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SOME RESULTS ON THE ASYMPTOTIC 
BEHAVIOUR OF THE EQUATION z=f(t,z) 
WITH A COMPLEX-VALUED FUNCTION/ 

JOSEF KALAS, Brno 
(Received July 18, 1983) 

Abstract. Asymptotic properties of the solutions of an equation z == f(t, z) with a complex-
valued function / are studied. The technique of the proofs of results is based on the modified 
Ljapunov function method. The applicability of results is illustrated by an example. 
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Consider a differential equation 

(1) z = G(t,z)[h(z)+g(t,z)l 

in which G is a real-valued function and h, g are complex-valued functions, / and z 
being a real and a complex variable, respectively. In [3] we investigated the 
asymptotic nature of the solutions of (1) under the assumptions that h is holo-
morphic in a simply connected region Q, h(z) = 0 o z = 0, hU)(0) = 0 for j = 
= 1, ..., n - 1, hin)(0) T* 0, where n ^ 2 is an integer. The purpose of the present 
paper is to give some further results on the asymptotic behaviour of the equation (1) 
under the above mentioned assumptions. In the whole paper we use the notation 
from [2] and [3]. Assume G e C(Ix (Q - {0})), g e C(Ix (Q - {0})). 

Theorem 1. Let 0 < 9 g X+. Suppose that 
(i) for any x ^ t0, the initial value problem (1), z(x) = 0, possesses the unique 

solution z = 0; 
(ii) there exists a function E(t) e C[/0, oo) such that 

t 

(2) sup J E(s) ds = x < oo 

and 

(3) Gaz )Re{k fc^ 

holds for t ^ t0, zeK(0,&). 
If a solution z(t) (1) satisfies 
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z(tx)eClK{W)9 

where tx = tQ and 
t, 

0 < p = ye" exp [- J E(s)ds] < 9, 
to 

/hen 
z(/) e c/ J5T(0, /?) 

fort^ti. 
Proof. Put T̂ = {/ = /t : z(/) e #(0, 9)}. For / e ^ we have 

(4) W(z) = G(/, z) W(2) Re Jfch<">(0) Tl + - ^ y - ] } . 

where z = z(/). By virtue of (3) we get 

(5) W(z(t)) < E(t) W(z(t)) for / 6 M. 

Suppose there is a /* > /, such that z(t*) e K(fi, 9) and z(t) e K(0, 9) for / e [/x, / * ] . 
The inequality (5) is equivalent to 

-A- {W(z(t)) exp [- J £(s) ds]} £ 0, r e uT. 

Integrating over [/., /*] we obtain 

W(z(t*)) exp [-'J E(s) ds] - W(z(tt)) =g 0, 

whence 

W(z(t*)) £ W(z(tl)) exp [J E(s) ds] g 

= y exp [x - J E(s) ds] = 0 < JV(z(t*)). 
*o 

This contradiction proves z(t) e CI K(0, /?) for f ^ fx. 

Theorem 2. Suppose that the hypotheses of Theorem 1 are fulfilled and 
00 

(6) JF(s)ds= -co . 
to 

If a solution z(t) of (I) satisfies 

(7) z(t,) e K(0, Se~* exp [J E(s) ds]) u {0}, 
to 

where tt <z t0, then to any e, 0 < e < A+, there is a T = T(e, tx) > 0 independent 
of z(t)9 such that 

z(t)e K(0, e) u {0} 
/or t = ^ + T. 
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Proof. Put Jt = {t £ tt : z(t) e K(0, S)}. For teJfvte get (4), where z ±* z(t). 
From Theorem 1 it follows that z(t) e K(0, 9) u {0} for t £ ft. 

Choose e, 0 < e < A+. Without loss of generality it may be supposed e < d. 
Pick T = T(e, tx) > 0 so that 

' e 

j£(s)ds<ln — 

for t ^ ti + T. We claim that z(t) e K(0, e) u {0} for t Z ti + -T. If it is not the 
case, there exists a. t* 2: tx[+ T for which * 

(8) z(**)*K(0,e)u{0}. 

The inequality (5) is equivalent to 

A{^(z (0)exp[-j£( s)ds]}<0. 

Since z(t) / 0 for t e [^, f * ] , the integration of this inequality from f, to t* 
gives 

' W(z(t*)) exp [-J £(s) ds] - W(Z(f.)) gO. 

Hence 

W(z(t*)) <, W{z(h)) exp [JE(s) ds] £ 3 ̂  - -1 < e, 

which contradicts (8) and implies z(t) e K(0, e) u {0} for t 2j tt + T. 

Theorem 3. Let the assumptions of Theorem 2 be fulfilled except (6) is replaced 
by . ,. j . 

a + f 

(9) J £ (0 d£ -+-- co as f~>oo 
s 

uniformly for se[t0yoo). 
If a solution z(t) of (1) satisfies' (7), wAere ti > t0, then to any e, 0 < e < A+, 

r/iere is a T = T(e) > 0 independent of tt and z(t) such that 

z(t) e K(0, e) u {0} 
/0r t ^ rt + T. 

Proof. Because of (9), there exists a T = T(e) > 0 so that t - tt £ T implies 
t * l + ( - ~ f - ) c V 

J£«)d£ = J E « ) d £ < l n - ^ - . , 

* The statement follows from the proof of Theorem 2. 
Theorems 1—3 have their corresponding analogies (Theorems 1'^ 3') for the 

case when we consider subsets of K(oo, A_) u {0} instead of those of JST(0, A+) u 
u {0}. We shall formulate here only the first of these results: 
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Theorem V. Let X- ^ 9 < oo. Suppose that 
(i) for any % ^ t0, the initial value problem (1), Z(T) = 0, possesses the unique 

solution z s 0; 
(ii) there exists an E(t) e C[t0, oo) Juch that 

t 

(2) sup J E(s) As = x < oo 
f0 .Sf<oo fo 

- G(t, z) Re |fcfc«(0)f 1 + 4 ^ f ] } - E ( r ) 

holds for t = t0, z e K(oo, 3). 
If a solution z(t) of (I) satisfies 

z(tt)eCl K(co,y), 
• wAere t! = f0 awd 

3 < 0 = 7e~xexp[j£(s)ds] < oo, 
to 

then 
z(t)eCl K(oo,jS) 

for/ = t!. 

Example. Consider an equation 

(10) z = z2g(f, z), 

where q e C(/x C) satisfies locally a Lipschitz condition with respect to z. Putting 
G(t, z) == 1, /t(z) = b(z - a) z2, g(t, z) = [q(f, z) + b(a - z)] z2, where a,beC, 
a # 0 9- 6, we can write (10) in the form 

(1) i = G(t, z) \h(z) + g(t, z)]. 

From [2, Example 2] we have A'(z) = b(3z - 2a) z, A"(z) = 2b(3z - a), w = 2, 
JV(z) = | a | | z | \z - a r ^ x p l R e f - a z " 1 ] } , A+ = A_ = | a |, k = a/2. Sup-
posing that there is an H(t) e C(I) such that | q(t, z) + (a - z)b\ <; H(0 I z - * j 
for r = t0, z e C, we obtain 

G(f, z) Re |fcft<">(0)fl + 4 ^ f ] } = ~ R e (a2fo) + • a l2/ / ( r )* 

>By use of Theorem 1 and Theorem 2 we get the following assertion: 
If there exist a,beC, H(t) e C(I) such that 6 / 0 , 

(11) \q{t9z) + (a-z)b\£H(t)\z-a\ fort^t0,zeC, 

and the function 
t 

(12) | a |2 J H(t) d{ - Re (a2b) t is upper bounded on t0 £ t < oo, 
t0 
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then every solution z(t) of (10) satisfying 

(13) I z(tx) | | z(tt) - a r 1 exp {Re [-az-H'i)]} = 

= co < e~xexp [| a |2 J if(s)ds - Re (a2b)(tt - f0)], 
to 

where tt ^ /0 and 

(14) x = sup [ | a | 2 f i / « ) d ^ - R e ( a 2 6 ) ( r - r 0 ) ] , 
t0£t<QO t0 

is defined for all t ^ tl9 and 
ti 

| z(0 II z(t) - a | " ' exp {Re [-az_ 1(0]} ^ a>exexp [-| a j 2 J H(s)ds + 
to 

+ Re (a2b) (t1 - f0)] 

holds for t 5; tt. If, in addition, 

(15) l im[|a|2J/f(<J)d^-Re(a2fe)t]=-oo, 
í-*ao ío 

then any solution z(t) of (10) satisfying (13), where tl ^ f0 and x is defined by (14), 
fulfils the condition 

lim z(r) = 0. 
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