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SOME RESULTS ON THE ASYMPTOTIC
BEHAVIOUR OF THE EQUATION : =/, 2)
WITH A COMPLEX-VALUED FUNCTION

JOSEF KALAS, Brno
(Received July 18, 1983)

Abstract. Asymptotic properties of the solutions of an equation # = f(¢, z) with a complex-
valued function f are studied. The technique of the proofs of results is based on the modified
Ejapunov function method. The applicability of results is illustrated by an example.
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Consider a differential equation
) ¢ = G(t, 2) [h(z) + g(t, 2)],

in which G is a real-valued function and A, g are cdmplex-valued functions, ¢t and z
being a real and a complex variable, respectively. In [3] we investigated the
asymptotic nature of the solutions of (1) under the assumptions that 4 is holo-
morphic in a simply connected region Q, h(z) = 0<>z = 0, K)(0) = 0 for j =
=1,..,n— 1, A"(0) # 0, where » = 2 is an integer. The purpose of the present
paper is to give some further results on the asymptotic behaviour of the equation (1)
under the above mentioned assumptions. In the whole paper we use the notation
from [2] and [3]. Assume G e C(Ix(Q — {0})), ge CUx (2 — {0})).

Theorem 1. Let 0 < 9 < A, . Suppose that

(i) for any © = t,, the zmtzal value problem (1) z(t) = 0, possesses the unique
solution z = 0;

(ii) there exists a functzon E(t) e C[t,, ) such that

2 sup _[E(s) ds=x% < o
. toSt<ow to
and \
3) - , G(t, z) Re {kh""(O)[l + gff(’.z;) ]} < E()

holds for t = t,, z € K(0, 9).
If a solution z(t) (1) satisfies
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z(tl) € CI K(09 }’),
where t, = t, and

0 < B =1vye"exp [—}IE(s)ds] <9,

then |
z(t) e Cl K(0, B)
Jort 2 t,.
Proof. Put # = {t 2 t, : 2(f) € K(0, 9)}. For t e .# we have
@ W(z) = G(t, ) W(z) Re {kh(")(()) [1 N gl(:(,z :)e)]}

where z = z(t). By virtue of (3) we get
o) W(z(t)) < E(t) W(z(t) for te A.

Suppose there is a t* > ¢, such that z(t*) € K(B, 9) and z(¢) € K(0, 9) for t € [¢,, t"‘].
The inequality (5) is equivalent to

t
—(%— {W(z(t))exp[—[ E(s)ds]} 0, te.
t
Integrating over [¢,, t*] we obtain

¥ '
W(z(t*)) exp [ - | E(s)ds] — W(z(t,)) £ 0,
ty
whence
tk
W(z(t*)) < W(z(t,)) exp [| E(s)ds] <
. o
ty
< yexp[x — [ E(s)ds] < B < W(z(t¥)).
to
This contradiction proves z(¢) € C! K(0, ) for t = ¢,.
“Theorem 2. Suppose that the hypotheses of Theorem 1 are fulfilled and
6) [E(s)ds = — 0.
to
If a solution z(t) of (1) satisfies
3
@) z(t,) € K(0, 9¢™* exp [ E(s) ds]) L {0},
to
where t; = t,, then to any e, 0 < e < A,, thereisa T = T(e, t;) > O independent
of z(t), such that
: 2(f) € K(0, &) U {0}

fort = ty + T.
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Proof. Put # = {t 2 ¢, : z(t) € K(0, 9)}. For t € .# we get (4), where z =" z(t)
From Theorem 1 it follows that z(f) € K(0, 9) U {0} for ¢ 2 ¢,.

"Choose ¢, 0 < ¢ < A,. Without loss of generality it may be supposed e< 9.
Pick T = T(e, t,) > 0 so that :

_[E(s)ds <Inoz

-9 .
for t-2 ¢, + T. We claim that z(r) € K(0, &) v {0} for ¢ 2 t, + T. If it is not the
case, there exists a t* 2 t, '+ T for which a v

®) 2(t*) ¢ K(0, &) U {0}.
The inequality (5) is equivalent to |

L wem)exp [—f Es)ds]} 5 0.

Since z(f) # 0 for te [t1, t*], the mtegratlon of this inequality from f to *
gives .

“W(z(t*)) exp [-—j E(s)ds] — W(z(t,)) £ 0.
Hence ' . '

W(z(t*)) < W(z(t,)) exp [; E(s)ds] < 9= 29 -g- <e,

which contradicts (8) and implies z(t) € K(0, &) v {0} for ¢t 2 ¢; + T.

Theorem 3. Let the assumptions of Theorem 2 be fulﬁlled except (6) is replac(d
by . .
s+t

M) . fE({)d{-—»'—-oo‘ as t— o
uniformly for s € [t,, ).

If a solution z(t) of (1) satisfies (7), where t, > to, then to any e, 0<e< ﬂ.,.,
there isa T = T(e) > O independent of t, and z(t) such that

(e K(O e) v {0}
for t > tl + T s .
Proof. Because of (9), there exists a T T(a) > 0 so that t — tl 2 T implies

C i+ (t~ty) N

IE(¢)dE= ) EQ)d¢ < In .

- The statement follows from the proof of Theorem 2

Theorems 1—3 have their corresponding analogies (Theorems 1’ =3) for the )

case when we consider subsets of K(co0, A_) U {0} instead of those of K(O l+) v
v {0}. We shall formulate here only the first of these results‘ ' :
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Theorem 1. Let A_ < 8 < co0. Suppose that

(i) for any © = 1y, the initial value problem (1), z(t) = 0, possesses the unique
solution z = 0; . '

(ii) there exists an E(t) € C[t,, ) such that

)] ~ sup fE(s)ds=u<oo‘

1oSt<ow fo

.and

—G(t, z) Re {kh"”(O)'[l + g;(.t(’z ;) ]} < E(t)

holds for t = t,, z € K(c, 9).
If a solution z(t) of (1) satisfies .
z(t,) € Cl K(0, y),
“where t; = t, and ’

ty
'8 < f=ye *exp [[ E(s)ds] < oo,
to

then ;
: z(f) € Cl K(o0, p)
fort = ¢,. :

Example. Consider an equation ,
(10) z = zq(t, 2),
where g € C(I x C) satisfies locally a Lipschitz condition with respect to z Putting

G(t,2) =1, h(z) = b(z — a) 2%, g(t,2) = [a(t, 2) + b(a — z)] z2, where a,be C,
a # 0 # b, we can write (10) in the form

M . i =Gt 2) [ha) + g, 2)].
From [2, Example 2] we have 4'(z) = b(3z — 2a) z, h"(z) = 2b(3z — a), n = 2,
W) =lal|llz||z—al| "exp{Re[—az"']}, 4, = A- =|a|, k = a/2. Sup-

posing that there is an H(f) € C(I) such that | q(t,2z) + (@ — 2)b| < H(t) | z — a |
~fort = t4, ze C, we obtain .

G(t, z) Re {kh‘"’(O)[l + gs(’z j) ]} < —Re(a’b) + |a|* H(p).

By use of Theorem 1 and Theorem 2 we get the following assertion:
If there exist a, be C, H(t) € C(I) such that b # 0,

(11) la(t,2) + (@ —2)b| S H®) |z —a| fortzty,zeC,
" and the function A '

¢ _ . _
(12) |a |2 j' H(E) dE — Re (a®b) ¢ is upper bounded on HhSt<oo,
. to . .
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then every solution z(t) of (10) satisfying
13) I 2(t1)l |2(t)) — a I'1 exp {Re ['-02“(11)]}
=w<e *exp[lal? j H(s)ds — Re (azb)(tl - to)],

where t; 2 t, and

(14 ¥ = sup [IaIZIH(C)df Re(azb)(t—to)]

toSt<w

is defined for all t = t,, and
| z(t) || z(t) — a|~" exp {Re [—az"(t)]} <we*exp[—|al? j'lH(s) ds +

+ Re (a2b) (t; — to)]
holds fort = t,. If,in addt'tion,
(15) lim [| a|? j H(¢)dE — Re (azb) t] = —oo,

then any solunon z(?) of (10) satrsfymg (13), where t1 = to and » is deﬁned by (14), ’
~ fulfils the condition

lim z(t) = 0
t—= oo
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