (see fig. 1). Therefore the
following questions: can there be found further types of graphs such that the

o) b)

Fig. 1
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existence or non-existence of a Hamiltonian circuit in the square of given graphs
will depend only on the block-structure? We will deal with such question.

We use the common terminology from [1] and the following. A connected
graph G is a K-graph if and only if every block of G is a complete graph. A con-
nected graph is a cactus if and only if every block of G is an edge or a cycle (i.e.
a regular graph of degree 2). Let G be a graph. A vertex v of G is free provided it is
not a cut vertex. A block B is free provided at least | ¥(B) | — 1 its vertices are
free in G. Otherwise B is an inner block. The set of all blocks and inner blocks is
denoted by BLS and BLS respectively. The set of all blocks of G containing
a common vertex w is denoted by BLS(w). For BL < BL® we define BL(BL, w) =
= BL%(w) — BL.If I < V(G) and B is a block of G, then for any positive integer k,
VE(B, I, k) is the set of all vertices x € ¥(B) — I such that | BL°(B, x) n BL® | = k.
‘For k = 0, V6(B, I, k) is the set of all vertices x € V(B) — I which are free in G.
{I)¢ is the subgraph of G induced by I. We say that a subgraph H of G is a BL-sub-
graph of G if and only if BL" < BLS. The next used notions were defined in [2].

Definition 1. Let G be a connected graph and x a vertex of G. A generating
sequence of G from the vertex x is any sequence of graphs G(1), ...,G({) = G
arising in the following manner.

1.G(1) U C. The set BL%(x) is called the first growth and we say it is of the

CeBLS(x)
type {m}, where m = | BL(x) |.
2. Suppose we have constructed a graph G(i — 1) and B is an arbitrary free block
rom G(i — 1) such that there is a vertex b € V(B) which is either a cut-vertex of
G(i — 1) or b = x and at least one vertex of the set V(B) — {b} = {b1 s ey by} IS

acutvertexof G.ThenG({@) =Gi — 1)u U U Candtheset{ U BLG(B D}

J=1CeBLG(Bb;) ji=1
is called the i-th growth starting from the block B. It is of the type {m,, ..., m,} if

m; = | BL%B, b)) | for every je {1, ..., n}.
If there is no block B of the mentioned properties, then G(i — 1) = G and the
construction of a generating sequence Stops.

Definition 2. Let G be a graph, G(1), ..., G(f) = G be any generatirig sequence
of G from a vertex x. Suppose the i-th growth starts from a block B, V(B) =
= {b, by, ..., by} where either b = x or b is a cut vertex of G(i — 1) and it is of the
type {m,, ..., m,,} We say that the i-th growth is a right-growth if and only lf

1.m; £ 2 foreach je{l, ...,n},

2|M°|—|M2|whereM, {j:jef{l,....,n},my=1}, 1—02

3. all blocks of the i-th growth are free in G exepting the set of blocks \J BL®(B,b))
JjeM,
which are the inner ones of G.
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HAMILTONIAN LINES IN THE SQUARE OF GRAPH. Il

Definition 3. A graph G is a diad if there are a vertex x and a generating sequence
G(1), ..., G(t) = G of G from the vertex x such that

1. t > 1 and the first growth is of the type {1},

2. an i-th growth is a right-growth for each i€ {2, ..., 1}.

The vertex x is called a root of G and the block G(l) is called a root block of G.
If t = 2 we say the diad G is prtme

Definition 4. 4 graph G is called a 3-diad if there are the BL-subgraphs G, , G,, G,
of G such that
1. Gy, G,, G; are the mutually edge disjoint diads with a common root x,
3
2. U Gi = G.

i=1
The vertex x is called a root of the 3-diad G.

Notes: -

1. In the definitions 1. —4. we defined notions which were resembling the notions
used in [2]. Because their particular meanings are different we will have to
distinguish carefully whenever we use them.

2. Any diad or 3-diad are always connected graphs and every vertex of theirs
is adjacent to at most three different blocks.

3.If G(l), ..., G(f) = G is a generating sequence of G from a vertex x, then
every G(i) is a BL-subgraph of G. If B is any inner block of G then there is an
index j € {2, ..., t} such that the j-th growth starts from B. If x is a free vertex and
t = 2 then G(1) is the single free block of G from which some growth starts (ac-
tually the second growth). "

4, A 3-diad can be also defined as follows: there is a generating sequence
G(1), ..., G(f) = G of G from a vertex x such that the first growth is of type {3},
every block of the first growth is the inner one of G and every further growth is
a right-growth.

5. As there may be more tripples of the BL-subgraphs of a 3-diad fulfilling the
conditions from definition 4, there are more roots in a 3-diad. The following
assertion holds. ‘

Lemma 1. Every common vertex of any three Jiﬂerent inner blocks of a 3-diad G
is a root of G. o
~ Proof. Let G(1), ..., G(f) = G be a generating sequence of a 3-diad G.from
a root x and B,, B,, B, be any different inner blocks of G with common vertex y.
If x = y nothing is to be proved. Otherwise there is the smallest index s such
that the s-th growth of G starts from some block of B, , B,, B, say B,. Then both
blocks B,, B, belong to the s-th growth and both y-fragments including B, and B,
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are edge disjoint diads with a common root y. We will prove that the third y-frag-
ment H containing B, is a diad with a root y, too. '

Let H(1), ..., H(r) = H be a generating sequence of H from the vertex y. The
first growth is of type {1} and r > 1 because B is an inner block of G. Let us
consider that a g-th growth, g = 2, starts from a block D € BLY@~" and d e V(D)
is a cut-vertex of H(g — 1) or d = y. As D is an inner block of G, thete is an index
P € {2, ..., t} such that the p-th growth of G starts from D and it is a right-growth.
Let d e V(D) be a cut-vertex of G(p — 1). ,

If d = d the g-th growth of H and the p-th growth of G are the same. Thus the

- g-th growth of H is the right-growth.

If d#d, then | BL%(D, d) n BL® | = | BLS(D,d) n BI®| =2 and the g-th
growth of H is the right-growth, too.

Hence H is a diad with a root y and y is a root of 3-diad G.

Corollary 1. At least one vertex of every inner block of a 3-diad G is a root of G.

Note. If G is a 3-C-diad then every common vertex of any three different inner
" blocks of G is a root of G. The Corollary holds, too. The proof is almost the copy
of the previous one. Only in case d # d we must still realize that there are just
two (d, d)-pathes in D. All vertices of the first (d, d)-path are free in G (exepting d
and d) and all vertices of the second (d, d)-path are the cut-vertices in G.

Definition 5. Let G be a connected graph. We say a cactus G is a C-relative to G if
1. ¥(G) = ¥(G),

2. G is a subgraph of G,

3. for any M < V(G), {M)¢ is a block of G if and only if {M)g is a block of G.

Notes.

1. If G is any connected graph then there is a C-relative cactus to G if and only
if there is a Hamiltonian circuit in every block of G with at least three vertices.
Then a C-relative cactus arises by replacing every block of G by a cycle (i.e. a regular
connected graph of degree 2) defined by a Hamiltonian circuit in it. Because there
may be many different Hamiltonian circuits in the singular blocks, a C-relative
cactus is not defined uniquely. A graph G and C-relative cactus have always the
same cut-vertices. ’

2. If a diad or a 3-diad is a- K-graph we will use the term a K-diad or a 3-K-diad
respectively. It is clear every K-graph has a C-relative cactus.

Lemma 2. Let G be a cactus with a free block B such that | BL°(B, b) | = 2 for
a cut-vertex b € V(B) and let G contain a 3-C-diad as its subgraph. Then G-B contain
a 3-C-diad as its BL-subgraph.
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Proof. Let H be a 3-C-diad which is a BL-subgraph of G. If B ¢ BL? nothing
is to be proved. Suppose B € BLY. Because every free block touches just a single
block in every 3-C-diad there is a block C € BL®(B, b) such that C ¢ BL®. Then
(H — B) u Cis a 3-C-diad which is a BL-subgraph of G-B.

Note. The same assertion can be proved for K-graphs. The proof is the same,
too. :

Theorem 1. Let G be a K-graph not containing any 3-K-diad as its BL-subgraph.
Let By, ..., B, be all blocks of G such that | V%(B,,9,2)| < | V%B,,9,0)| for
each i€ {1, ..., m}. Let, for each i€ {1, ..., m}, b, ..., bi, be any sequence formed
from the set V°(B,, 9, 0), where | < m, < |V%8,,0,0)| — | VB;,0,2)| + 1if
Ve(B,8,2) #0 and 1 < m; < |V%B,,9,0)| if V°(B,,0,2) = 0. Then there is
a C-relative cactus G to G not containing any 3-C-diad as its BL-subgraph and havmg
the vertices b}, b}, | adjacent for each i€ {1, ...,m}, je {1, ...,m; — 1}.

Proof. By induction on | BL® |. If | BLG| =1, the theorem holds. Suppose G is
a K-graph such that | BL® | =n > 1.

I. Let V9(B, 8, 0) = @ for every inner block B of G. Because G is a K-graph there
is a C-relative cactus G to G such that in G given vertices are adjacent in given
order. If G contained a 3-C-diad like its BL-subgraph, then there would be three
different inner blocks with common vertex in G and in G, too. These blocks would
be root blocks of three edge-disjoint prime K-diads. It is not possible, hence G does
.not contain any 3-C-diad.

II. Suppose there is an inner block B such that | V6(B, 0, 0)|=1+#0 and
| V9(B,08,2) | =k £ 1

1. Let k # 0. Let b be any vertex from V%(B, 9, 2), G, be a component of G — B
containing the vertex b and G, = G — G,. The K-graphs G,, G, fulfil the condi-
tions of the theorem, | BL?' | < n, | BL®* | < n and for each ie {1, ..., m} and
suitable re{1,2} it is | V9(B,,0,2)| < | VS(B;,9,2)| < | V%(B,;,0,0)|
< | V(B 8,0) |

a) k = 1. Then V%(B,9,2) = 0 and | V°%(B, 9, 0) | = I + 1. According to the
induction there are C-relative cacti G,, G, to G, G, respectively not containing
any 3-C-diad as their BL-subgraphs and such that the vertices b,', b},, 1 are adjacent
foreachie{l,...,m},je{l, ..., m; — 1} and the vertex b is adjacent either to b;,,
if Be {By, ..., B,}, say B = B,, ot b is adjacent to a vertex b € V9%(B, {b}, 0) if
B¢ {B,, ..., B,} (then V%(B,0,0) = {b, b}).

Suppose a cactus G = G, U G, contains a 3-C-diad H as its BL-subgraph. Then
Be BLY, where B = (V(B))g,. If B were a free block of H then either G, or
G, u B would contain H as its BL-subgraph. It is not possible due to induction
and Lemma 2. Hence B is an inne1 block and at least.one vertex of B must be
a root of H. Because b 'is the only vertex of G in which three different inner blocks
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touch each other, b is a root and B is a root block of the C-diad which is a BL-sub-
graph of G,. But it is not possible because VG:(B, {b}, 0) ¢ 8 and V5(B, 8, 2) = 0.

b) k> 1. Then V4B, 0,2) # @ and | V%(B,0,0)| — | V°%(B,0,2)| + 1 =
=(@0+1)~(k-1)+1=1-k+ 3. According to the induction there are

C-relative cacti G,, G, to G,, G, respectively not containing any 3-C-diad as its

BL-subgraph such that the vertices ‘b}, b}H are adjacent for each i€ {l, ..., m},

je{l,...,m; — 1} and the vertex b is adjacent either to the vertices b, b, where

beV%(B,0,0) - {b}, ..., b}, b} if Be{B,,...,B,}, say B= B,, or to any

vertices by, b, € VB, 0,0) — {b}, if B¢ {B,, ..., B,}. If a cactus G = G, U G,

contained a 3-C-diad H as its BL-subgraph, then by the same way as in the case a)

we prove that B, B = (V(B))g,, is an inner block and one of its vertices is a root

of H. If b is a root of H then there is a C-diad with a root b and a root block B

which is a BL-subgraph of G,. But it is not possible due to definition of a C-diad,

because both vertices which are adjacent to b in B are free. If some other vertex

from VG(B, {b}, 2) is a root of H, then by the same reason BL¥ n BLG' =0

and H is a BL-subgraph of G, which is a contradiction to the induction assump-
tion.

" The cactus G is, in both cases a) and b), a C-relative to G not containing any
3-C-diad like its BL-subgraph. The remaining part of the theorem follows im-
mediately from the definition of & and from the induction. ,

2. Letk = 0. Then Be {B,, ..., B,}, say B = B,. Let b € V(B) be any cut-vertex,
Gy be a component of G — B containing b and G, = G, U B, G, = G — G,.
For each ie{l,...,m} — {s} and convenient re{1,2} it is V%2B,,0,0) =
= V%(B,,9,0), V°(B;,0,2) = V(B,,0,2) and V(B,,0,0) = V°(B,,9,0) U
v {b}. As| BL®* | < n,| BL%* | < nand both G, and G, fulfil the conditions of the
theorem, there are C-relative cacti G,, G, to G,, G, respectively not containing
any 3-C-diad as its BL-subgraph such that the vertices b}, b}, , are adjacent for
each ie{l,...,m}, je{l,...,m; — 1} and b is adjacent to b}, in G,. We can
suppose: {V(B))g, = (V(B))g, = B. If G = G, u G, contains a 3-C-diad H as
its BL-subgraph, then B € BL¥. Bis not an inner block of H because V¢(B, 8, 2) =#.
Hence B is a free block and H is a BL-subgraph either of G, or G,. It is a con-
tradiction to the induction, Therefore G is a C-relative cactus to G not containing
any 3-C-diad like its BL-subgraph and the whole assertion follows fiom the
definition of G and from the induction.

If neither I nor II occurs then for every inner block B of G containing free
vertices | V9(B,#,0) | < | VS(B,8,2)| holds and at least one such block must
exist. Then there are three different inner blocks C,, C,, C, in G having a common
vertex c. If every vertex of C, is a cut-vertex, C, is a root block of a prime K-diad

- with a root c. If at least one vertex of C, is free, then 0 < | V¥(Cy, {c},0)| <
< |V%C,,{c},2)|. We can discuss the blocks C,,C; and all inner blocks

from - U - BLS(C,,x) by the same way as C,. From the definition of
XeVG(C1,{c},2)
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a K-diad it is clear that C,, C,, C, are the root blocks of the three edge-disjoint
K-diads with a common root ¢ which are the BL-subgraphs of G. It is not possible
and so either I or II must occur.

Corollary 2. Let G be a K-graph not containing any 3-K-diad as its BL-subgraph»
A be the set of all vertices of type X in G, for each a€ A, B, be an arbitrary block
of BLY(BLS, @) and b°, ..., b, be any sequence formed from all free vertices of B,.
Next, let B, , ..., B,, be all blocks of G different from B, such that | V%(B,,9,2) | <
< | V%B,,0,0)| for each i€{l,...,m} and by, ..., b, be any sequence formed
from the set V°(B,,0,0) where m;=|V%B,0,0)| —|V%B,0,2)| +1 if
V%(B,9,2) # 0 and m;, = | V(B,,9,0) | if V¥(B,, 0, 2) = 8. Then there is a Ha-
miltonian circuit h in G* having the following properties.

1. There is a transform of h of the form

(x2), a, :9 ey b:,., (Va)
for each ae A. '
2. There is a transform of h of the form

(X‘), bll: ceey bnin;! (y()
Jor each ie {1, ..., m}.

Proof. It follows immediately from the previous theorem and from Theorem 2
from [2].

Theorem 2. Let G be a K-graph. Then there is a C-relative cactus G to G such
that G* is Hamiltonian if and only if G? is Hamiltonian.

Proof. Let h be a Hamiltonian citcuit in the square of a graph G (it need not
be necessary a K-graph) and B, ¥(B) = {b,, ..., b,}, be a block of G which is
a complete graph different from K, K. For every vertex b, € V(B), let Gj, be
either thé union of all B, b-fragments, if b, is a cut-vertex, ot G,f‘ is a graph with
the single vertex b,, if b, is a free vertex.

1. Suppose, for each i € {1, ..., n} there is a section w(b ) of h such that ¥ (w(b,)) =
= V(Gy). Then h is of the form (w(b,)), ..., (w(b,)), F(w(b,)), where (iy, ..., i)
is a suitable permutation of {1, ..., n}. Let us define a graph G. like that: ¥(G,) =

= V(G), E(G,) = (E(G) — E(B)) U u {bi,» by} U {by, by (we replace a block B

by a cycle induced by the sequence of the vertlces b, ..., b;). Then h is a. Ha-
miltonian circuit in G3. ’
2. Suppose there is a vertex b, € ¥(B) such that no section in h is formed by just
all vertices from V(Gj,) (then b, is a cutvertex). Let h,, be a simplification of h
at b;. Then there is an ordering Fy, ..., F, of all b-fragments such that a tians-
form of h,, is of ‘the form by, (d,), ..+, (dp), (d,4,), b;, where V(d) = V(F)) for

~
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each ie{l,..,p} and V(d,;) € V(1) if ¥(d,4,) # 6. Let BeBL", then
, .
Gy, = U F,. Suppose r =1 and V(dp+1) # 0. As L(d,), F(d,.,) € V(F,) are
1=1

i¥r
adjacent to b;, L(d, ) € V(B) or L(d,, 1) is adjacent to a vertex from V(B) — {b,;}
and F(d,) is adjacent to b; in Gj,. So d\L(d;), L(d, ,,)) < 2and d(F(d,,), F(d,))=2
(see fig. 2). Then k,, = b;, (d1), (d,41), (@2), ..., (dp), b; is a Hamiltonian circuit
in G2 If r # 1 or ¥(d,+,) =9, then h,, = h, . Now, there is a section in A,
formed by just all vertices of V(Gj).
If there is a section of h formed by just all vertices of G§ for any b, # b;, then

Fig. 2

from the definition of simplification and the fact that this section does not include
the vertex b; it follows that there is a section in 4, formed by just all vertices of
V(G,’,’,), too. In this way we can construct a Hamiltonian circuit in G so that the
case 1 occurs.

If we apply this procedure to every block of a K-graph we will obtain a C-relative
cactus whose square is Hamiltonian.

The converse assertion is obvious. )

Notice a graph G on the fig. 3a. h = x, 1,2, ..., 14, x is a Hamiltonian circuit
in G* and G(3, x) is Hamiltonian. The only C-relative cactus to G is a C-diad
with a root x, therefore the only C-relative cactus to G(3, x) is a 3-C-diad. Hence
Theorem 2 does not hold for any graph containing a C-relative cactus. h is a Ha-
miltonian circuit in the square of the graph H on the fig. 3b and H(3, x)? is Ha-

o) . . b)
Fig. 3
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miltonian, too. The only C-relative graph H(3, x) does not contain any 3-C-diad
as its BL-subgraph. So we could put a question wheather a graph G, whose square
is Hamiltonian, must contain a subgraph G which is a cactus such that V(G) =
= V(G) (not longer necessarily C-relative to G). Unfortunately, it is far from valid
(see fig. 3c).

Theorem 3. Let G be a 3-K-diad. Then any C-relative cactus to G contains
a 3-C-diad as its BL-subgraph.

Proof. Let b be a root of a 3-K-diad G and G be a cactus C-relative to G. If b
is a root of a 3-C-diad which is a BL-subgiaph of G, the theorem holds. Otherwise,
there is a b-fragment of G which does not contain any C-diad with a root b like
its BL-subgraph. Let B be the only block of its containing the vertex b. Evidently
VG(B, {b}, 2) # 0.

1. Suppose that it is ¥ (p) N VG(B, 8, 0) # @ for every vertex x € VG(B, {b}, 2)
and for every (b, x)-path p in B. Because then | ¥6(B,9,0) | = 2, | V&(B, {b},2)| =
= | ¥6(B, {b}, 0) |, there are the vertices u, v € V6(B, {b},2) and a (u, v)-path ¢
in B such that V(q) N V6(B,90,0) = @ and V(q) N V5(B, 0, 2) = {u, v}. Let G, =

= |J G, v B, where G, is a component of G — B containing the vertex x. If
xe¥(q)
either # or v is a root of a 3-C-diad which is a BL-subgraph of G, the theorem holds.

Otherwise at least one of B, u-fragments or B, v-fragments does not contain any
C-diad with a root u or v as its BL-subgraph.

2. Suppose there is a vertex w e V¢(B, {b},2) and a (w, b)-path ¢ such that
V(f) n V6(B, 0, 0) = 0. Then at least one B, v-fragment does not contain a C-diad
with a root w as its BL-subgraph.

If we continue the procedure we must obtaln a 3-C-diad which is a BL-subgraph
of G.

Theorem 4. Let G be a K-graph with at least three vertices. Then G* is Hamzltoman
if and only if G does not contain any 3-K-diad as its BL-subgraph

Proof. Suppose G? is Hamiltonian and G contains a 3-K-diad as its BL-sub-
graph. According to Theorems 2 and 3 there is a C-relative cactus G to G which
contains a 3-C-diad as its BL-subgraph and has the Hamiltonian square. But it is
not possible by Theorem 4 in [2].

The converse implication was proved by Corollary 2. .

Corollary 3. If a graph G contains a 3-diad as its BL-subgraph then G2 is not
Hamiltonian.
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