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HIGHER MONOTONICITY PROPERTIES 
OF CERTAIN STURM-LIOUVILLE FUNCTIONS 

ELENA PAVLfKOVA, 2ilina 
(Received March 24, 1980) 

1. INTRODUCTION AND NOTATION 

In [1] there is derived a simple sufficient condition for the monotonicity of order n 
of the sequence of diferences of consecutive zeros of linear combination of any 
solution and its first derivative of the differential equation 

(q) Z + JWJ' -O 

in the interval (a, oo), where a is a real number. 
In [4] there are given sufficient conditions for the monotonicity of the sequence 

of extremants (i.e. zeros of the 1-st derivative) of an arbitrary solution of the differen­
tial equation (q). 

In this paper, using the first accompanying equation with regard to the basis a, p, 
where a, p are real numbers with the property a2 + p2 > 0, we extend the above-
mentioned results from [ l ] and [4] to the function 

*y + Pg(x) /, 

where y{x) is a solution of the equation 

(g{x)yy+my-o. 

Finally, we introduce certain applications of the derived results for Bessel func­
tions. 

In [2] M. Laitoch introduced the first accompanying equation (Q) towards the 
differential equation (q) with regard to the basis a, /? in the form 

(Q) y + Gto j -o , 
where 

m nt ^ ^ *M 4. l fa" 3 A ' 2 ,_ 

-3 

159 



under the assumption that q(x)eC29 q(x) > 0 for xe(a> oo), and a, ft are real 
numbers with the property a2 -f P2 > 0. 

In [2] it is proved that if y(x) is a solution of (q), then the function 

Va2 + fi2q(x) 

is a solution of the differential equation (Q) and conversely, if Y(x) is any solution 
of (Q), then there exists a solution y(x) of the equation (q) such that 

V«2 + p2q(x) 

A function f(x) is said to be w-times monotonic (or monotonic of order n) on an 
interval (a, oo) if 

(2) ( - \yf{i){x) 2s 0, i = 0, 1, ..., n, x 6 (a, oo). 

For such a function we write f(x) e M„(a, oo). If strict inequality holds trough-
out (2), we write/(x) € M*(a9 oo). We say that/(x) is completely monotonic on (a, oo) 
if (2) holds for n = oo. 

A sequence {xk}kmt9 denoted simply by {xk}9 is said to be n-times monotonic if 

(3) ( - l V A ^ ^ O , * = 0,1, ...,n, fc= 1,2,... 

Here 
A ** = xk, A** = xk+l — x^,..., A xk = A **+i — A **• 

For such a sequence we write {xk} e M„. If strict inequality holds throughout (3), 
we srite {#*} e Af *. The sequence {xk} is called completely monotonic if (3) holds 
for n = oo. 

2. NEW BASIC RESULTS 

In this section we consider the differential equation 

(4) <g{x)y)'+f(x)y-09 

with/(x) and g(x) continuous, g(x) > 0 for x e (a, oo) and g(x) e MB(a, oo), n ££ 2. 
The change of variable 

(5) c-Iwor1*, 
a 

where the integral is assumed convergent, transforms (4) into 

(6) , * + *(£)»/= 0, 
where i|(0 = X*) and ?(£) = /(x)£(x). 

( - * ) 
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For n i> 2, g(x) is non-increasing. Hence, the mapping (5) takes the x-interval 
(a, oo) into the ^-interval (0, oo). 

Let <p(OeC2> <K£) > 0 on (0, oo). The first accompanying equation towards 
the differential equation (6) with regard to the basis a, p has the form 

(7) * + * ( 0 * « O f 

where <P(£) is given by (\<p). 

Lemma 1. Let n ^ 2 be an integer. Letf(x), g(x), (f(x)g(x))' in (4) be positive on 
(a, oo) and let g(x)y (f(x)g(x))' belong to Mn(a, oo). Then for the carrier (p(£) of the 
differential equation (6) we have 

<p(t) > 0, q>(Z) > 0 on (0, oo) and <p(0 e M„(0, oo). 

Proof. Consider a carrier </>(£) of the equation (6). It is obvious that q>{£) » 
= fix) g(x). Therefore, by hypotheses, we have <p(£) > 0 on (0, oo). 

The second part of the assertion is proved in [3], Theorem 3.1. 

Lemma 2. Let the assumptions of Lemma 1 hold. Let a, P be real numbers such 
that a2 + p2 > 0, a/? £ 0. Then for the carrier #(£) of the first accompanying equation 
towards the differential equation (6) with regard to the basis a, /? we have 

$(£) > 0 on (0, oo), 0(0 € M„_2(0, oo) and 0 < <*>(oo) = <p(oo) £ oo. 

Proof. Consider a carrier $(£) of the equation (7). Lemma 1 implies that <p(£) > 0 
on (0, oo) and <p(£) e Mrt(0, oo). Since a2 + p2 > 0 and <p(<!;) 6 Af„(0, oo) we receive 

from ([5], Lemma 2.3), that —z e Mn+1(0, oo). 
* + fi2<P(Q 

The functions ^ , ' — 6 M„(0, oo) because the sum and the product of two 
a2 + p2<p(Z) 

functions of the class Mn(0, oo) are functions belonging again to the class 
M„(0, oo) [5]. 

Therefore, using ([5], Lemma 2.3), we have 

and since a/? £ 0 also 

This implies #(£) e AfB_2(0> oo) and since <p(£) > 0 on (0, oo) we receive from (i^) 
that $(0 > 0 on (0, oo). From Lemma 1 and ([1], Lemma 1) we get 0 < #(*>) « 
< <p(oo) S °̂ and the proof is complete. 
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Let us denote, for fixed A > - 1 , 

(9) Pk - J W(x) 
g(x) sja2 + p2f(x)g(x) 

dx, k = 1, 2, 

where y(x) is an arbitrary solution of (4) and {xk} is a sequence of consecutive zeros 
of the function az{x) 4- pg(x) z'(x), where z(x) is any solution of (4) which may or 
may not be linearly independent of y(x). The function W(x) is any sufficiently mono-
tonic function. 

Theorem 1. Let n^. 2 be an integer and a, ft be real numbers such that a2 + fi2 > 0, 
aj8 jg 0. Let f(x), g(x), (f(x)g(x))' in (4) be positive on (a, DO), g(x)eMn(a, DO), 
(f(x) g(x))' e M„(a, oo) and let 

(10) W(x) > 0, W(x) 6 Mn„2(a, DO), 

Then for Pk defined by (9) there holds 

xe(a, DO). 

oo w«< 
Proof. Let ><•*)> *(•*) be solutions of the differential equation (4) and rj(£) = y(x), 

((0 = z(x) be solutions of the equation (6). It follows from [2] that the functions 

TO-

z(0 = 

«>/ + foi _ ^y+Js/ 
Va2 + j8 V « ) Va2 + p2fg 

are solutions of the equation (7). 
By Lemma 2, we have 0 < <P(DO) ^ DO. This shows that xz(x) + flg(x)z'(x) 

does indeed have an infinite sequence of zeros on (a, DO). 
Using the change of variable (5) we get 

J W(x) 1 
g00 

«y + Mx) y' 
V«2 + /?2/(x)g(x) 

d x = f W(x(0) «>/ + fry 

Va2 + jB 2 ^) 
<tf, 

where {£k} are consecutive zeros of a£(0 4- j?£(£) corresponding, respectively, to 
consecutive zeros {xk} of az{x) + fe(x) z'(x), here aC(£) + 0£(£) = <xz(x) + j%(x) z'(*). 

By hypotheses, we have W(x(£)) > 0 on (0, DO). Since #%x)e Mn_2(a, DO), 
using (8) and ([15], Lemma 2.3), we have W(x(£))e M„_2(0, DO). By Lemma 2, 
#(£) > 0 on (0, DO) an4 #(£) e MB_2(0, oc). So, the conditions of ([3], Theorem 3.1) 
are fulfilled. Using this theorem we have 

{ N j e J l C 2 , 
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where Nk is defined by 

Nk =
 hjlWW))\HG)\l4t. A > - 1 , fe = l ,2 , . . . 

tk 

Here //(£) is the solution of (7) and {tk} denotes the sequence of consecutive zeros 
of the solution Z(£) of (7). 

Since Z ^ V ^ T ^ O - a f t O + ^K), we have {tk} = {£k}. Hence it 
follows that 

Nk-faf+V(x(0) a*/ + 0ij 
dt - P*. 

Va2 + j»V«) 

so that (11) holds, and the theorem is proved. 

Corollary 1. Let the conditions of Theorem 1 are satisfied. Then 

for Ae(-1,0>, A: = 1,2,... 
Proof of this corollary follows directly from Theorem 1. (11) remains valid when 

W(x) is replaced by 

W(x) g(x) (a2 + P2f(x) g{x)Y'\ A e ( - 1 , 0>, 

since the last function belongs to A/„_2(tf, oo). 
If we put W{x) = 1, we receive 

Corollary 2. l//nfer //*e hypotheses of Theorem 1 we //aue 

( 7 \ *y(x) + pg(x) y'(x) |A dx} e Mt 2, 
Xk 

forXe(-l,0>9k= 1,2,... 

Remark 1. If in the above considerations we choose a = 1, p = 0, then we obtain 
the results from [1] concerning the monotonicity of consecutive zeros of any arbitrary 
solution y(x) of the equation (4). 

If we choose a = 0, p = 1, then we obtain the results from [4] for the mono­
tonicity of the sequence of extremants of an arbitrary solution of the equation (4). 

3. APPLICATIONS TO BESSEL AND GENERALIZED 
AIRY FUNCTIONS 

Throughout this section we suppose that a, P are real numbers such that a2 + 
+ P2 > 0, OLp g 0. 

1. Let Gn(x) denote any Bessel (cylinder) function of order v, i.e. any nontrivial 
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solution of the Bessel equation 

(12) 

Then the function 

y" + ̂ y' + (i-~jy = o, *e(b,co). 

y(x) = x1/2(Ev(x) 

is a solution of the differential equation 

(13) 4-1?1-)'-0 

Let {avk} denote the sequence of consecutive positive zeros of the function 

<xxt/2<Sv(x) 4- p(x1/2%v(x))' 

and let {AYk} denote the analogous sequence of the function 

<xxl/%(x) + (jbI/2ev(x))\ 

where ©,(*) denotes any Bessel function of order v, possibly (£v(x) again. 

Theorem 2. Let n ^ 2 benan integer, v > — be an arbitrary number and a = 

-MJ 
1/2 

Let 

W(x)>09 W(x)eMtt„2(a,oo)9 xe(a,oo) 

and let Ryk be defined for x e (a, DO) and X > -I by 
Avt k + 1 

(14) Ryk= J W(x) 
. ilvfc 

ax1/2gv(x) + P(xl'%(x))' 

J* + f(x*-* + ty x~2 

A 

dx, fc = 1,2,... 

JLe* /? ie fAe smallest integer satisfying a g ^vp. TAe/i 

as) {j?vjr«^M:.2. 

Proof. In the case of the differential equation (13) the coefficients f(x) and g(x) 
haVe th$ fonn 

- ( < - $ 
/ ( x ) - l - v 2 - ^ x~2 and g ( x ) - l 

It is obvious that/'(#) € Af * (a, oo) and/(a) *• 0. This implies/(x) > 0 for x e(a, oo). 
The expression Pk defined in (9) is of the form (14). So, the assertion (15) follows 

immediately from Theorem 1. 
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Remark 2. Let v > — be an arbitrary number and a » (v2 - -j-} /Let a - | v 2 - TJ 

W(x)>0, W(x) e M„{a, oo), x 6 (a, oo), 

and let i?vk be defined by (14). Then 

{«*}?-,€ Mi . 

The remark is the case n = oo in Theorem 2. 

Corollary 3. C/«afer fAe hypotheses of Theorem 2 we have 

{ T ' W(x) | *xl'%(x) + P(xll2<£v(x))' |*dx}?„peMt-1, 

/or some fixed X e (— 1,0>. 
The proof of this corollary follows from Theorem 2. The assertion (15) remains 

valid when W(x) is replaced by 

W{x) (a1 + P2 (x2 - v2 + 1 ) x~2 J , A e (-1,0>, 

since the last function belongs to Mn„2(̂ > <*>). 

Remark 3, As a direct conclusion of Theorem 2 we get 

(16) {(«,,*+i)7-(a*)T-# e ^ i . - 0 < y j £ l , 

(17) K-^r eM-
The assertion (1$) is an immediate consequence of Theorem 2 with <!,(*) a <£v(x) 

A = 0and W ( x ) = V _ 1 . 
The assertion (17) follows from Theorem 2 if §y(x) = Cv(x), A * 0 and W(x) -

Remark 4. Let the assumptions of Theorem 2 hold and let y > 0. Then 

(18) {(**)"'}"-, 6 M i , 

(19) { ( I g a J - T - p e M i , aVJ( > 1, 

{exp(-yart)}r.peMi. 

The assertion (18) follows from Theorem 2 if <£,(*) = «£„(*), X = 0 and ft^x) = 
== —w'(*)> where w(x) = x~r. 

It is obvious that w(x)e M^(a, oo). Therefore we have A°»K<*v») > 0» &=*/>, 
p + 1,... Moreover, 

-Aw^-'TWttJcl*. 
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and, since — w'(x) e M*(a, oo), we can see, from Theorem 2, that 

{-Aw(avk)}fc%eAC 
This implies 

Mavfc)}*%eAC 
Thus (18) holds. 

The assertions (19) and (20) follow from Theorem 2 if 

§v(x) = «,(*), A = 0, W(x) = -[(lg * ) - ' ] ' and W(x) « -[e~y*]', 

respectively. 
2. We apply Theorem 1 to certain generalized Airy functions, i.e., solutions of 

(21) y" + d2x28'2y = 0, 
3 

where 1 < 5 <; —. The solutions >>(*) of (21) are expressible in terms of cylinder 

functions: 
y(x) = xlf2<Z1K2d)(x*). 

Let {&vJJ denote the sequence of consecutive positive zeros of the function 

« 1 / 2 « l / ( 2 * ) ( ^ + ^ 1 / 2 « l / ( 2 . / ^ ) ' 

and let {Bvk} denote the analogous sequence of the function 

^t/2^1/i2d)(x
6) + P(xi/2®i/i2S)(x*))\ 

where (&v(x) denotes any Bessel function of order v, possibly Gv(x) again. 
3 

Theorem 3. Let n g: 2 be an integer and 1 < d ^ — be an arbitrary number. Let 

W{x) > 0, W(x) e Mn„2(a9 oo), xe(a,oo), 0 <J a < Bvi, 

awrf let Nsk be defined for x e (a, oo) and X > —I by 

k 

dx, (22) Nik -
2 T V(x) I g x l / 2 g ' /<^^ ) +^ 1 / 2 < £ l /<"> ( x , )) ' 

* = 1 , 2 , . . . 
J/icn 
(23) . {Nik}eMt2. 

Proof. The assertion (23) is an immediate consequence of Theorem 1, applied 
to the equation (4) with 

f(x) = 52x2>-2 and g(x) = 1. 

It is obvious that f(x) > 0 on (a, oo) and f'(x) e M* (a, oo). The expression Pk 

defined in (9) is of the form (22), so that (23) holds and the theorem is proved. 
/ ' 
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Remark 5. Let 1 < 5 <£ -y be an arbitrary number. Let 

W(x) > 0, W(x) € M^ia, oo), x e (a, oo), 0 g a < Bv l , 

and let Ndk be defined by (22). Then 

Rhe remark is the case n = oo in Theorem 3. 

Corollary 4. Under the hypotheses of Theorem 3 we have 

{*T\ ax1/2G1/(2a)(x>) + j?(xl/2G;1/(2d)(x
a))' |Adx} € * C 2 , 

for some fixed k e (— 1, 0>. 
Proof. In Theorem 3, we set 

W(x) = (a2 + p2d2x2d~2)XI\ X e (-1,0>. 

Remark 6. As a direct conclusion of Theorem 3 we get 

(24) { ( ^ i l ' - W e M * . , 0 < y < l , 

(25) | i g ^ ± L | 6 M J , 

(26) {(bSky
y}eMl, y > 0 , 

(27) {(lgbik)-*}eMl, y > 0 , blk > 1, 

(28) {exp (-?*>„)} eM*, y > 0. 

The proof is quite similar to the proof of Remark 3. 
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